1
|
Li D, Qian L, Du Y, Liu L, Sun Z, Han Y, Guo X, Shen C, Zhang Z, Liu X. METTL14-mediated m 6A modification of DDIT4 promotes its mRNA stability in aging-related idiopathic pulmonary fibrosis. Epigenetics 2025; 20:2462898. [PMID: 39916577 PMCID: PMC11810098 DOI: 10.1080/15592294.2025.2462898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/01/2025] [Accepted: 01/29/2025] [Indexed: 02/12/2025] Open
Abstract
Although N6-methyladenosine (m6A) may be related to the pathogenesis of fibrotic process, the mechanism of m6A modification in aging-related idiopathic pulmonary fibrosis (IPF) remains unclear. Three-milliliter venous blood was collected from IPF patients and healthy controls. MeRIP-seq and RNA-seq were utilized to investigate differential m6A modification. The expressions of identified m6A regulator and target gene were validated using MeRIP-qPCR and real-time PCR. Moreover, we established an animal model and a senescent model of A549 cells to explore the associated molecular mechanism. Our study provided a panorama of m6A methylation in IPF. Increased peaks (3756) and decreased peaks (4712) were observed in the IPF group. The association analysis showed that 749 DEGs were affected by m6A methylation in IPF. Among the m6A regulators, the expression of METTL14 decreased in IPF. The m6A level of our interested gene DDIT4 decreased significantly, but the mRNA level of DDIT4 was higher in IPF. This was further verified in bleomycin-induced pulmonary fibrosis. At the cellular level, it was further confirmed that METTL14 and DDIT4 might participate in the senescence of alveolar epithelial cells. The downregulation of METTL14 might inhibit the decay of DDIT4 mRNA by reducing the m6A modification level of DDIT4 mRNA, leading to high expression of DDIT4 mRNA and protein. Our study provided a panorama of m6A alterations in IPF and discovered METTL14 as a potential intervention target for epigenetic modification in IPF. These results pave the way for future investigations regarding m6A modifications in aging-related IPF.
Collapse
Affiliation(s)
- Dan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Qian
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Du
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziyue Sun
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongkang Han
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiangrui Guo
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chao Shen
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zheng Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xuejun Liu
- Department of Geriatrics, the First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Li J, Lv L, Hu M, Liu Z, Zhou S. Inhibition of N6-methyladenosine methylation of ASC by berberine ameliorates pyroptosis of renal tubular epithelial cells in acute kidney injury. Cell Signal 2025; 131:111732. [PMID: 40074191 DOI: 10.1016/j.cellsig.2025.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Acute kidney injury (AKI) lacks a definitive therapeutic approach beyond supportive care. One significant pathological mechanism involves the regulated death of tubular epithelial cells; however, the regulatory mechanisms underlying this cell death pathway require further investigation. The N6-methyladenosine (m6A) modification, recognized as the most prevalent modification in eukaryotes, plays a critical role in the regulatory processes associated with AKI. Here, this study investigates the association between methyltransferase-like 3 (METTL3) and pyroptosis in mice with folic acid (FA)-induced AKI. Both in vitro and in vivo experiments have confirmed that METTL3 plays a role in AKI progression, correlating with renal epithelial cell pyroptosis and inflammation. Moreover, RNA immunoprecipitation quantitative PCR (RIP-qPCR) analysis demonstrated that METTL3-mediated m6A methylation occurred in the mRNA of Apoptosis-associated speck-like protein containing a CARD (ASC) in H2O2-induced renal tubular epithelial (TCMK-1) cells. Notably, METTL3 knockdown resulted in reduced ASC protein expression, decreased release of inflammatory factors, and reduced pyroptosis. In addition, we verified the inhibitory effect of berberine hydrochloride, a monomer used in traditional Chinese medicine, on METTL3 expression. We also demonstrated that berberine ameliorated FA-induced AKI and H2O2-induced pyroptosis in TCMK-1 cells by inhibiting METTL3 and modulating the ASC/caspase-1/Gasdermin D axis. These findings provide insights into targeted therapies and drug development for AKI.
Collapse
Affiliation(s)
- Jiacheng Li
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Linxiao Lv
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Mingyang Hu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| |
Collapse
|
3
|
Tong Z, Zhao H, Cui C, Hong M, Ma Y, Sui L, Wang J, Yuan Q, Sun L. m6A-mediated regulation of ECA39 promotes renal fibrosis in chronic kidney disease by enhancing glycolysis and epithelial-mesenchymal transition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119981. [PMID: 40315919 DOI: 10.1016/j.bbamcr.2025.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Renal fibrosis is a vital pathological manifestation of chronic kidney disease (CKD). ECA39 is a conserved gene in the regulation of cell behavior; however, its function in renal fibrosis remains unclarified. A murine model of renal fibrosis was established by unilateral ureteral obstruction (UUO) operation. ECA39 expression was significantly upregulated in the kidneys of UUO mice. Prior to UUO operation (14 days), mice were administrated adeno-associated virus serotype 9 (AAV9, 1 × 1011 vector genomes) expressing ECA39 shRNA via tail vein injection. At postoperative day 7, AAV9-mediated inhibition of ECA39 was found to mitigate UUO-induced kidney damage, as manifested by reduced NGAL expression in kidneys, along with reduced serum creatinine and blood urea nitrogen (BUN) levels. Inhibition of ECA39 decreased collagen I, α-SMA and vimentin expression, but increased E-cadherin in kidney tissues. ECA39 inhibition reduced serum lactic acid level, increased ATP production, and suppressed glycolysis-related indicators HK2, PFKM, PKM2, PDK1, and LDHA expression. In parallel, human proximal tubular epithelial cells (HK-2) were treated with TGF-β1 (5 ng/ml, 48 h) to induce a cellular model of injury. ECA39 knockdown inhibit epithelial-mesenchymal transition (EMT) and glycolysis in HK-2 cells. Mechanistically, TGF-β1 treatment increased m6A modification of ECA39 mRNA, and the m6A "reader" IGF2BP2 knockdown reduced ECA39 mRNA stability. IGF2BP2 knockdown reduced lactic acid content and inhibited EMT in HK-2 cells, whereas ECA39 overexpression reversed these effects. Collectively, our studies demonstrated that inhibition of ECA39 suppresses glycolysis and EMT processes, thereby alleviating renal fibrosis in CKD.
Collapse
Affiliation(s)
- Ziyuan Tong
- Biological Therapy Department, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hainan Zhao
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Changwan Cui
- Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Mengqi Hong
- Department of Rehabilitation, Ningbo Ninth Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Yutong Ma
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lu Sui
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, People's Republic of China
| | - Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Wang JN, Suo XG, Yu JT, Luo QC, Ji ML, Zhang MM, Zhu Q, Cheng XR, Hou C, Chen X, Wang F, Xu CH, Li C, Xie SS, Wei J, Zhang DF, Zhang XR, Wang ZJ, Dong YH, Zhu S, Peng LJ, Li XY, Chen HY, Xu T, Jin J, Chen FX, Meng XM. NAT10 exacerbates acute renal inflammation by enhancing N4-acetylcytidine modification of the CCL2/CXCL1 axis. Proc Natl Acad Sci U S A 2025; 122:e2418409122. [PMID: 40261924 PMCID: PMC12054813 DOI: 10.1073/pnas.2418409122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/08/2025] [Indexed: 04/24/2025] Open
Abstract
Inflammation plays an essential role in eliminating microbial pathogens and repairing tissues, while sustained inflammation accelerates kidney damage and disease progression. Therefore, understanding the mechanisms of the inflammatory response is vital for developing therapies for inflammatory kidney diseases like acute kidney injury (AKI), which currently lacks effective treatment. Here, we identified N-acetyltransferase 10 (NAT10) as an important regulator for acute inflammation. NAT10, the only known "writer" protein for N4-acetylcytidine (ac4C) acetylation, is elevated in renal tubules across various AKI models, human biopsies, and cultured tubular epithelial cells (TECs). Conditional knockout (cKO) of NAT10 in mouse kidneys attenuates renal dysfunction, inflammation, and infiltration of macrophages and neutrophils, whereas its conditional knock-in (cKI) exacerbates these effects. Mechanistically, our findings from ac4C-RIP-seq and RNA-seq analyses revealed that NAT10-mediated ac4C acetylation enhances the mRNA stability of a range of key chemokines, including C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1(CXCL1), promoting macrophage and neutrophil recruitment and accelerating renal inflammation. Additionally, CCL2 and CXCL1 neutralizing antibodies or their receptor inhibitors, abrogated renal inflammation in NAT10-overexpression TECs or NAT10-cKI mice. Importantly, inhibiting NAT10, either through Adeno-associated virus 9 (AAV9)-mediated silencing or pharmacologically with our found inhibitor Cpd-155, significantly reduces renal inflammation and injury. Thus, targeting the NAT10/CCL2/CXCL1 axis presents a promising therapeutic strategy for treating inflammatory kidney diseases.
Collapse
Affiliation(s)
- Jia-nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Xiao-guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Ju-tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Qi-chao Luo
- School of Basic Medicine, Anhui Medical University, Hefei230032, China
| | - Ming-lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Meng-meng Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Qi Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Xin-ran Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Chao Hou
- School of Basic Medicine, Anhui Medical University, Hefei230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Fang Wang
- Department of Pharmacy, Lu’an Hospital of Anhui Medical University, Lu’an People’s Hospital of Anhui Province, Lu’an237006, China
| | - Chuan-hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Shuai-shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei230601, Anhui, China
| | - Dan-feng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei230601, Anhui, China
| | - Xin-ru Zhang
- School of Basic Medicine, Anhui Medical University, Hefei230032, China
| | - Zhi-juan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei230601, Anhui, China
| | - Yu-hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Li-jin Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Xiang-yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Hai-yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong999077, Hong Kong
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen518000, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| | - Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei230032, China
| | - Fei Xavier Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Xiao-ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei230032, China
| |
Collapse
|
5
|
Cao L, Bi W. METTL16/IGF2BP2 axis enhances malignant progression and DDP resistance through up-regulating COL4A1 by mediating the m6A methylation modification of LAMA4 in hepatocellular carcinoma. Cell Div 2025; 20:9. [PMID: 40251670 PMCID: PMC12008873 DOI: 10.1186/s13008-025-00152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third most common malignant tumor after gastric cancer and esophageal cancer, which is a serious threat to human health. Methyltransferase-like protein 16 (METTL16) regulates the occurrence and development of various cancers, but its molecular mechanism in HCC has not been fully investigated. METHODS A series of databases were used to predict gene expression, methylation sites, correlation analysis, and protein interaction analysis. Gene expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry (IHC). What's more, drug-resistant cell lines were established for drug resistance analysis. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining. Flow cytometry, transwell and wound healing assays were used for apoptosis, invasion and migration, respectively. In addition, the regulatory mechanism of METTL16 in HCC was investigated by methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP) and co-immunoprecipitation (Co-IP). Finally, constructing subcutaneous transplanted tumor in nude mice confirmed the effect of METTL16 in vivo. RESULTS METTL16 was up-regulated in HCC drug-resistant tissues and cells. Knockdown of METTL16 inhibited Cisplatin (DDP) resistance, proliferation, invasion and migration of HCC cells, but promoted apoptosis. Besides, laminin subunit alpha 4 (LAMA4), which was overexpressed in HCC drug-resistant tissues and cells, was selected as the target of METTL16. Mechanistically, METTL16 and m6A reader insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) co-regulated the m6A modification and mRNA stability of LAMA4, and LAMA4 weakened the effects of METTL16 knockdown on HCC drug-resistance. Meanwhile, LAMA4 bound to collagen type IV alpha 1 chain (COL4A1) and facilitated DDP resistance and HCC progression via COL4A1. Similarly, in vivo, METTL16 induced tumor growth, as well as LAMA4 and COL4A1 expression, and increased DDP resistance. CONCLUSION METTL16 and IGF2BP2 jointly mediated the m6A methylation modification of LAMA4, thereby promoting DDP resistance and malignant progression of HCC through regulation of COL4A1.
Collapse
Affiliation(s)
- Liming Cao
- Department of General Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, China
| | - Wei Bi
- Department of General Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
6
|
Lv L, Hu M, Li J, Guo R, He M, Zhou P, Lei Y, Chen M, Liu Z, Zhou S. Methyltransferase-like 3 mediates m6A modification of heme oxygenase 1 mRNA to induce ferroptosis of renal tubular epithelial cells in acute kidney injury. Free Radic Biol Med 2025; 229:168-182. [PMID: 39837470 DOI: 10.1016/j.freeradbiomed.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Acute kidney injury (AKI) involves a series of syndromes characterized by a rapid increase in creatinine levels. Ferroptosis, as an iron-dependent mode of programmed cell death, reportedly participates in the pathogenesis of AKI. Methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine (m6A) modification has been recently associated with various kidney diseases; however, the mechanism of METTL3 crosstalk with the molecules involved in ferroptosis is not clearly understood. Here, we investigated the crosstalk between METTL3-mediated m6A modification and ferroptosis in AKI. METTL3-mediated m6A modification was elevated in patients with AKI, folic acid-AKI mice, and tert-butyl hydrogen peroxide-stimulated TCMK-1 cells. Inhibition of METTL3 expression in vivo and in vitro alleviated the damage and ferroptosis in renal tubular cells. Methylated RNA immunoprecipitation sequencing showed that heme oxygenase 1 (Hmox1/HO-1) was the METTL3 target. RNA immunoprecipitation-qPCR indicated that anti-insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) could be used as a reader to bind to the methylated site of Hmox1 mRNA to maintain its stability. Hmox1 knockdown in vitro reduced the accumulation of iron ions and alleviated ferroptosis. METTL3 mediates the m6A modification of Hmox1 mRNA and maintains its stability in an IGF2BP3-dependent manner, which causes iron overload in renal tubular epithelial cells, leading to ferroptosis and AKI.
Collapse
Affiliation(s)
- Linxiao Lv
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Mingyang Hu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Jiacheng Li
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Runzhi Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Mengfei He
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Panpan Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Yuqi Lei
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China.
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou, Henan province, China; Henan Province Research Center for Kidney Disease, Zhengzhou, Henan Province, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan Province, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, Henan Province, China.
| |
Collapse
|
7
|
Yao Q, Zheng X, Zhang X, Wang Y, Zhou Q, Lv J, Zheng L, Lan J, Chen W, Chen J, Chen D. METTL3 Potentiates M2 Macrophage-Driven MMT to Aggravate Renal Allograft Fibrosis via the TGF-β1/Smad3 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412123. [PMID: 39869489 PMCID: PMC11923867 DOI: 10.1002/advs.202412123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/09/2025] [Indexed: 01/29/2025]
Abstract
METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR. We found that elevated m6A modification and METTL3 levels strongly correlated with enhanced MMT and increased fibrotic severity. METTL3 knockout (METTL3 KO) significantly increased the m6A modification of Smad3, decreased Smad3 expression, and inhibited M2-driven MMT. Smad3 knockdown with siRNA (siSmad3) further inhibited M2-driven MMT, while Smad3 overexpression rescued the inhibitory effects of METTL3 silencing, restoring M2-driven MMT and fibrotic tissue damage. Additionally, the METTL3 inhibitor STM2457 effectively reversed M2-driven MMT and alleviated fibrotic tissue damage in CAR. These findings highlight that METTL3 enhances M2-driven MMT in renal fibrosis during CAR by promoting the TGF-β1/Smad3 axis, suggesting that METTL3 is a promising therapeutic target for mitigating renal fibrosis in CAR.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Xiaoxiao Zheng
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Xinyi Zhang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Yucheng Wang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Qin Zhou
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Junhao Lv
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Li Zheng
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Jiahua Lan
- Cancer Institute of lntegrated Traditional Chinese and Western MedicineKey Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Key Laboratory of Disease‐Syndrome Integrated Cancer Prevention and TreatmentZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiang310012China
| | - Wei Chen
- Department of General SurgerySir Run‐Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal InfectionSir Run‐Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Dajin Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Key Laboratory of Kidney Disease Prevention and Control TechnologyHangzhouZhejiang310003China
- National Key Clinical Department of Kidney DiseasesHangzhou310003China
- Institute of NephropathyZhejiang UniversityHangzhou310003China
- Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| |
Collapse
|
8
|
Huang C, Zhang X, Wu SX, Chang Q, Zheng ZK, Xu J. METTL3, m6A modification, and EGR1: interplay affecting myocardial I/R injury outcomes. Cell Biol Toxicol 2024; 41:7. [PMID: 39707117 PMCID: PMC11662061 DOI: 10.1007/s10565-024-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of severe myocardial ischemia/reperfusion (I/R) injury is associated with the clinical application of reestablishment technique for heart disease, and understanding its underlying mechanisms is currently an urgent issue. Prior investigations have demonstrated the potential enhancement of MIRI through EGR1 suppression, although the precise underlying regulatory pathways require further elucidation. The core focus of this investigation is to examine the molecular pathways through EGR1 regulates mitophagy-mediated myocardial cell pyroptosis and its impact on MIRI. Cardiomyocyte hypoxia/reoxygenation (H/R) injury models and mouse models of myocardial I/R injury were used to investigate the involvement of EGR1 in regulating mitophagy-mediated myocardial cell pyroptosis in myocardial I/R injury. The research outcomes demonstrated that under H/R conditions, EGR1 expression was upregulated and inhibited the JAK2/STAT3 pathway, leading to enhanced mitophagy and disrupted mitochondrial fusion/fission dynamics, ultimately resulting in myocardial cell pyroptosis. Further research revealed that the upregulation of EGR1 expression was mediated by methyltransferase like 3 (METTL3)-mediated m6A modification of EGR1 mRNA and depended on the binding of insulin like growth factor 2 mrna binding protein 2 (IGF2BP2) to the N6-methyladenosine (m6A) modification site to enhance mRNA stability. In vivo animal experiments confirmed that METTL3 upregulated EGR1 expression through IGF2BP2 and suppressed activation of the janus kinase 2 (JAK2) /signal transducer and activator of transcription 3 (STAT3) pathway, thereby inhibiting mitophagy, disrupting mitochondrial dynamics, promoting myocardial cell pyroptosis, and exacerbating I/R injury.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xiong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhi-Kun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
9
|
Shen C, Jiang Y, Lin J, Guo Q, Fang D. METTL3 silencing inhibits ferroptosis to suppress ovarian fibrosis in PCOS by upregulating m6A modification of GPX4. J Mol Histol 2024; 55:1163-1175. [PMID: 39261364 DOI: 10.1007/s10735-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Methyltransferase-like 3 (METTL3) is extensively reported to be involved in organ fibrosis. Ovarian fibrosis is a main characteristic of polycystic ovary syndrome (PCOS). However, the reaction mechanism of METTL3 in PCOS is poorly investigated. This paper was intended to reveal the role and the mechanism of METTL3 in PCOS. Animal and cell models of PCOS were induced by dehydroepiandrosterone (DHEA). H&E staining was performed to detect the pathological alterations in ovary tissues. Masson staining, immunofluorescence, along with western blot measured fibrosis both in vitro and in vivo. To evaluate estrous cycle, vaginal smear was performed. Lipid peroxidation and ferroptosis were evaluated by MDA assay kits, GSH assay kits, immunohistochemistry, Prussian blue staining and western blot. qRT-PCR and western blot were adopted to estimate METTL3 and GPX4 expression. The m6A and hormone secretion levels were respectively assessed by m6A RNA Methylation Quantitative Kit and corresponding kits. The interaction between METTL3 and GPX4 was testified by immunoprecipitation. The fibrosis and ferroptosis were aggravated and m6A and METTL3 expression were increased in ovarian tissues of DHEA-induced PCOS mice. METTL3 silencing alleviated pathological changes, affected hormone secretion level, and repressed fibrosis, lipid peroxidation and ferroptosis in the ovarian tissues of PCOS mice. In vitro, DHEA stimulation increased m6A and METTL3 expression and induced ferroptosis and fibrosis. METTL3 knockdown promoted GPX4 expression in DHEA-induced granulosa cells by m6A modification and restrained DHEA-induced fibrosis, lipid peroxidation and ferroptosis in granulosa cells via elevating GPX4. METTL3 silence inhibited ovarian fibrosis in PCOS, which was mediated through suppressing ferroptosis by upregulating GPX4 in m6A-dependent manner.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yongmei Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiwei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Song B, Wu X, Zeng Y. Methyltransferase-like 3 represents a prospective target for the diagnosis and treatment of kidney diseases. Hum Genomics 2024; 18:125. [PMID: 39538346 PMCID: PMC11562609 DOI: 10.1186/s40246-024-00692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney disease is marked by complex pathological mechanisms and significant therapeutic hurdles, resulting in high morbidity and mortality rates globally. A deeper understanding of the fundamental processes involved can aid in identifying novel therapeutic targets and improving treatment efficacy. Current comprehensive data analyses indicate the involvement of methyltransferase-like 3 (METTL3) and its role in RNA N6-methyladenosine methylation in various renal pathologies, including acute kidney injury, renal fibrosis, and chronic kidney disease. However, there is a paucity of thorough reviews that clarify the functional mechanisms of METTL3 and evaluate its importance in enhancing therapeutic outcomes. This review seeks to systematically examine the roles, mechanisms, and potential clinical applications of METTL3 in renal diseases. The findings presented suggest that METTL3 is implicated in the etiology and exacerbation of kidney disorders, affecting their onset, progression, malignancy, and responsiveness to chemotherapeutic agents through the regulation of specific genetic pathways. In conclusion, this review underscores a detrimental correlation between METTL3 and kidney diseases, highlighting the therapeutic promise of targeting METTL3. Additionally, it offers critical insights for researchers concerning the diagnosis, prognosis, and treatment strategies for renal conditions.
Collapse
Affiliation(s)
- Bin Song
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xiaolong Wu
- Department of Nephrology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Yan Zeng
- Department of Pediatrics, People's Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang, Sichuan Province, 618000, China.
| |
Collapse
|
11
|
Tsai YC, Hsieh TH, Liao YR, Tsai MT, Lin TP, Lee DY, Park J, Kim D, Susztak K, Yang SF, Lin CC, Li SY. METTL3-Mediated N 6 -Methyladenosine mRNA Modification and cGAS-STING Pathway Activity in Kidney Fibrosis. J Am Soc Nephrol 2024; 35:1312-1329. [PMID: 39352860 PMCID: PMC11452136 DOI: 10.1681/asn.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Background Chemical modifications on RNA profoundly affect RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human CKD samples regarding its influence on pathological mechanisms. Methods Liquid chromatography–tandem mass spectrometry and methylated RNA immunoprecipitation sequencing were used to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the effect of m6A in tubular cells and explore the biological functions of m6A modification on target genes. In addition, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and antisense oligonucleotides inhibiting Mettl3 expression were used to reduce m6A modification in an animal kidney disease model. Results By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cyclic guanosine monophosphate–AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1 as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of antisense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. Conclusions Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Ru Liao
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Ping Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Yen Lee
- Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Donggun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shang-Feng Yang
- Division of Nephrology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Szu-Yuan Li
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Cai Y, Zhou J, Xu A, Huang J, Zhang H, Xie G, Zhong K, Wu Y, Ye P, Wang H, Niu H. N6-methyladenosine triggers renal fibrosis via enhancing translation and stability of ZEB2 mRNA. J Biol Chem 2024; 300:107598. [PMID: 39059495 PMCID: PMC11381876 DOI: 10.1016/j.jbc.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA-seq, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.
Collapse
Affiliation(s)
- Yating Cai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinchang Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - You Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Ye
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Hongxin Niu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Long Y, Song D, Xiao L, Xiang Y, Li D, Sun X, Hong X, Hou FF, Fu H, Liu Y. m 6A RNA methylation drives kidney fibrosis by upregulating β-catenin signaling. Int J Biol Sci 2024; 20:3185-3200. [PMID: 38904026 PMCID: PMC11186362 DOI: 10.7150/ijbs.96233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
N6-methyladenosine (m6A) methylation plays a crucial role in various biological processes and the pathogenesis of human diseases. However, its role and mechanism in kidney fibrosis remain elusive. In this study, we show that the overall level of m6A methylated RNA was upregulated and the m6A methyltransferase METTL3 was induced in kidney tubular epithelial cells in mouse models and human kidney biopsies of chronic kidney disease (CKD). Proximal tubule-specific knockout of METTL3 in mice protected kidneys against developing fibrotic lesions after injury. Conversely, overexpression of METTL3 aggravated kidney fibrosis in vivo. Through bioinformatics analysis and experimental validation, we identified β-catenin mRNA as a major target of METTL3-mediated m6A modification, which could be recognized by a specific m6A reader, the insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). METTL3 stabilized β-catenin mRNA, increased β-catenin protein and induced its downstream profibrotic genes, whereas either knockdown of IGF2BP3 or inhibiting β-catenin signaling abolished its effects. Collectively, these results indicate that METTL3 promotes kidney fibrosis by stimulating the m6A modification of β-catenin mRNA, leading to its stabilization and its downstream profibrotic genes expression. Our findings suggest that targeting METTL3/IGF2BP3/β-catenin pathway may be a novel strategy for the treatment of fibrotic CKD.
Collapse
Affiliation(s)
- Yinyi Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyan Song
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liuyan Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dier Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
14
|
He X, Tang B, Zou P, Song Z, Liu J, Pi Z, Xiao Y, Xiao R. m6A RNA methylation: The latent string-puller in fibrosis. Life Sci 2024; 346:122644. [PMID: 38614300 DOI: 10.1016/j.lfs.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Fibrosis is a pathological phenomenon characterized by the aberrant accumulation of extracellular matrix (ECM) in tissues. Fibrosis is a universally age-related disease involving that many organs and is the final stage of many chronic inflammatory diseases, which often threaten the patient's health. Undoubtedly, fibrosis has become a serious economic and health burden worldwide, However, the pathogenesis of fibrosis is complex. Further, the key molecules still remain to be unraveled. Hence, so far, there have been no effective treatments designed against the key targets of fibrosis. The methylation modification on the nitrogen atom at position 6 of adenine (m6A) is the most common mRNA modification in mammals. There is increasing evidence that m6A is actively involved in the pathogenesis of fibrosis. This review aims to highlight m6A-associated mechanisms and functions in several organic fibrosis, which implies that m6A is universal and critical for fibrosis and summarize the outlook of m6A in the treatment of fibrosis. This may light up the unknown aspects of this condition for researchers interested to explore fibrosis further.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Puyu Zou
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zehong Song
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zixin Pi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan.
| |
Collapse
|
15
|
Ma N, Lu H, Li N, Ni W, Zhang W, Liu Q, Wu W, Xia S, Wen J, Zhang T. CHOP-mediated Gasdermin E expression promotes pyroptosis, inflammation, and mitochondrial damage in renal ischemia-reperfusion injury. Cell Death Dis 2024; 15:163. [PMID: 38388468 PMCID: PMC10883957 DOI: 10.1038/s41419-024-06525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
In clinical practice, renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), often leading to acute renal failure or end-stage renal disease (ESRD). The current understanding of renal IRI mechanisms remains unclear, and effective therapeutic strategies and clear targets are lacking. Therefore, the need to find explicit and effective ways to reduce renal IRI remains a scientific challenge. The current study explored pyroptosis, a type of inflammation-regulated programmed cell death, and the role of Gasdermins E (GSDME)-mediated pyroptosis, mitochondrial damage, and inflammation in renal IRI. The analysis of human samples showed that the expression levels of GSDME in normal human renal tissues were higher than those of GSDMD. Moreover, our study demonstrated that GSDME played an important role in mediating pyroptosis, inflammation, and mitochondrial damage in renal IRI. Subsequently, GSDME-N accumulated in the mitochondrial membrane, leading to mitochondrial damage and activation of caspase3, which generated a feed-forward loop of self-amplification injury. However, GSDME knockout resulted in the amelioration of renal IRI. Moreover, the current study found that the transcription factor CHOP was activated much earlier in renal IRI. Inhibition of BCL-2 by CHOP leaded to casapse3 activation, resulting in mitochondrial damage and apoptosis; not only that, but CHOP positively regulated GSDME thereby causing pyroptosis. Therefore, this study explored the transcriptional mechanisms of GSDME during IRI development and the important role of CHOP/Caspase3/GSDME mechanistic axis in regulating pyroptosis in renal IRI. This axis might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Nannan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ning Li
- Department of Nephropathy, The Zhongda Affilicated Hospital of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Weijian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Department of Pharmacy, Centre for Leading Medicine and Advanced Technologies of IHM, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, People's Republic of China
| | - Wenbo Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qiang Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shichao Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiagen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
16
|
Ye W, Lv X, Gao S, Li Y, Luan J, Wang S. Emerging role of m6A modification in fibrotic diseases and its potential therapeutic effect. Biochem Pharmacol 2023; 218:115873. [PMID: 37884198 DOI: 10.1016/j.bcp.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Fibrosis can occur in a variety of organs such as the heart, lung, liver and kidney, and its pathological changes are mainly manifested by an increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues, and continuous progression can lead to structural damage and organ hypofunction, or even failure, seriously threatening human health and life. N6-methyladenosine (m6A) modification, as one of the most common types of internal modifications of RNA in eukaryotes, exerts a multifunctional role in physiological and pathological processes by regulating the metabolism of RNA. With the in-depth understanding and research of fibrosis, we found that m6A modification plays an important role in fibrosis, and m6A regulators can further participate in the pathophysiological process of fibrosis by regulating the function of specific cells. In our review, we summarized the latest research advances in m6A modification in fibrosis, as well as the specific functions of different m6A regulators. In addition, we focused on the mechanisms and roles of m6A modification in cardiac fibrosis, liver fibrosis, pulmonary fibrosis, renal fibrosis, retinal fibrosis and oral submucosal fibrosis, with the aim of providing new insights and references for finding potential therapeutic targets for fibrosis. Finally, we discussed the prospects and challenges of targeted m6A modification in the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
17
|
Ni W, Zhou H, Lu H, Ma N, Hou B, Li W, Kong F, Yu J, Hou R, Jin J, Wen J, Zhang T, Meng X. Genetic and pharmacological inhibition of METTL3 alleviates renal fibrosis by reducing EVL m6A modification through an IGF2BP2-dependent mechanism. Clin Transl Med 2023; 13:e1359. [PMID: 37537731 PMCID: PMC10400756 DOI: 10.1002/ctm2.1359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND N6 -methyladenosine (m6A) is of great importance in renal physiology and disease progression, but its function and mechanism in renal fibrosis remain to be comprehensively and extensively explored. Hence, this study will explore the function and potential mechanism of critical regulator-mediated m6A modification during renal fibrosis and thereby explore promising anti-renal fibrosis agents. METHODS Renal tissues from humans and mice as well as HK-2 cells were used as research subjects. The profiles of m6A modification and regulators in renal fibrosis were analysed at the protein and RNA levels using Western blotting, quantitative real-time polymerase chain reaction and other methods. Methylation RNA immunoprecipitation sequencing and RNA sequencing coupled with methyltransferase-like 3 (METTL3) conditional knockout were used to explore the function of METTL3 and potential targets. Gene silencing and overexpression combined with RNA immunoprecipitation were performed to investigate the underlying mechanism by which METTL3 regulates the Ena/VASP-like (EVL) m6A modification that promotes renal fibrosis. Molecular docking and virtual screening with in vitro and in vivo experiments were applied to screen promising traditional Chinese medicine (TCM) monomers and explore their mechanism of regulating the METTL3/EVL m6A axis and anti-renal fibrosis. RESULTS METTL3 and m6A modifications were hyperactivated in both the tubular region of fibrotic kidneys and HK-2 cells. Upregulated METTL3 enhanced the m6A modification of EVL mRNA to improve its stability and expression in an insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2)-dependent manner. Highly expressed EVL binding to Smad7 abrogated the Smad7-induced suppression of transforming growth factor-β (TGF-β1)/Smad3 signal transduction, which conversely facilitated renal fibrosis progression. Molecular docking and virtual screening based on the structure of METTL3 identified a TCM monomer named isoforsythiaside, which inhibited METTL3 activity together with the METTL3/EVL m6A axis to exert anti-renal fibrosis effects. CONCLUSIONS Collectively, the overactivated METTL3/EVL m6A axis is a potential target for renal fibrosis therapy, and the pharmacological inhibition of METTL3 activity by isoforsythiaside suggests that it is a promising anti-renal fibrosis agent.
Collapse
Affiliation(s)
- Wei‐Jian Ni
- Department of PharmacyAnhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiPeople's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Hong Zhou
- Department of PharmacyAnhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiPeople's Republic of China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Nan‐Nan Ma
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Bing‐Bing Hou
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Wei Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Fan‐Xu Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
- Department of PharmacyThe Second People's Hospital of HefeiHefeiAnhuiPeople's Republic of China
| | - Ju‐Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Juan Jin
- Research Center for Translational MedicineThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPeople's Republic of China
- School of Basic MedicineAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Jia‐Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Tao Zhang
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPeople's Republic of China
| | - Xiao‐Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Institute of Innovative DrugsSchool of PharmacyAnhui Medical UniversityHefeiAnhuiPeople's Republic of China
| |
Collapse
|