1
|
Yang XY, Li F, Zhang G, Foster PS, Yang M. The role of macrophages in asthma-related fibrosis and remodelling. Pharmacol Ther 2025; 269:108820. [PMID: 39983844 DOI: 10.1016/j.pharmthera.2025.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Airway remodelling significantly contributes to the progressive loss of lung function and heightened symptom severity in chronic asthma. Additionally, it often persists and demonstrates reduced responsiveness to the mainstay treatments. The excessive deposition of collagen and extracellular matrix proteins leads to subepithelial fibrosis and airway remodelling, resulting in increased stiffness and decreased elasticity in the airway. Studies have emphasized the crucial role of subepithelial fibrosis in the pathogenesis of asthma. Fibrotic processes eventually cause airway narrowing, reduced lung function, and exacerbation of asthma symptoms. Macrophages play a crucial role in this process by producing pro-fibrotic cytokines, growth factors, and enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Additionally, identification of novel genetic markers has provided evidence for a strong genetic component in fibrosis within macrophage regulated fibrosis. Although macrophages contribute to the progression of airway remodelling and subepithelial fibrosis, interventions targeting macrophage-driven fibrotic changes have not yet been developed. This review synthesizes research on the intricate pathways through which macrophages contribute to subepithelial fibrosis in chronic asthma and its' pathological features. Understanding the interplay between macrophages, fibrosis, and asthma pathogenesis is essential for developing effective therapeutic strategies to manage severe asthma and improve patient outcomes.
Collapse
Affiliation(s)
- Xin Yuan Yang
- The School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Fuguang Li
- Department of Immunology & Microbiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Paul S Foster
- Woolcock Institute of Medical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Ming Yang
- Department of Immunology & Microbiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Deparment of Respiratory Medicine and Intensive Care Unit, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China; School of Biomedical Sciences & Pharmacy, Faculty of Health. Medicine and Wellbeing & Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
2
|
Zhang W, Zhang Y, Li L, Chen R, Shi F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. FRONTIERS IN ALLERGY 2024; 5:1496392. [PMID: 39563781 PMCID: PMC11573763 DOI: 10.3389/falgy.2024.1496392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Asthma has become one of the most serious chronic respiratory diseases threatening people's lives worldwide. The pathogenesis of asthma is complex and driven by numerous cells and their interactions, which contribute to its genetic and phenotypic heterogeneity. The clinical characteristic is insufficient for the precision of patient classification and therapies; thus, a combination of the functional or pathophysiological mechanism and clinical phenotype proposes a new concept called "asthma endophenotype" representing various patient subtypes defined by distinct pathophysiological mechanisms. High-throughput omics approaches including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome enable us to investigate the pathogenetic heterogeneity of diverse endophenotypes and the underlying mechanisms from different angles. In this review, we provide a comprehensive overview of the roles of diverse cell types in the pathophysiology and heterogeneity of asthma and present a current perspective on their contribution into the bidirectional interaction between airway inflammation and airway remodeling. We next discussed how integrated analysis of multi-omics data via machine learning can systematically characterize the molecular and biological profiles of genetic heterogeneity of asthma phenotype. The current application of multi-omics approaches on patient stratification and therapies will be described. Integrating multi-omics and clinical data will provide more insights into the key pathogenic mechanism in asthma heterogeneity and reshape the strategies for asthma management and treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Fei Shi
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
3
|
Yu X, Li L, Cai B, Zhang W, Liu Q, Li N, Shi X, Yu L, Chen R, Qiu C. Single-cell analysis reveals alterations in cellular composition and cell-cell communication associated with airway inflammation and remodeling in asthma. Respir Res 2024; 25:76. [PMID: 38317239 PMCID: PMC10845530 DOI: 10.1186/s12931-024-02706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease characterized by airway inflammation and remodeling, whose pathogenetic complexity was associated with abnormal responses of various cell types in the lung. The specific interactions between immune and stromal cells, crucial for asthma pathogenesis, remain unclear. This study aims to determine the key cell types and their pathological mechanisms in asthma through single-cell RNA sequencing (scRNA-seq). METHODS A 16-week mouse model of house dust mite (HDM) induced asthma (n = 3) and controls (n = 3) were profiled with scRNA-seq. The cellular composition and gene expression profiles were assessed by bioinformatic analyses, including cell enrichment analysis, trajectory analysis, and Gene Set Enrichment Analysis. Cell-cell communication analysis was employed to investigate the ligand-receptor interactions. RESULTS The asthma model results in airway inflammation coupled with airway remodeling and hyperresponsiveness. Single-cell analysis revealed notable changes in cell compositions and heterogeneities associated with airway inflammation and remodeling. GdT17 cells were identified to be a primary cellular source of IL-17, related to inflammatory exacerbation, while a subpopulation of alveolar macrophages exhibited numerous significantly up-regulated genes involved in multiple pathways related to neutrophil activities in asthma. A distinct fibroblast subpopulation, marked by elevated expression levels of numerous contractile genes and their regulators, was observed in increased airway smooth muscle layer by immunofluorescence analysis. Asthmatic stromal-immune cell communication significantly strengthened, particularly involving GdT17 cells, and macrophages interacting with fibroblasts. CXCL12/CXCR4 signaling was remarkedly up-regulated in asthma, predominantly bridging the interaction between fibroblasts and immune cell populations. Fibroblasts and macrophages could jointly interact with various immune cell subpopulations via the CCL8/CCR2 signaling. In particular, fibroblast-macrophage cell circuits played a crucial role in the development of airway inflammation and remodeling through IL1B paracrine signaling. CONCLUSIONS Our study established a mouse model of asthma that recapitulated key pathological features of asthma. ScRNA-seq analysis revealed the cellular landscape, highlighting key pathological cell populations associated with asthma pathogenesis. Cell-cell communication analysis identified the crucial ligand-receptor interactions contributing to airway inflammation and remodeling. Our findings emphasized the significance of cell-cell communication in bridging the possible causality between airway inflammation and remodeling, providing valuable hints for therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Xiu Yu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Bicheng Cai
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Wei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Quan Liu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nan Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Xing Shi
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
| | - Li Yu
- Longgang Central Hospital of Shenzhen, LongGang District, Shenzhen, 518116, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
| |
Collapse
|
4
|
Yao X, Chen Q, Wang X, Liu X, Zhang L. IL-25 induces airway remodeling in asthma by orchestrating the phenotypic changes of epithelial cell and fibrocyte. Respir Res 2023; 24:212. [PMID: 37635231 PMCID: PMC10463650 DOI: 10.1186/s12931-023-02509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Previous studies have shown that IL-25 levels are increased in patients with asthma with fixed airflow limitation (FAL). However, the mechanism by which IL-25 contributes to airway remodeling and FAL remains unclear. Here, we hypothesized that IL-25 facilitates pro-fibrotic phenotypic changes in bronchial epithelial cells (BECs) and circulating fibrocytes (CFs), orchestrates pathological crosstalk from BECs to CFs, and thereby contributes to airway remodeling and FAL. METHODS Fibrocytes from asthmatic patients with FAL and chronic asthma murine models were detected using flow cytometry, multiplex staining and multispectral imaging analysis. The effect of IL-25 on BECs and CFs and on the crosstalk between BECs and CFs was determined using cell culture and co-culture systems. RESULTS We found that asthmatic patients with FAL had higher numbers of IL-25 receptor (i.e., IL-17RB)+-CFs, which were negatively correlated with forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC). The number of airway IL-17RB+-fibrocytes was significantly increased in ovalbumin (OVA)- and IL-25-induced asthmatic mice versus the control subjects. BECs stimulated with IL-25 exhibited an epithelial-mesenchymal transition (EMT)-like phenotypic changes. CFs stimulated with IL-25 produced high levels of extracellular matrix (ECM) proteins and connective tissue growth factors (CTGF). These profibrotic effects of IL-25 were partially blocked by the PI3K-AKT inhibitor LY294002. In the cell co-culture system, OVA-challenged BECs facilitated the migration and expression of ECM proteins and CTGF in CFs, which were markedly blocked using an anti-IL-17RB antibody. CONCLUSION These results suggest that IL-25 may serve as a potential therapeutic target for asthmatic patients with FAL.
Collapse
Affiliation(s)
- Xiujuan Yao
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China
| | - Qinglin Chen
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, No. 17, Hougou Hutong, Dongcheng District, Beijing, 100005, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, No.2, Xinanhuan Road, Yizhuang District, Beijing, 100176, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Otolaryngology Head and Neck Surgery of Ministry of Education of China, Beijing Institute of Otolaryngology, No. 17, Hougou Hutong, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
5
|
Dean LS, Chow DC, Ndhlovu LC, Boisvert WA, Chang SP, Shikuma CM, Park J. Characterization of Circulating Fibrocytes in People Living with HIV on Stable Antiretroviral Therapy. Immunohorizons 2022; 6:760-767. [PMID: 36445359 PMCID: PMC10402248 DOI: 10.4049/immunohorizons.2200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Highly effective combination antiretroviral therapy has reduced HIV infection to a manageable chronic disease, shifting the clinical landscape toward management of noninfectious comorbidities in people living with HIV (PLWH). These comorbidities are diverse, generally associated with accelerated aging, and present within multiple organ systems. Mechanistically, immune dysregulation and chronic inflammation, both of which persist in PLWH with well-controlled virally suppressive HIV infection, are suggested to create and exacerbate noninfectious comorbidity development. Persistent inflammation often leads to fibrosis, which is the common end point pathologic feature associated with most comorbidities. Fibrocytes are bone marrow-derived fibroblast-like cells, which emerged as key effector cells in tissue repair and pathologic fibrotic diseases. Despite their relevance to fibrosis, the circulating fibrocyte concentration in PLWH remains poorly characterized, and an understanding of their functional role in chronic HIV is limited. In this study, utilizing PBMCs from a cross-sectional adult HIV cohort study with matched uninfected controls (HIV-), we aimed to identify and compare circulating fibrocytes in blood. Both the percentage and number of fibrocytes and α-smooth muscle actin+ fibrocytes in circulation did not differ between the HIV+ and HIV- groups. However, circulating fibrocyte levels were significantly associated with increasing age in both the HIV+ and HIV- groups (the percentage and number; r = 0.575, p ≤ 0.0001 and r = 0.558, p ≤ 0.0001, respectively). Our study demonstrates that circulating fibrocyte levels and their fibroblast-like phenotype defined as collagen I and α-smooth muscle actin+ expression are comparable between, and strongly associated with, age irrespective of HIV status.
Collapse
Affiliation(s)
- Logan S. Dean
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Dominic C. Chow
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
| | - Cecilia M. Shikuma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| |
Collapse
|
6
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
Lin TY, Chang PJ, Lo CY, Lo YL, Yu CT, Lin SM, Kuo CHS, Lin HC. Interaction Between CD34 + Fibrocytes and Airway Smooth Muscle Promotes IL-8 Production and Akt/PRAS40/mTOR Signaling in Asthma. Front Med (Lausanne) 2022; 9:823994. [PMID: 35547213 PMCID: PMC9081978 DOI: 10.3389/fmed.2022.823994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background The circulating progenitor cells of fibroblasts (fibrocytes) have been shown to infiltrate the airway smooth muscle compartment of asthma patients; however, the pathological significance of this discovery has yet to be elucidated. This study established a co-culture model of airway smooth muscle cells (ASMCs) and fibrocytes from asthmatic or normal subjects to evaluate innate cytokine production, corticosteroid responses, and signaling in ASMCs. Methods CD34+ fibrocytes were purified from peripheral blood of asthmatic (Global Initiative for Asthma treatment step 4–5) and normal subjects and cultured for 5∼7 days. In a transwell plate, ASMCs were co-cultured with fibrocytes at a ratio of 2:1, ASMCs were cultured alone (control condition), and fibrocytes were cultured alone for 48 h. Measurements were obtained of interleukin-8 (IL-8), IL-6, IL-17, thymic stromal lymphopoietin, and IL-33 levels in the supernatant and IL-33 levels in the cell lysate of the co-culture. Screening for intracellular signaling in the ASMCs after stimulation was performed using condition medium from the patients’ co-culture (PtCM) or IL-8. mRNA and western blot analysis were used to analyze AKT/mTOR signaling in ASMCs stimulated via treatment with PtCM or IL-8. Results Compared with ASMCs cultured alone, IL-8 levels in the supernatant and IL-33 levels in the ASMCs lysate were significantly higher in samples co-cultured from asthmatics, but not in those co-cultured from normal subjects. Corticosteroid-induced suppression of IL-8 production was less pronounced in ASMCs co-cultured with fibrocytes from asthma patients than in ASMCs co-cultured from normal subjects. ASMCs stimulated using PtCM and IL-8 presented elevating activated AKT substrate PRAS40. Treatment with IL-8 and PtCM increased mRNA expression of mTOR and P70S6 kinases in ASMCs. Treatment with IL-8 and PtCM also significantly increased phosphorylation of AKT and mTOR subtract S6 ribosomal protein in ASMCs. Conclusion The interaction between ASMCs and fibrocytes from asthmatic patients was shown to increase IL-8 and IL-33 production and promote AKT/mTOR signaling in ASMCs. IL-8 production in the co-culture from asthmatic patients was less affected by corticosteroid than was that in the co-culture from normal subjects. Our results elucidate the novel role of fibrocytes and ASMCs in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Teng Yu
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-His Scott Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Berger P, Dupin I. Unravelling the effects of omalizumab on fibrocytes. Respirology 2021; 26:825-827. [PMID: 34312947 DOI: 10.1111/resp.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Berger
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Bordeaux, France.,Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Univ-Bordeaux, Bordeaux, France.,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|