1
|
Lei YY, Ye YH, Liu Y, Xu JL, Zhang CL, Lyu CM, Feng CG, Jiang Y, Yang Y, Ke Y. Achyranthes bidentata polysaccharides improve cyclophosphamide-induced adverse reactions by regulating the balance of cytokines in helper T cells. Int J Biol Macromol 2024; 265:130736. [PMID: 38479672 DOI: 10.1016/j.ijbiomac.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/18/2024]
Abstract
The manuscript aimed to study the immune function maintenance effect of Achyranthes bidentata polysaccharides (ABPs). The mice were divided into the control group, cyclophosphamide-induced (CTX) group, and ABPs-treated (ABP) group. The results showed that, compared with the CTX group, ABPs could significantly improve the spleen index and alleviate the pathological changes in immune organs. Ex vivo study of whole spleen cells, the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were increased. The proliferation of lymphocytes and the proportion of CD3+CD4+ Th cells in peripheral blood mononuclear cells were increased. The transcription of GATA-3, Foxp3, and ROR γ t were decreased, while the transcription of T-bet was increased. The transcriptome sequencing analysis showed that the differentially expressed genes (DEGs) caused by ABPs-treated were mostly downregulated in CTX-induced mice. The Th2-related genes were significantly enriched in DEGs, with representative genes, including Il4, II13, Il9, etc., while increasing the expression of immune effector genes simultaneously, including Ccl3, Ccr5, and Il12rb2. It was suggested that ABPs possibly regulated the balance of cytokines in helper T cells to ameliorate the immune function of CTX-induced mice.
Collapse
Affiliation(s)
- Yuan-Yuan Lei
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Yu-Han Ye
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Ying Liu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Jia-Ling Xu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Cheng-Lin Zhang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Chun-Ming Lyu
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Chen-Guo Feng
- Shanghai University of Traditional Chinese Medicine Innovation Research Institute of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Jiang
- Chinese Academy of Sciences Shanghai Institute of Organic Chemistry, 200032, China
| | - Yang Yang
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China
| | - Yan Ke
- Shanghai University of Traditional Chinese Medicine Science and Technology Experiment Center, Shanghai, 201203, China.
| |
Collapse
|
2
|
Akama Y, Murao A, Aziz M, Wang P. Extracellular CIRP induces CD4CD8αα intraepithelial lymphocyte cytotoxicity in sepsis. Mol Med 2024; 30:17. [PMID: 38302880 PMCID: PMC10835974 DOI: 10.1186/s10020-024-00790-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.
Collapse
Affiliation(s)
- Yuichi Akama
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
3
|
Astragalus Saponins, Astragaloside VII and Newly Synthesized Derivatives, Induce Dendritic Cell Maturation and T Cell Activation. Vaccines (Basel) 2023; 11:vaccines11030495. [PMID: 36992079 DOI: 10.3390/vaccines11030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Astragaloside VII (AST VII), a triterpenic saponin isolated from Astragalus species, shows promise as a vaccine adjuvant, as it supported a balanced Th1/Th2 immune response in previous in vivo studies. However, the underlying mechanisms of its adjuvant activity have not been defined. Here, we investigated the impact of AST VII and its newly synthesized semi-synthetic analogs on human whole blood cells, as well as on mouse bone marrow-derived dendritic cells (BMDCs). Cells were stimulated with AST VII and its derivatives in the presence or absence of LPS or PMA/ionomycin and the secretion of cytokines and the expression of activation markers were analyzed using ELISA and flow cytometry, respectively. AST VII and its analogs increased the production of IL-1β in PMA/ionomycin-stimulated human whole blood cells. In LPS-treated mouse BMDCs, AST VII increased the production of IL-1β and IL-12, and the expression of MHC II, CD86, and CD80. In mixed leukocyte reaction, AST VII and derivatives increased the expression of the activation marker CD44 on mouse CD4+ and CD8+ T cells. In conclusion, AST VII and its derivatives strengthen pro-inflammatory responses and support dendritic cell maturation and T cell activation in vitro. Our results provide insights into the mechanisms of the adjuvant activities of AST VII and its analogs, which will be instrumental to improve their utility as a vaccine adjuvant.
Collapse
|
4
|
Zhao XH, Yang T, Zheng MY, Zhao P, An LY, Qi YX, Yi KQ, Zhang PC, Sun DL. Cystathionine gamma-lyase (Cth) induces efferocytosis in macrophages via ERK1/2 to modulate intestinal barrier repair. Cell Commun Signal 2023; 21:17. [PMID: 36691021 PMCID: PMC9869634 DOI: 10.1186/s12964-022-01030-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The inflammatory response induced by intestinal ischaemia‒reperfusion injury (I/R) is closely associated with infectious complications and mortality in critically ill patients, and the timely and effective clearance of apoptotic cells is an important part of reducing the inflammatory response. Studies have shown that the efferocytosis by phagocytes plays an important role. Recently, studies using small intestine organoid models showed that macrophage efferocytosis could promote the repair capacity of the intestinal epithelium. However, no studies have reported efferocytosis in the repair of I/R in animal models. RESULTS We used an in vivo efferocytosis assay and discovered that macrophage efferocytosis played an indispensable role in repairing and maintaining intestinal barrier function after I/R. In addition, the specific molecular mechanism that induced macrophage efferocytosis was Cth-ERK1/2 dependent. We found that Cth drove macrophage efferocytosis in vivo and in vitro. Overexpression/silencing Cth promoted/inhibited the ERK1/2 pathway, respectively, which in turn affected efferocytosis and mediated intestinal barrier recovery. In addition, we found that the levels of Cth and macrophage efferocytosis were positively correlated with the recovery of intestinal function in clinical patients. CONCLUSION Cth can activate the ERK1/2 signalling pathway, induce macrophage efferocytosis, and thus promote intestinal barrier repair. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Hu Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Meng-Yao Zheng
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Peinan Zhao
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Li-Ya An
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Yu-Xing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Ke-Qian Yi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Peng-Cheng Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China
| | - Da-Li Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University/Second Faculty of Clinical Medicine, Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
5
|
Benson LN, Liu Y, Deck K, Mora C, Mu S. IFN- γ Contributes to the Immune Mechanisms of Hypertension. KIDNEY360 2022; 3:2164-2173. [PMID: 36591357 PMCID: PMC9802558 DOI: 10.34067/kid.0001292022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022]
Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yunmeng Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine Deck
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Christoph Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
6
|
Yang J, Lv Y, Zhu Y, Li S, Tao J, Chang L, Zhu M, Zhao J, Wang Y, Wu C, Zhao W. Baseline T-lymphocyte and cytokine indices in sheep peripheral blood. BMC Vet Res 2022; 18:165. [PMID: 35513847 PMCID: PMC9074339 DOI: 10.1186/s12917-022-03268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sheep are an important livestock species worldwide and an essential large-animal model for animal husbandry and veterinary research. Understanding fundamental immune indicators, especially T-lymphocyte parameters, is necessary for research on sheep diseases and vaccines, to better understand the immune response to bacteria and viruses for reducing the use of antibiotics and improving the welfare of sheep. We randomly selected 36 sheep of similar ages to analyze cell-related immune indicators in peripheral blood mononuclear cells (PBMCs). The proportions of CD4+ and CD8+ T cells in PBMCs were detected by flow cytometry. We used Concanavalin A (Con A) and Phorbol-12-myristate-13-acetate (PMA)/Ionomycin to stimulate PBMCs, and measured the expression of IFN-γ, IL-4, and IL-17A using enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot assay (ELISpot). Simultaneously, PMA/Ionomycin/brefeldin A (BFA) was added to PBMCs, then the expression of IFN-γ, IL-4, and IL-17A was detected by flow cytometry after 4 h of culturing. In addition, we observed the proliferation of PBMCs stimulated with Con A for 3, 4, and 5 days. Results The proportions of CD4+ T lymphocytes (18.70 ± 4.21%) and CD8+ T lymphocytes (8.70 ± 3.65%) were generally consistent among individuals, with a CD4/CD8 ratio of 2.40 ± 0.79. PBMCs produced high levels of IFN-γ, IL-4, and IL-17A after stimulation with PMA/Ionomycin and Con A. Furthermore, PMA/Ionomycin stimulation of PBMC yielded significantly higher cytokine levels than Con A stimulation. Flow cytometry showed that the level of IFN-γ (51.49 ± 11.54%) in CD8+ T lymphocytes was significantly (p < 0.001) higher than that in CD4+ T lymphocytes (14.29 ± 3.26%); IL-4 (16.13 ± 6.81%) in CD4+ T lymphocytes was significantly (p < 0.001) higher than that in CD8+ T lymphocytes (1.84 ± 1.33%), There was no difference in IL-17A between CD4+ (2.83 ± 0.98%) and CD8+ T lymphocytes (1.34 ± 0.67%). The proliferation of total lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes continued to increase between days 3 and 5; however, there were no significant differences in proliferation between the cell types during the stimulation period. Conclusions Evaluating primary sheep immune indicators, especially T lymphocytes, is significant for studying cellular immunity. This study provided valuable data and theoretical support for assessing the immune response of sheep to pathogens and improving sheep welfare.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientifc Technology of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Shasha Li
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Jia Tao
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Liangliang Chang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Jiaqing Zhao
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China.,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Yinchuan, China. .,School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
7
|
Sipka A, Mann S, Babasyan S, Freer H, Wagner B. Development of a bead-based multiplex assay to quantify bovine interleukin-10, tumor necrosis factor-α, and interferon-γ concentrations in plasma and cell culture supernatant. JDS COMMUNICATIONS 2022; 3:207-211. [PMID: 36338808 PMCID: PMC9623719 DOI: 10.3168/jdsc.2021-0191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
The quantification of cytokines can improve our understanding of immune response and inflammation dynamics in dairy cows. Bead-based assays provide a sensitive, high-throughput platform, allowing for simultaneous quantification of multiple cytokines within a wide linear detection range. Our objective was to develop a multiplex bead-based assay using monoclonal antibodies for simultaneous quantification of bovine tumor necrosis factor (TNF)-α, IL-10, and IFN-γ in plasma and peripheral blood mononuclear cell (PBMC) culture supernatants. Recombinant cytokine standards produced in mammalian cells were used to determine the lower limit of detection and the linear detection range for each cytokine. The lower limit of detection was 110 pg/mL for IL-10, 95 pg/mL for TNF-α, and 20 pg/mL for IFN-γ. The linear quantification range was 110 to 241,000 pg/mL for IL-10, 95 to 620,000 pg/mL for TNF-α, and 20 to 130,000 pg/mL for IFN-γ. All 3 monoclonal capture and detection antibodies were specific for their respective cytokine analyte when using the recombinant IL-10, TNF-α, and IFN-γ standards. Intraassay and interassay coefficients of variation (CV) were <10% and <12%, respectively, for all analytes and samples matrices. Next, concentrations of native cytokines were determined in PBMC culture supernatants (n = 4) and in plasma from whole-blood samples (n = 6) with or without stimulation with Escherichia coli lipopolysaccharide or a mix of phorbol myristate acetate (PMA) and ionomycin. Peak concentrations of all 3 cytokines were secreted from PBMC after PMA/ionomycin stimulation (TNF-α, 8 h, range: 39,266-506,422 pg/mL; IL-10, 18 h, range: 15,770-63,415 pg/mL; IFN-γ 18 h, range: 189,977-492,659 pg/mL). In contrast, the highest concentrations in plasma from whole-blood stimulation were observed for IL-10 and TNF-α after LPS stimulation (TNF-α, 4 h, range: 1,764-13,460 pg/mL; IL-10, 24 h, range: 2,401-6,371 pg/mL), whereas PMA and ionomycin induced the highest secretion of IFN-γ (18 h, range: 53-20,215 pg/mL). In conclusion, the multiplex assay can quantify native IL-10, TNF-α, and IFN-γ across a broad concentration range in bovine plasma and cell culture supernatant, thereby providing a novel tool to evaluate inflammatory profiles in cattle and especially in dairy cows with inflammatory conditions. The existing multiplex assay can be expanded in the future by adding bead assays for additional bovine cytokines.
Collapse
Affiliation(s)
- Anja Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Kaszubowska L, Foerster J, Kmieć Z. NKT-like (CD3 + CD56+) cells differ from T cells in expression level of cellular protective proteins and sensitivity to stimulation in the process of ageing. Immun Ageing 2022; 19:18. [PMID: 35410272 PMCID: PMC8996639 DOI: 10.1186/s12979-022-00274-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND NKT-like cells are T lymphocytes coexpressing several NK cell-associated receptors. They are effector lymphocytes of innate and adaptive immunity, and their number increases with age. The study aimed to analyze the expression of cellular protective proteins, i.e. sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in NKT-like and T cells of the young ('young', 31 subjects, age range 19-24 years), seniors aged under 85 ('old'; 30 subjects, age range 65-84 years) and seniors aged over 85 ('oldest', 24 subjects, age range 85-94 years). Both NKT-like and T cells were cultured for 48 h and stimulated with IL-2, LPS and PMA with ionomycin and compared with unstimulated control cells. RESULTS The oldest seniors varied from the other age groups by significantly increased expression of SIRT1 and HSP70 in both NKT-like and T cells observed in both stimulated and nonstimulated cells. The analyzed lymphocyte populations of the oldest revealed not only the highest expression of these proteins but also insensitivity to all types of applied stimulation. When NKT-like cells were compared to T cells, higher expression of the studied protective proteins was observed in both stimulated and unstimulated NKT-like cells. Neither CD3 + CD56+ nor CD3+ cells revealed elevated expression of SOD2, and these cells responded to stimulation until very advanced age. T cells revealed higher sensitivity to stimulation with IL-2 regarding SIRT1 and HSP70 expression. NKT-like cells were more sensitive to stimulation with PMA and ionomycin concerning the expression of these proteins. IL-2 did not induce a significant increase in SOD2 expression in the studied age groups. CONCLUSIONS The oldest seniors developed an adaptive stress response in both T and NKT-like cells regarding the expression of SIRT1 and HSP70, which was increased and insensitive to further stimulation in contrast to SOD2, which showed a more inducible pattern of expression. CD3 + CD56+ cells exhibited higher expression of cellular protective proteins than CD3+ cells in both stimulated and control, nonstimulated cells. NKT-like and T cells showed a distinct sensitivity to the applied stimulatory factors in the respective age groups.
Collapse
Affiliation(s)
- Lucyna Kaszubowska
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Jerzy Foerster
- Department of Social and Clinical Gerontology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
9
|
Prasad M, Zorea J, Jagadeeshan S, Shnerb AB, Mathukkada S, Bouaoud J, Michon L, Novoplansky O, Badarni M, Cohen L, Yegodayev KM, Tzadok S, Rotblat B, Brezina L, Mock A, Karabajakian A, Fayette J, Cohen I, Cooks T, Allon I, Dimitstein O, Joshua B, Kong D, Voronov E, Scaltriti M, Carmi Y, Conde-Lopez C, Hess J, Kurth I, Morris LGT, Saintigny P, Elkabets M. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer. J Immunother Cancer 2022; 10:jitc-2021-003917. [PMID: 35292516 PMCID: PMC8928405 DOI: 10.1136/jitc-2021-003917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/05/2022] Open
Abstract
Background Although the mitogen-activated protein kinases (MAPK) pathway is hyperactive in head and neck cancer (HNC), inhibition of MEK1/2 in HNC patients has not shown clinically meaningful activity. Therefore, we aimed to characterize the effect of MEK1/2 inhibition on the tumor microenvironment (TME) of MAPK-driven HNC, elucidate tumor-host interaction mechanisms facilitating immune escape on treatment, and apply rationale-based therapy combination immunotherapy and MEK1/2 inhibitor to induce tumor clearance. Methods Mouse syngeneic tumors and xenografts experiments were used to analyze tumor growth in vivo. Single-cell cytometry by time of flight, flow cytometry, and tissue stainings were used to profile the TME in response to trametinib (MEK1/2 inhibitor). Co-culture of myeloid-derived suppressor cells (MDSC) with CD8+ T cells was used to measure immune suppression. Overexpression of colony-stimulating factor-1 (CSF-1) in tumor cells was used to show the effect of tumor-derived CSF-1 on sensitivity to trametinib and anti-programmed death- 1 (αPD-1) in mice. In HNC patients, the ratio between CSF-1 and CD8A was measured to test the association with clinical benefit to αPD-1 and αPD-L1 treatment. Results Using preclinical HNC models, we demonstrated that treatment with trametinib delays HNC initiation and progression by reducing tumor cell proliferation and enhancing the antitumor immunity of CD8+ T cells. Activation of CD8+ T cells by supplementation with αPD-1 antibody eliminated tumors and induced an immune memory in the cured mice. Mechanistically, an early response to trametinib treatment sensitized tumors to αPD-1-supplementation by attenuating the expression of tumor-derived CSF-1, which reduced the abundance of two CSF-1R+CD11c+ MDSC populations in the TME. In contrast, prolonged treatment with trametinib abolished the antitumor activity of αPD-1, because tumor cells undergoing the epithelial to mesenchymal transition in response to trametinib restored CSF-1 expression and recreated an immune-suppressive TME. Conclusion Our findings provide the rationale for testing the trametinib/αPD-1 combination in HNC and highlight the importance of sensitizing tumors to αPD-1 by using MEK1/2 to interfere with the tumor–host interaction. Moreover, we describe the concept that treatment of cancer with a targeted therapy transiently induces an immune-active microenvironment, and supplementation of immunotherapy during this time further activates the antitumor machinery to cause tumor elimination.
Collapse
Affiliation(s)
- Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital B Shnerb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sooraj Mathukkada
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jebrane Bouaoud
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France
| | - Lucas Michon
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France
| | - Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sapir Tzadok
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Libor Brezina
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas Mock
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Andy Karabajakian
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Jérôme Fayette
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Irit Allon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Benzion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otorhinolaryngology and Head & Neck Surgery, Barzilai Medical Center, Ashkelon, Israel
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Yaron Carmi
- Department of Pathology, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Conde-Lopez
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pierre Saintigny
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Gong Z, Li Q, Shi J, Ren G. An Artifact in Intracellular Cytokine Staining for Studying T Cell Responses and Its Alleviation. Front Immunol 2022; 13:759188. [PMID: 35126389 PMCID: PMC8813780 DOI: 10.3389/fimmu.2022.759188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intracellular cytokine staining (ICS) is a widely employed ex vivo method for quantitative determination of the activation status of immune cells, most often applied to T cells. ICS test samples are commonly prepared from animal or human tissues as unpurified cell mixtures, and cell-specific cytokine signals are subsequently discriminated by gating strategies using flow cytometry. Here, we show that when ICS samples contain Ly6G+ neutrophils, neutrophils are ex vivo activated by an ICS reagent – phorbol myristate acetate (PMA) – which leads to hydrogen peroxide (H2O2) release and death of cytokine-expressing T cells. This artifact is likely to result in overinterpretation of the degree of T cell suppression, misleading immunological research related to cancer, infection, and inflammation. We accordingly devised easily implementable improvements to the ICS method and propose alternative methods for assessing or confirming cellular cytokine expression.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME, United States
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, United States
- *Correspondence: Guangwen Ren,
| |
Collapse
|
11
|
Rioux G, Simard M, Morin S, Lorthois I, Guérin SL, Pouliot R. Development of a 3D psoriatic skin model optimized for infiltration of IL-17A producing T cells: Focus on the crosstalk between T cells and psoriatic keratinocytes. Acta Biomater 2021; 136:210-222. [PMID: 34547515 DOI: 10.1016/j.actbio.2021.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease involving several cell types, including T cells, via the IL-23/IL-17 axis. IL-17A acts on the surrounding epithelial cells thus resulting in an inflammatory feedback loop. The development of immunocompetent models that correctly recapitulate the complex phenotype of psoriasis remains challenging, which also includes both the T cell isolation and activation methods. The purpose of this work was to develop an advanced in vitro 3D psoriatic skin model that enables the study of the impact of T cells on psoriatic epithelial cells. To reach that aim, healthy and psoriatic fibroblasts and keratinocytes were used to reproduce this tissue-engineered skin model in which activated T cells, isolated beforehand from human whole blood, have been incorporated. Our study showed that isolation of T cells with the EasySep procedure, followed by activation with PMA/ionomycin, mimicked the psoriatic characteristics in an optimal manner with the production of inflammatory cytokines important in the pathogenesis of psoriasis, as well as increased expression of Ki67, S100A7, elafin and involucrin. This psoriatic model enriched in activated T cells displayed enhanced production of IL-17A, IFN-ƴ, CCL2, CXCL10, IL-1ra, IL-6 and CXCL8 compared with the healthy model and whose increased secretion was maintained over time. In addition, anti-IL17A treatment restored some psoriatic features, including epidermal thickness and basal keratinocytes proliferation, as well as a downregulation of S100A7, elafin and involucrin expression. Altogether, our study demonstrated that this model reflects a proper psoriatic inflammatory environment and is effective for the investigation of epidermal and T cell interaction over time. STATEMENT OF SIGNIFICANCE: The aim of this study was to provide an innovative 3D immunocompetent human psoriatic skin model. To our knowledge, this is the first immunocompetent model that uses skin cells from psoriatic patients to study the impact of IL-17A on pathological cells. Through the use of this model, we demonstrated that the T-cell enriched psoriatic model differs from T-cell enriched healthy model, highlighting efficient crosstalk between pathologic epithelial cells and T cells. This advanced preclinical model further mimics the original psoriatic skin and will prove relevant in predicting clinical outcomes, thereby decreasing inaccurate predictions of compound effects.
Collapse
|
12
|
Sipka A, Babasyan S, Mann S, Freer H, Klaessig S, Wagner B. Development of monoclonal antibodies for quantification of bovine tumor necrosis factor-α. JDS COMMUNICATIONS 2021; 2:415-420. [PMID: 36337098 PMCID: PMC9623662 DOI: 10.3168/jdsc.2021-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 06/16/2023]
Abstract
The expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) is associated with production losses in dairy cows and is a hallmark of early inflammatory processes. Reliable tools for the detection and quantification of soluble as well as cytoplasmatic bovine TNF-α are needed to deepen our understanding of inflammatory dynamics in dairy cows. The objective of this study was to generate a monoclonal antibody (mAb) pair that could be used to quantify bovine TNF-α in cell culture supernatants and plasma and to detect cytoplasmatic TNF-α in bovine leukocyte populations. One mouse was immunized with a recombinant fusion protein of bovine TNF-α and equine IL-4 generated in Chinese hamster ovary cells. Murine monoclonal antibodies specific to bovine TNF-α were produced in hybridoma cell lines and selected based on their specificity to the recombinant IL-4/TNF-α protein. Clones 197-1 and 65-2, both murine IgG1 isotypes, detected the bovine TNF-α fusion protein as well as the native protein produced by peripheral blood mononuclear cells (PBMC) stimulated with a combination of phorbol myristate acetate and ionomycin. Both mAbs were tested for and lacked cross-reactivity to equine IL-4 and 3 other recombinant bovine cytokines (IFN-γ, IL-10, and CCL5) and were used to develop a fluorescent bead-based assay. The range of bovine TNF-α detection in the assay was 0.2 to 620 ng/mL, and the test was used to quantify native bovine TNF-α in cell culture supernatants of stimulated PBMC and in plasma from ex vivo whole-blood stimulations. Sample matrices were spiked with TNF-α, with subsequent recovery rates (mean ± SD) of 89% ± 9 (n = 3) in culture medium and 94% ± 12 (n = 3) in heat-inactivated fetal bovine serum. Serial dilutions of plasma and cell culture supernatants from stimulated whole blood or PBMC indicated excellent accuracy for quantification of native TNF-α in bovine samples. Both bovine TNF-α mAbs also detected intracellular TNF-α in bovine CD14+ monocytes and CD4+/CD8+ lymphocytes. In conclusion, we demonstrated that the mAbs generated provide valuable new tools to quantify native bovine TNF-α in a wide concentration range and to characterize intracellular TNF-α expression in bovine leukocytes.
Collapse
|
13
|
French AJ, Natesampillai S, Krogman A, Correia C, Peterson KL, Alto A, Chandrasekar AP, Misra A, Li Y, Kaufmann SH, Badley AD, Cummins NW. Reactivating latent HIV with PKC agonists induces resistance to apoptosis and is associated with phosphorylation and activation of BCL2. PLoS Pathog 2020; 16:e1008906. [PMID: 33075109 PMCID: PMC7595626 DOI: 10.1371/journal.ppat.1008906] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/29/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Eradication of HIV-1 by the "kick and kill" strategy requires reactivation of latent virus to cause death of infected cells by either HIV-induced or immune-mediated apoptosis. To date this strategy has been unsuccessful, possibly due to insufficient cell death in reactivated cells to effectively reduce HIV-1 reservoir size. As a possible cause for this cell death resistance, we examined whether leading latency reversal agents (LRAs) affected apoptosis sensitivity of CD4 T cells. Multiple LRAs of different classes inhibited apoptosis in CD4 T cells. Protein kinase C (PKC) agonists bryostatin-1 and prostratin induced phosphorylation and enhanced neutralizing capability of the anti-apoptotic protein BCL2 in a PKC-dependent manner, leading to resistance to apoptosis induced by both intrinsic and extrinsic death stimuli. Furthermore, HIV-1 producing CD4 T cells expressed more BCL2 than uninfected cells, both in vivo and after ex vivo reactivation. Therefore, activation of BCL2 likely contributes to HIV-1 persistence after latency reversal with PKC agonists. The effects of LRAs on apoptosis sensitivity should be considered in designing HIV cure strategies predicated upon the "kick and kill" paradigm.
Collapse
Affiliation(s)
- Andrea J. French
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ashton Krogman
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin L. Peterson
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alecia Alto
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aswath P. Chandrasekar
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anisha Misra
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Scott H. Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sack U, Bitar M. An Eloquent Proof for a Common Challenge. Cytometry A 2019; 97:168-170. [DOI: 10.1002/cyto.a.23958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Ulrich Sack
- Institute of Clinical Immunology, Medical FacultyUniversity of Leipzig Leipzig Germany
| | - Michael Bitar
- Institute of Clinical Immunology, Medical FacultyUniversity of Leipzig Leipzig Germany
| |
Collapse
|
15
|
Panda S, Pradhan N, Chatterjee S, Morla S, Saha A, Roy A, Kumar S, Bhattacharyya A, Manna D. 4,5-Disubstituted 1,2,3-triazoles: Effective Inhibition of Indoleamine 2,3-Dioxygenase 1 Enzyme Regulates T cell Activity and Mitigates Tumor Growth. Sci Rep 2019; 9:18455. [PMID: 31804586 PMCID: PMC6895048 DOI: 10.1038/s41598-019-54963-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023] Open
Abstract
The improvement of body's own immune system is considered one of the safest approaches to fight against cancer and several other diseases. Excessive catabolism of the essential amino acid, L-tryptophan (L-Trp) assists the cancer cells to escape normal immune obliteration. The formation of disproportionate kynurenine and other downstream metabolites suppress the T cell functions. Blocking of this immunosuppressive mechanism is considered as a promising approach against cancer, neurological disorders, autoimmunity, and other immune-mediated diseases. Overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme is directly related to the induction of immunosuppressive mechanisms and represents an important therapeutic target. Several classes of small molecule-based IDO1 inhibitors have been already reported, but only few compounds are currently being evaluated in various stages of clinical trials as adjuvants or in combination with chemo- and radiotherapies. In the quest for novel structural class(s) of IDO1 inhibitors, we developed a series of 4,5-disubstituted 1,2,3-triazole derivatives. The optimization of 4,5-disubstituted 1,2,3-triazole scaffold and comprehensive biochemical and biophysical studies led to the identification of compounds, 3i, 4i, and 4k as potent and selective inhibitors of IDO1 enzyme with IC50 values at a low nanomolar level. These potent compounds also showed strong IDO1 inhibitory activities in MDA-MB-231 cells with no/negligible level of cytotoxicity. The T cell activity studies revealed that controlled regulation of IDO1 enzyme activity in the presence of these potent compounds could induce immune response against breast cancer cells. The compounds also showed excellent in vivo antitumor efficacy (of tumor growth inhibition = 79-96%) in the female Swiss albino mice. As a consequence, this study describes the first example of 4,5-disubstituted 1,2,3-triazole based IDO1 inhibitors with potential applications for immunotherapeutic studies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Cell Line, Tumor
- Drug Screening Assays, Antitumor
- Enzyme Assays
- Female
- HEK293 Cells
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inhibitory Concentration 50
- Kynurenine/immunology
- Kynurenine/metabolism
- Metabolic Networks and Pathways/drug effects
- Metabolic Networks and Pathways/immunology
- Mice
- Molecular Docking Simulation
- Primary Cell Culture
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Triazoles/chemistry
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Tryptophan/immunology
- Tryptophan/metabolism
- Tryptophan Oxygenase/antagonists & inhibitors
- Tryptophan Oxygenase/chemistry
- Tryptophan Oxygenase/metabolism
- Tumor Escape/drug effects
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nirmalya Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Soumya Chatterjee
- Department of Zoology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Sudhir Morla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashalata Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
16
|
Xiang Y, Zhang L, Huang Y, Ling J, Zhuo W. Microarray-based data mining reveals key genes and potential therapeutic drugs for Cadmium-induced prostate cell malignant transformation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:141-147. [PMID: 30897525 DOI: 10.1016/j.etap.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Increasing evidence showed that Cadmium (Cd) can accumulate in the body and damage cells, resulting in cancerigenesis of the prostate with complex mechanisms. In the present study, we aimed to explore the possible key genes, pathways and therapeutic drugs using bioinformatics methods. Microarray-based data were retrieved and analyzed to screen differentially expressed genes (DEGs) between Cd-treated prostate cells and controls. Then, functions of the DEGs were annotated and hub genes were screened. Next, key genes were selected from the hub genes via validation in a prostate cancer cohort from The Cancer Genome Atlas (TCGA). Afterward, potential drugs were further predicted. Consequently, a gene expression profile, GSE9951, was retrieved. Then, 361 up-regulated and 30 down-regulated DEGs were screened out, which were enriched in various pathways. Among the DEGs, seven hub genes (HSPA5, HSP90AB1, RHOA, HSPD1, MAD2L1, SKP2, and CCT2) were dysregulated in prostate cancer compared to normal controls, and two of them (HSPD1 and CCT2) might influence the prostate cancer prognosis. Lastly, ionomycin was predicted to be a potential agent reversing Cd-induced prostate cell malignant transformation. In summary, the present study provided novel evidence regarding the mechanisms of Cd-induced prostate cell malignant transformation, and identified ionomycin as a potential small molecule against Cd toxicity.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liang Zhang
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Huang
- Department of Invasive Technology, Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
17
|
La Porta J, Matus-Nicodemos R, Valentín-Acevedo A, Covey LR. The RNA-Binding Protein, Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. PLoS One 2016; 11:e0158708. [PMID: 27513449 PMCID: PMC4981342 DOI: 10.1371/journal.pone.0158708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that the RNA binding protein, polypyrimidine tract-binding protein (PTBP1) plays a critical role in regulating the expression of CD40L in activated CD4 T cells. This is achieved mechanistically through message stabilization at late times of activation as well as by altered distribution of CD40L mRNA within distinct cellular compartments. PTBP1 has been implicated in many different processes, however whether PTBP1 plays a broader role in CD4 T cell activation is not known. To examine this question, experiments were designed to introduce shRNA into primary human CD4 T cells to achieve decreased, but not complete ablation of PTBP1 expression. Analyses of shPTB-expressing CD4 T cells revealed multiple processes including cell proliferation, activation-induced cell death and expression of activation markers and cytokines that were regulated in part by PTBP1 expression. Although there was an overall decrease in the steady-state level of several activation genes, only IL-2 and CD40L appeared to be regulated by PTBP1 at the level of RNA decay suggesting that PTBP1 is critical at different regulatory steps of expression that is gene-specific. Importantly, even though the IL-2 protein levels were reduced in cells with lowered PTBP1, the steady-state level of IL-2 mRNA was significantly higher in these cells suggesting a block at the translational level. Evaluation of T cell activation in shPTB-expressing T cells revealed that PTBP1 was linked primarily to the activation of the PLCγ1/ERK1/2 and the NF-κB pathways. Overall, our results reveal the importance of this critical RNA binding protein in multiple steps of T cell activation.
Collapse
Affiliation(s)
- James La Porta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Rodrigo Matus-Nicodemos
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Aníbal Valentín-Acevedo
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|