1
|
Tran HV, Dang TT, Nguyen NH, Tran HT, Nguyen DT, Do DV, Le TS, Ngo TH, Late YKE, Amaniampong PN, Fletcher E, Hung TQ, Cheng Y, Nguyen TK, Tran TS, Zhang J, An H, Nguyen NT, Trinh QT. Methanol Activation: Strategies for Utilization of Methanol as C1 Building Block in Sustainable Organic Synthesis. CHEMSUSCHEM 2025; 18:e202401974. [PMID: 39555972 DOI: 10.1002/cssc.202401974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024]
Abstract
The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.
Collapse
Affiliation(s)
- Hung-Vu Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300 A Nguyen Tat Thanh St., District 4, Ho Chi Minh City, 7280, Viet Nam
| | - Tuan Thanh Dang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Nguyen Hoang Nguyen
- Energy and Environmental Technology Division, Vietnam - Korea Institute of Science and Technology, Hoa Lac High-Tech Park, Hanoi, Viet Nam
| | - Huyen Thu Tran
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5 A 0 A7, Canada
| | - Dung Tien Nguyen
- Vietnam University of Traditional Medicine, No. 2 Tran Phu St., Ha Dong, Hanoi, 12110, Viet Nam
| | - Dang Van Do
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Thuong Hanh Ngo
- Vietnam University of Traditional Medicine, No. 2 Tran Phu St., Ha Dong, Hanoi, 12110, Viet Nam
| | - Yawa K E Late
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, 1 rue Marcel Doré, Bat B1 (ENSI-Poitiers), 86073, Poitiers, France
| | - Prince Nana Amaniampong
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, 1 rue Marcel Doré, Bat B1 (ENSI-Poitiers), 86073, Poitiers, France
| | - Eugene Fletcher
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Tran Quang Hung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Yuran Cheng
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan Sang Tran
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
2
|
Liu X, Huang L, He Y, Zhou P, Song X, Zhang Z. Single-Atom Co-N 4 Sites Mediate C=N Formation via Reductive Coupling of Nitroarenes with Alcohols. JACS AU 2024; 4:3436-3450. [PMID: 39328762 PMCID: PMC11423325 DOI: 10.1021/jacsau.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 09/28/2024]
Abstract
It remains challenging to construct C=N bonds due to their facile hydrogenation. Herein, a single Co atom catalyst was discovered to be active for the selective construction of C=N bonds toward the synthesis of imines and N-heterocycles via reductive coupling of nitroarenes with various alcohols, including inert aliphatic ones. DFT calculations and experimental data revealed that the transfer hydrogenation proceeded via the intramolecular hydride transfer and the transfer of H from the α-Csp3-H bond to the nitro group was the rate-determining step. The single Co atoms served as a bridge to transfer the electrons from the catalyst to the adsorbed alcohol molecules, resulting in the activation of the α-Csp3-H bond. Unlike metal nanoparticles, the C=N bonds in imine products can be reserved due to the large steric hindrance from substituents on C and N. DFT calculation also confirmed that transfer hydrogenation of the C=N bonds in imines is thermodynamically unfavored with a much higher energy barrier compared with the transfer hydrogenation of the -NO2 group (1.47 vs 1.15 eV).
Collapse
Affiliation(s)
- Xixi Liu
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Liang Huang
- The
State Key Laboratory of Refractories and Metallurgy/Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430074, P. R. China
| | - Yurong He
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Peng Zhou
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xuedan Song
- State
Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning
Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Zehui Zhang
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Duan Z, Lv R, Huang Z, Li J, Xiao X, Zhang Z, Wan S, Wang S, Xiong H, Yi X, Wang Y, Lin J. Enhancing Efficiency and High-Value Chemicals Generation through Coupling Photocatalytic CO 2 Reduction with Propane Oxidation. CHEMSUSCHEM 2024; 17:e202301881. [PMID: 38467567 DOI: 10.1002/cssc.202301881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Conversion of CO2 into high-value chemicals using solar energy is one of promising approaches to achieve carbon neutrality. However, the oxidation of water in the photocatalytic CO2 reduction is kinetically unfavorable due to multi-electron and proton transfer processes, along with the difficulty in generating O-O bonds. To tackle these challenges, this study investigated the coupling reaction of photocatalytic CO2 reduction and selective propane oxidation using the Pd/P25 (1 wt%) catalyst. Our findings reveal a significant improvement in CO2 reduction, nearly fivefold higher, achieved by substituting water oxidation with selective propane oxidation. This substitution not only accelerates the process of CO2 reduction but also yields valuable propylene. The relative ease of propane oxidation, compared to water, appears to increase the density of photogenerated electrons, ultimately enhancing the efficiency of CO2 reduction. We further found that hydroxyl radicals and reduced intermediate (carboxylate species) played important roles in the photocatalytic reaction. These findings not only propose a potential approach for the efficient utilization of CO2 through the coupling of selective propane oxidation into propylene, but also provide insights into the mechanistic understanding of the coupling reaction.
Collapse
Affiliation(s)
- Zitao Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ruiqi Lv
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zongyi Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiwei Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaohong Xiao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhaoxia Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haifeng Xiong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaodong Yi
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, United States
| | - Jingdong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
Li H, Li C, Liu W, Yao Y, Li Y, Zhang B, Qiu C. Photo-Induced C 1 Substitution Using Methanol as a C 1 Source. CHEMSUSCHEM 2023; 16:e202300377. [PMID: 37140478 DOI: 10.1002/cssc.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The development of sustainable and efficient C1 substitution methods is of central interest for organic synthesis and pharmaceuticals production, the methylation motifs bound to a carbon, nitrogen, or oxygen atom widely exist in natural products and top-selling drugs. In the past decades, a number of methods involving green and inexpensive methanol have already been disclosed to replace industrial hazardous and waste-generating C1 source. Among the various efforts, photochemical strategy is considered as a "renewable" alternative that shows great potential to selectively activate methanol to achieve a series of C1 substitutions at mild conditions, typically C/N-methylation, methoxylation, hydroxymethylation, and formylation. Herein the recent advances in selective transformation of methanol to various C1 functional groups via well-designed photochemical systems involving different types of catalysts or not is systematically reviewed. Both the mechanism and corresponding photocatalytic system were discussed and classified on specific methanol activation models. Finally, the major challenges and perspectives are proposed.
Collapse
Affiliation(s)
- Hongmei Li
- College of Mechanical Engineering, College of Food and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China
| | - Chao Li
- College of Mechanical Engineering, College of Food and Bioengineering, Chengdu University, Chengdu, 610106, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Wei Liu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yanling Yao
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P.R. China
| | - Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P.R. China
| | - Bing Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
5
|
Zang S, Cai X, Chen M, Teng D, Jing F, Leng Z, Zhou Y, Lin F. Tunable Carrier Transfer of Polymeric Carbon Nitride with Charge-Conducting CoV2O6∙2H2O for Photocatalytic O2 Evolution. NANOMATERIALS 2022; 12:nano12111931. [PMID: 35683786 PMCID: PMC9182530 DOI: 10.3390/nano12111931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Photocatalytic water splitting is one of the promising approaches to solving environmental problems and energy crises. However, the sluggish 4e− transfer kinetics in water oxidation half-reaction restricts the 2e− reduction efficiency in photocatalytic water splitting. Herein, cobalt vanadate-decorated polymeric carbon nitride (named CoVO/PCN) was constructed to mediate the carrier kinetic process in a photocatalytic water oxidation reaction (WOR). The photocatalysts were well-characterized by various physicochemical techniques such as XRD, FT-IR, TEM, and XPS. Under UV and visible light irradiation, the O2 evolution rate of optimized 3 wt% CoVO/PCN reached 467 and 200 μmol h−1 g−1, which were about 6.5 and 5.9 times higher than that of PCN, respectively. Electrochemical tests and PL results reveal that the recombination of photogenerated carriers on PCN is effectively suppressed and the kinetics of WOR is significantly enhanced after CoVO introduction. This work highlights key features of the tuning carrier kinetics of PCN using charge-conducting materials, which should be the basis for the further development of photocatalytic O2 reactions.
Collapse
Affiliation(s)
- Shaohong Zang
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
| | - Xiaorong Cai
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
| | - Mengshan Chen
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
| | - Dehong Teng
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
| | - Fei Jing
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
| | - Zhe Leng
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
- Correspondence: (Z.L.); (F.L.); Tel.: +86-0580-2262589 (Z.L.)
| | - Yingtang Zhou
- Institute of Innovation & Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (S.Z.); (X.C.); (M.C.); (D.T.); (F.J.); (Y.Z.)
| | - Feng Lin
- College of Chemical and Materials Engineering, Quzhou University, Quzhou 324000, China
- Correspondence: (Z.L.); (F.L.); Tel.: +86-0580-2262589 (Z.L.)
| |
Collapse
|
6
|
Chen N, Jia X, He H, Lin H, Guo M, Cao J, Zhang J, Chen S. Promoting photocarriers separation in S-scheme system with Ni2P electron bridge: The case study of BiOBr/Ni2P/g-C3N4. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63817-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Li Y, Chen Y, Wu Q, Zhang R, Li M, Lin Y, Wang D, Xie T. Revealing long-lived electron–hole migration in core–shell α/γ-Fe2O3/FCP for efficient photoelectrochemical water oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01628h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A γ/α-Fe2O3/FCP photoanode with rapid interfacial hole injection and long-lived charge separation states (∼50.64 ps) showed that the synergistic effect of a phase junction and FeCo Prussian blue (FCP) could optimize the kinetics in water oxidation.
Collapse
Affiliation(s)
- Yinyin Li
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yifan Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qiannan Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Rui Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yanhong Lin
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dejun Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tengfeng Xie
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Zhang Z, Xu Y, Zhang Q, Fang S, Sun H, Ou W, Su C. Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Sci Bull (Beijing) 2022; 67:71-78. [DOI: 10.1016/j.scib.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
|
9
|
Qiu C, Sun Y, Xu Y, Zhang B, Zhang X, Yu L, Su C. Photoredox-Catalyzed Simultaneous Olefin Hydrogenation and Alcohol Oxidation over Crystalline Porous Polymeric Carbon Nitride. CHEMSUSCHEM 2021; 14:3344-3350. [PMID: 34180144 DOI: 10.1002/cssc.202101041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Booming of photocatalytic water splitting technology (PWST) opens a new avenue for the sustainable synthesis of high-value-added hydrogenated and oxidized fine chemicals, in which the design of efficient semiconductors for the in-situ and synergistic utilization of photogenerated redox centers are key roles. Herein, a porous polymeric carbon nitride (PPCN) with a crystalline backbone was constructed for visible light-induced photocatalytic hydrogen generation by photoexcited electrons, followed by in-situ utilization for olefin hydrogenation. Simultaneously, various alcohols were selectively transformed to valuable aldehydes or ketones by photoexcited holes. The porosity of PPCN provided it with a large surface area and a short transfer path for photogenerated carriers from the bulk to the surface, and the crystalline structure facilitated photogenerated charge transfer and separation, thus enhancing the overall photocatalytic performance. High reactivity and selectivity, good functionality tolerance, and broad reaction scope were achieved by this concerted photocatalysis system. The results contribute to the development of highly efficient semiconductor photocatalysts and synergistic redox reaction systems based on PWST for high-value-added fine chemical production.
Collapse
Affiliation(s)
- Chuntian Qiu
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yangsen Xu
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bing Zhang
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Chenliang Su
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
10
|
Zhang P, Yue C, Fan M, Haryonob A, Leng Y, Jiang P. The selective oxidation of glycerol over metal-free photocatalysts: insights into the solvent effect on catalytic efficiency and product distribution. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00360g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Solvent effect in selective aerobic oxidation of glycerol over O-doped g-C3N4 was studied combining with control experiments and DFT theory calculation. Notably, a novel oxidative esterification of glycerol to yield esters was discovered in CH3CN.
Collapse
Affiliation(s)
- Pingbo Zhang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chengguang Yue
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Mingming Fan
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Agus Haryonob
- Research Center for Chemistry
- Indonesian Institute of Sciences (LIPI)
- Serpong 15314
- Indonesia
| | - Yan Leng
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Pingping Jiang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
11
|
Ma SS, Sun R, Zhang ZH, Yu ZK, Xu BH. Ruthenium-catalysed chemoselective alkylation of nitroarenes with alkanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01269j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation of nitroarenes with akanols catalysed by the phosphinesulfonate ruthenium complex was reported. It displays different reactivity and chemoselectivity depending on the acid–base conditions, delivering diverse anilines from nitroarenes.
Collapse
Affiliation(s)
- Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Heng Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zheng-Kun Yu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|