1
|
Mi A, Yun R, Shang H, Zhang B, Xiang X. Encapsulating Ammonia Borane in Cobalt Decorated Kaolinite Monolith Aerogel for Hydrogen Storage and Controllable Release. CHEMSUSCHEM 2025; 18:e202401766. [PMID: 39394838 DOI: 10.1002/cssc.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
Achieving the "on-off" control of hydrogen release remains a huge challenge in efficiently harnessing hydrogen energy on demand. In this work, a controlled hydrogen production strategy is proposed. Hydrogen carrier ammonia borane (AB) and Co catalyst are loaded into kaolinite aerogel (KA) to obtain a composite AB@Co/KA monolith. The results show that Co particles with surface-oxidized species are uniformly decorated on the surface of aerogel, and AB can fill the pores of aerogel to form a composite hydrogen storage material. Hydrogen generation is modulated on AB@Co/KA by tuning the amount of water added, which achieves an "on-off" hydrogen release on demand. The Co-modified KA (Co/KA) can be repackaged multiple times for recycling use after the AB is completely hydrolyzed. This work provides a promising approach for controlling the release of hydrogen neither the input of additional energy nor foreign reagents added to the reaction system.
Collapse
Affiliation(s)
- Ang Mi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Rongping Yun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, People's Republic of China
| |
Collapse
|
2
|
Abdullahi YZ, Djebablia I, Yoon TL, Leng LT. Calcium-atom-modified boron phosphide (BP) biphenylene as an efficient hydrogen storage material. RSC Adv 2024; 14:39268-39275. [PMID: 39670161 PMCID: PMC11635407 DOI: 10.1039/d4ra07271e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Porous nanosheets have attracted significant attention as viable options for energy storage materials because of their exceptionally large specific surface areas. A recent study (Int. J. Hydrogen Energy, 2024, 66, 33-39) has demonstrated that Li/Na-metalized inorganic BP-biphenylene (b-B3P3) and graphenylene (g-B6P6) analogues possess suitable functionalities for hydrogen (H2) storage. Herein, we evaluate the H2 storage performance of alkaline earth metal (AEM = Be, Mg, Ca)-decorated b-B3P3 and g-B6P6 structures based on first-principles density functional theory (DFT) calculations. Our investigations revealed that individual Be and Mg atoms are not stable on pure b-B3P3 and g-B6P6 sheets, and the formation of aggregates is favored due to their low binding energy to these surfaces. However, the binding energy improves for Ca-decorated b-B3P3 (b-B3P3(mCa)) and g-B6P6 (g-B6P6(nCa)) structures, forming stable and uniform mCa(nCa) (m and n stand for the numbers of Ca atom) coverages on both sides. Under maximum hydrogenation, the b-B3P3(8Ca) and g-B6P6(16Ca) structures exhibited the ability to adsorb up to 32H2 and 48H2 molecules with average adsorption energy (E a) values of -0.23 eV per H2 and -0.25 eV per H2, respectively. Gravimetric H2 uptakes of 7.28 wt% and 5.56 wt% were found for b-B3P3(8Ca)@32H2 and g-B6P6(16Ca)@48H2 systems, exceeding the target of 5.50 wt% set by the US Department of Energy (DOE) to be reached by 2025. Our findings indicate the importance of these b-B3P3 and g-B6P6 sheets for H2 storage technologies.
Collapse
Affiliation(s)
- Yusuf Zuntu Abdullahi
- Department of Physics, Aydin Adnan Menderes University Aydin 09010 Turkey
- Department of Physics, Faculty of Science, Kaduna State University P.M.B. 2339 Kaduna State Nigeria
| | - Ikram Djebablia
- Radiation and Matter Physics Laboratory, Matter Sciences Department, Mohamed-Cherif Messaadia University P.O. Box 1553 Souk-Ahras 41000 Algeria
- Physics Laboratory at Guelma, Faculty of Mathematics, Computing and Material Sciences University 8 May 1945 Guelma, P.O. Box 401 Guelma 24000 Algeria
| | - Tiem Leong Yoon
- School of Physics, Universiti Sains Malaysia 11800 Penang Malaysia
| | - Lim Thong Leng
- Faculty of Engineering and Technology, Multimedia University Jalan Ayer Keroh Lama 75450 Melaka Malaysia
| |
Collapse
|
3
|
Ciocarlan RG, Farrando-Perez J, Arenas-Esteban D, Houlleberghs M, Daemen LL, Cheng Y, Ramirez-Cuesta AJ, Breynaert E, Martens J, Bals S, Silvestre-Albero J, Cool P. Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction. Nat Commun 2024; 15:8697. [PMID: 39379386 PMCID: PMC11461665 DOI: 10.1038/s41467-024-52893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Safe storage and utilisation of hydrogen is an ongoing area of research, showing potential to enable hydrogen becoming an effective fuel, substituting current carbon-based sources. Hydrogen storage is associated with a high energy cost due to its low density and boiling point, which drives a high price. Clathrates (gas hydrates) are water-based (ice-like) structures incorporating small non-polar compounds such as H2 in cages formed by hydrogen bonded water molecules. Since only water is required to construct the cages, clathrates have been identified as a potential solution for safe storage of hydrogen. In bulk, pure hydrogen clathrate (H2O-H2) only forms in harsh conditions, but confined in nanospaces the properties of water are altered and hydrogen storage at mild pressure and temperature could become possible. Here, specifically a hydrophobic mesoporous silica is proposed as a host material, providing a suitable nano-confinement for ice-like clathrate hydrate. The hybrid silica material shows an important decrease of the pressure required for clathrate formation (approx. 20%) compared to the pure H2O-H2 system. In-situ inelastic neutron scattering (INS) and neutron diffraction (ND) provided unique insights into the interaction of hydrogen with the complex surface of the hybrid material and demonstrated the stability of nano-confined hydrogen clathrate hydrate.
Collapse
Affiliation(s)
- Radu-George Ciocarlan
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Judit Farrando-Perez
- The Advanced Materials Laboratory (LMA) - Department of Inorganic Chemistry - IUMA, University of Alicante (UA), Alicante, Spain
| | - Daniel Arenas-Esteban
- Electron Microscopy for Materials Science (EMAT), NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Maarten Houlleberghs
- Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Luke L Daemen
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongqiang Cheng
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Johan Martens
- Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, Leuven, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joaquin Silvestre-Albero
- The Advanced Materials Laboratory (LMA) - Department of Inorganic Chemistry - IUMA, University of Alicante (UA), Alicante, Spain
| | - Pegie Cool
- Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| |
Collapse
|
4
|
Nguyen TT, Tran HV, Nguyen LH, Nguyen HM, Phan TB, Nguyen-The T, Kawazoe Y. Impact of ligand fields on Kubas interaction of open copper sites in MOFs with hydrogen molecules: an electronic structural insight. RSC Adv 2024; 14:26611-26624. [PMID: 39175680 PMCID: PMC11339784 DOI: 10.1039/d4ra03946g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
We investigate hydrogen sorption on open copper sites in various ligand coordinations of metal-organic frameworks (MOFs), including the triangular T(CuL3) in MFU-4l, the linear L(CuL2) in NU2100, and the paddlewheel P(CuL4)2 in HKUST-1 from an electronic structure perspective using DFT calculations. The ligand-field-induced splitting of d states and spd hybridizations in copper are thoroughly examined. The hybridization between Cu s, p, and d orbitals occurs in various forms to optimize the Coulomb repulsion of different ligand fields. Despite the Cu+ oxidation state, which is typically conducive to strong Kubas interactions with hydrogen molecules, the vacant spd z 2 hybrid orbitals of the open copper site in the L(CuL2) coordination are unsuitable for facilitating electron forward donation, thereby preventing effective hydrogen adsorption. In contrast, the vacant spd z 2 hybrid orbitals in the T(CuL3) and P(CuL4)2 coordinations can engage in electron forward donations, forming bonding states between the Cu spd z 2 and H2 σ bonding orbitals. The forward donation in the T(CuL3) configuration is significantly stronger than in the P(CuL4)2 configuration due to both the lower energy of the vacant orbitals and the larger contributions of p and d z 2 characters to the hybrid orbital. Additionally, the occupied Cu pd xz/yz and pd x 2-y 2 hybrid orbitals in the T(CuL3) configuration promote electron back donation to the H2 σ* antibonding orbital, leading to the formation of π bonding states. In the P(CuL4)2 coordination, the repulsion from the electron density distributed over the surrounding ligands prevents the H2 molecule from approaching the copper center closely enough for the back donation to occur. The complete Kubas interaction, involving both forward and back electron donations, results in a large dihydrogen-copper binding energy of 37.6 kJ mol-1 in the T(CuL3) coordination. In contrast, the binding energy of 10.6 kJ mol-1 in the P(CuL4)2 coordination is primarily driven by electrostatic interactions with a minor contribution of the Kubas-like forward donation interaction. This analysis highlights the pivotal role of coordination environments in determining the hydrogen sorption properties of MOFs.
Collapse
Affiliation(s)
- Trang Thuy Nguyen
- Faculty of Physics, University of Science, Vietnam National University Hanoi Vietnam
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University Hanoi Vietnam
| | - Hoan Van Tran
- Faculty of Physics, University of Science, Vietnam National University Hanoi Vietnam
| | - Linh Hoang Nguyen
- School of Engineering Physics, Hanoi University of Technology Hanoi Vietnam
| | - Hoang Minh Nguyen
- Faculty of Physics, University of Science, Vietnam National University Hanoi Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Vietnam National University Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Toan Nguyen-The
- Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University Hanoi Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamilnadu India
- School of Physics, Institute of Science, Suranaree University of Technology 111 University Avenue Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
5
|
Shanmugam M, Agamendran N, Sekar K, Natarajan TS. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Phys Chem Chem Phys 2023; 25:30116-30144. [PMID: 37909363 DOI: 10.1039/d3cp04297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (e.g., oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H2 production), gaseous fuel (H2 and CH4) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies. Thus, to overcome these issues, the development of metal-organic frameworks (MOFs) has attracted significant attention. MOFs are a class of porous materials with extremely high porosity and surface area, structural diversity, multifunctionality, and chemical and structural stability, and thus they can be used in a wide range of applications. In the present review, we precisely discuss the interesting properties of MOFs and the various methodologies for their synthesis, and also the future dependence on the valorization of solid waste for the recovery of metals and organic ligands for the synthesis of new classes of MOFs. Subsequently, the utilization of these interesting characteristics for energy production (water splitting), storage of gaseous fuels (H2 and CH4), and electrochemical storage (batteries and supercapacitors) applications are described. However, although MOFs are efficient materials with versatile uses, they still have many challenges, limiting their practical applications. Therefore, finally, we highlight the challenges associated with MOFs and show the way forward in overcoming them for the development of these highly porous materials with large-scale practical utility.
Collapse
Affiliation(s)
- Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Nithish Agamendran
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Chen K, He ZJ, Liu ZH, Ragauskas AJ, Li BZ, Yuan YJ. Emerging Modification Technologies of Lignin-based Activated Carbon toward Advanced Applications. CHEMSUSCHEM 2022; 15:e202201284. [PMID: 36094056 DOI: 10.1002/cssc.202201284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Lignin-based activated carbon (LAC) is a promising high-quality functional material due to high surface area, abundant porous structure, and various functional groups. Modification is the most important step to functionalize LAC by altering its porous and chemical properties. This Review summarizes the state-of-the-art modification technologies of LAC toward advanced applications. Promising modification approaches are reviewed to display their effects on the preparation of LAC. The multiscale changes in the porosity and the surface chemistry of LAC are fully discussed. Advanced applications are then introduced to show the potential of LAC for supercapacitor electrode, catalyst support, hydrogen storage, and carbon dioxide capture. Finally, the mechanistic structure-function relationships of LAC are elaborated. These results highlight that modification technologies play a special role in altering the properties and defining the functionalities of LAC, which could be a promising porous carbon material toward industrial applications.
Collapse
Affiliation(s)
- Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, 37996 TN, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, 37996 TN, USA
- Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, 37830 TN, USA
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Sharifian M, Kern W, Riess G. A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers (Basel) 2022; 14:4512. [PMID: 36365506 PMCID: PMC9654451 DOI: 10.3390/polym14214512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 10/29/2023] Open
Abstract
Globally, reducing CO2 emissions is an urgent priority. The hydrogen economy is a system that offers long-term solutions for a secure energy future and the CO2 crisis. From hydrogen production to consumption, storing systems are the foundation of a viable hydrogen economy. Each step has been the topic of intense research for decades; however, the development of a viable, safe, and efficient strategy for the storage of hydrogen remains the most challenging one. Storing hydrogen in polymer-based carriers can realize a more compact and much safer approach that does not require high pressure and cryogenic temperature, with the potential to reach the targets determined by the United States Department of Energy. This review highlights an outline of the major polymeric material groups that are capable of storing and releasing hydrogen reversibly. According to the hydrogen storage results, there is no optimal hydrogen storage system for all stationary and automotive applications so far. Additionally, a comparison is made between different polymeric carriers and relevant solid-state hydrogen carriers to better understand the amount of hydrogen that can be stored and released realistically.
Collapse
Affiliation(s)
- Mohammadhossein Sharifian
- Montanuniversität Leoben, Chair in Chemistry of Polymeric Materials, Otto-Glöckel-Strasse 2, A-8700 Leoben, Austria
| | | | | |
Collapse
|
8
|
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India
| | - Shivangi Mishra
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh- 462026, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Green Engineered Materials and Additive Manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal - 462026, India
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himani Awasthi
- Hygia Institute of Pharmaceutical Education and Research, Lucknow-226020, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|