1
|
Liu Q, Liu Z. Catalytic upcycling of waste polyethylene to fuels over a nanosized beta zeolite under mild conditions. Chem Commun (Camb) 2024; 60:11564-11567. [PMID: 39314122 DOI: 10.1039/d4cc02960g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We herein report that a nanosized beta zeolite can achieve the upcycling of waste polyethylene into gasoline-range fuels under mild conditions. High accessibility to rich acidic sites intrinsic to the nanosized beta zeolite is crucial to the cracking of polyethylene, leading to a high fuel yield of over 90% at 250 °C for 3 h.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| | - Zhendong Liu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- Ordos Laboratory, Ordos, 017010, China
| |
Collapse
|
2
|
Balzer AH, Hinton ZR, Vance BC, Vlachos DG, Korley LTJ, Epps TH. Tracking Chain Populations and Branching Structure during Polyethylene Deconstruction Processes. ACS CENTRAL SCIENCE 2024; 10:1755-1764. [PMID: 39345819 PMCID: PMC11428289 DOI: 10.1021/acscentsci.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024]
Abstract
Catalytic deconstruction has emerged as a promising solution to valorize polyethylene (PE) waste into valuable products, such as oils, fuels, surfactants, and lubricants. Unfortunately, commercialization has been hampered by inadequate optimization of PE deconstruction due to an inability to either truly characterize the polymer transformations or adjust catalytic conditions to match the ever-evolving product distribution and associated property changes. To address these challenges, a detailed analysis of molar mass distributions and thermal characterization was developed herein and applied to low-density polyethylene (LDPE) deconstruction to enable more thorough identification of polymer chain characteristics within the solids (e.g., changes in molar mass or branching structure). For example, LDPE hydrocracking exhibited comparable rates of polymer chain isomerization and C-C bond scission, and the solids generated possessed a broadened molar mass distribution with a disappearance of a significant fraction of highly linear segments, indicating polymer-structure-dependent interactions with the catalyst. Solids analysis from pyrolysis yielded starkly different results, as the resulting solids were devoid of unreacted polymer chains and had a narrowed molar mass distribution even at short times (e.g., 0.2 h). By tracking the polymeric deconstruction behavior as a function of reaction type, time, and catalyst design, we mapped critical pathways toward PE valorization.
Collapse
Affiliation(s)
- Alex H Balzer
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Zachary R Hinton
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
| | - Brandon C Vance
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - LaShanda T J Korley
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| | - Thomas H Epps
- Center for Plastics Innovation (CPI), University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter and Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Wang Y, Yan N, Chen Z. Identification of coke species on Fe/USY catalysts used for recycling polyethylene into fuels. RSC Adv 2024; 14:22056-22062. [PMID: 39005255 PMCID: PMC11240219 DOI: 10.1039/d4ra03608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
The Fe/USY catalyst used for converting plastic waste into fuels faces coking problems. A comprehensive understanding of coke distribution and structure is crucial for catalyst design, enabling resistance to coke deposition and facilitating regeneration. In this study, we analyze the coke deposition on Fe/USY catalysts after catalytic pyrolysis of polyethylene for fuel oil, and present insights into the coke distribution over the metal and acid sites, as well as its specific molecular structure. The coke distributes over both the metal and acid sites, exhibiting distinct TPO peaks corresponding to metal-site coke (370 °C) and acid-site coke (520 °C). The total coke yields range from 2.0% to 2.4%, with distribution on metal and acid sites dependent on Fe loading and acidity. Structurally, the coke is highly-condensed, containing more than four aromatic rings with limited alkyl groups. The acid-site coke is more condensed than the metal-site coke, showing lower H/C ratios (0.5-0.75) relative to the acid-site coke (0.75-0.9). Identified by MALDI-TOF mass analysis, the predominant molecular structures of the coke located on metal and acid sites are illustrated. The metal-site cokes typically exhibit 4-7 aromatic rings, while the acid-site cokes display even greater condensation with 5-12 aromatic rings.
Collapse
Affiliation(s)
- Yongli Wang
- Department of Engineering, Huzhou University 759 Erhuan North Road Huzhou 313000 China
| | - Na Yan
- Department of Engineering, Huzhou University 759 Erhuan North Road Huzhou 313000 China
| | - Zezhou Chen
- Department of Engineering, Huzhou University 759 Erhuan North Road Huzhou 313000 China
| |
Collapse
|
4
|
Zhang W, Yao H, Khare R, Zhang P, Yang B, Hu W, Ray D, Hu J, Camaioni DM, Wang H, Kim S, Lee MS, Sarazen ML, Chen JG, Lercher JA. Chloride and Hydride Transfer as Keys to Catalytic Upcycling of Polyethylene into Liquid Alkanes. Angew Chem Int Ed Engl 2024; 63:e202319580. [PMID: 38433092 DOI: 10.1002/anie.202319580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C-C bonds and forming C-C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000g L D P E m o l c a t - 1 h - 1 ${{{\rm g}}_{{\rm L}{\rm D}{\rm P}{\rm E}}{{\rm \ }{\rm m}{\rm o}{\rm l}}_{{\rm c}{\rm a}{\rm t}}^{-1}{{\rm \ }{\rm h}}^{-1}}$ , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.
Collapse
Affiliation(s)
- Wei Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Hai Yao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peiran Zhang
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Boda Yang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Wenda Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Debmalya Ray
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Jianzhi Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99164, USA
| | - Donald M Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
5
|
Cleary SR, Starace AK, Curran-Velasco CC, Ruddy DA, McGuirk CM. The Overlooked Potential of Sulfated Zirconia: Reexamining Solid Superacidity Toward the Controlled Depolymerization of Polyolefins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6612-6653. [PMID: 38509763 DOI: 10.1021/acs.langmuir.3c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Closed-loop recycling via an efficient chemical process can help alleviate the global plastic waste crisis. However, conventional depolymerization methods for polyolefins, which compose more than 50% of plastics, demand high temperatures and pressures, employ precious noble metals, and/or yield complex mixtures of products limited to single-use fuels or oils. Superacidic forms of sulfated zirconia (SZrO) with Hammet Acidity Functions (H0) ≤ - 12 (i.e., stronger than 100% H2SO4) are industrially deployed heterogeneous catalysts capable of activating hydrocarbons under mild conditions and are shown to decompose polyolefins at temperatures near 200 °C and ambient pressure. Additionally, confinement of active sites in porous supports is known to radically increase selectivity, coking and sintering resistance, and acid site activity, presenting a possible approach to low-energy polyolefin depolymerization. However, a critical examination of the literature on SZrO led us to a surprising conclusion: despite 40 years of catalytic study, engineering, and industrial use, the surface chemistry of SZrO is poorly understood. Ostensibly spurred by SZrO's impressive catalytic activity, the application-driven study of SZrO has resulted in deleterious ambiguity in requisite synthetic conditions for superacidity and insufficient characterization of acidity, porosity, and active site structure. This ambiguity has produced significant knowledge gaps surrounding the synthesis, structure, and mechanisms of hydrocarbon activation for optimized SZrO, stunting the potential of this catalyst in olefin cracking and other industrially relevant reactions, such as isomerization, esterification, and alkylation. Toward mitigating these long extant issues, we herein identify and highlight these current shortcomings and knowledge gaps, propose explicit guidelines for characterization of and reporting on characterization of solid acidity, and discuss the potential of pore-confined superacids in the efficient and selective depolymerization of polyolefins.
Collapse
Affiliation(s)
- Scott R Cleary
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Anne K Starace
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Caleb C Curran-Velasco
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Daniel A Ruddy
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - C Michael McGuirk
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Miller J, Nimlos CT, Li Y, Young AC, Ciesielski PN, Chapman LM, Foust TD, Mukarakate C. Risk Minimization in Scale-Up of Biomass and Waste Carbon Upgrading Processes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:666-679. [PMID: 38239432 PMCID: PMC10792666 DOI: 10.1021/acssuschemeng.3c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024]
Abstract
Improving the odds and pace of successful biomass and waste carbon utilization technology scale-up is crucial to decarbonizing key industries such as aviation and materials within timelines required to meet global climate goals. In this perspective, we review deficiencies commonly encountered during scale-up to show that many nascent technology developers place too much focus on simply demonstrating that technologies work in progressively larger units ("profit") without expending enough up-front research effort to identify and derisk roadblocks to commercialization (collecting "information") to inform the design of these units. We combine this conclusion with economic and timeline data collected from technology scale-up and piloting operations at the National Renewable Energy Laboratory (NREL) to motivate a more scientific, risk-minimized approach to biomass and waste carbon upgrading scale-up. Our proposed approach emphasizes maximizing information collection in the smallest, most agile, and least expensive experimental setups possible, emulating the mentality embraced by R&D across the petrochemical industry. Key points are supported by examples of successful and unsuccessful scale-up efforts undertaken at NREL and elsewhere. We close by showing that the U.S. national laboratory system is uniquely well equipped to serve as a hub to facilitate effective scale-up of promising biomass and waste carbon upgrading technologies.
Collapse
Affiliation(s)
- Jacob
H. Miller
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Claire T. Nimlos
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yudong Li
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Andrew C. Young
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Peter N. Ciesielski
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Liz M. Chapman
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Thomas D. Foust
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Calvin Mukarakate
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
7
|
Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F. Understanding the Structure–Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Zhongwen Dong
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Wenjun Chen
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Keqing Xu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Yue Liu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Jing Wu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, People’s Republic of China
| |
Collapse
|
8
|
Sustainably Recycling and Upcycling of Single-Use Plastic Wastes through Heterogeneous Catalysis. Catalysts 2022. [DOI: 10.3390/catal12080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The huge amount of plastic waste has caused a series of environmental and economic problems. Depolymerization of these wastes and their conversion into desired chemicals have been regarded as a promising route for dealing with these issues, which strongly relies on catalysis for C-C and C-O bond cleavage and selective transformation. Here, we reviewed recent developments in catalysis systems for dealing with single-use plastics, such as polyethylene, polypropylene, and polyethylene glycol terephthalate. The recycling processes of depolymerization into original monomers and conversion into other economic-incentive chemicals were systemically discussed. Rational designs of catalysts for efficient conversion were particularly highlighted. Overall, improving the tolerance of catalysts to impurities in practical plastics, reducing the economic cost during the catalytic depolymerization process, and trying to obtain gaseous hydrogen from plastic wastes are suggested as the developing trends in this field.
Collapse
|