1
|
Golikova EA, Alshevskaya AA, Alrhmoun S, Sivitskaya NA, Sennikov SV. TCR-T cell therapy: current development approaches, preclinical evaluation, and perspectives on regulatory challenges. J Transl Med 2024; 22:897. [PMID: 39367419 PMCID: PMC11451006 DOI: 10.1186/s12967-024-05703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
TCR-T cell therapy represents a promising advancement in adoptive immunotherapy for cancer treatment. Despite its potential, the development and preclinical testing of TCR-T cells face significant challenges. This review provides a structured overview of the key stages in preclinical testing, including in silico, in vitro, and in vivo methods, within the context of the sequential development of novel therapies. This review aimed to systematically outline the processes for evaluating TCR-T cells at each stage: from in silico approaches used to predict target antigens, assess cross-reactivity, and minimize off-target effects, to in vitro assays designed to measure cell functionality, cytotoxicity, and activation. Additionally, the review discusses the limitations of in vivo testing in animal models, particularly in accurately reflecting the human tumor microenvironment and immune responses. Performed analysis emphasizes the importance of these preclinical stages in the safe and effective development of TCR-T cell therapies. While current models provide valuable insights, we identify critical gaps, particularly in in vivo biodistribution and toxicity assessments, and propose the need for enhanced standardization and the development of more representative models. This structured approach aims to improve the predictability and safety of TCR-T cell therapy as it advances towards clinical application.
Collapse
Affiliation(s)
- Elena A Golikova
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Alina A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia.
| | - Saleh Alrhmoun
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| | - Natalia A Sivitskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Sergey V Sennikov
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| |
Collapse
|
2
|
Ruibal P, Franken KLMC, van Meijgaarden KE, Walters LC, McMichael AJ, Gillespie GM, Joosten SA, Ottenhoff THM. Discovery of HLA-E-Presented Epitopes: MHC-E/Peptide Binding and T-Cell Recognition. Methods Mol Biol 2022; 2574:15-30. [PMID: 36087196 PMCID: PMC10508831 DOI: 10.1007/978-1-0716-2712-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the interactions involved during the immunological synapse between peptide, HLA-E molecules, and TCR is crucial to effectively target protective HLA-E-restricted T-cell responses in humans. Here we describe three techniques based on the generation of MHC-E/peptide complexes (MHC-E generically includes HLA-E-like molecules in human and nonhuman species, while HLA-E specifically refers to human molecules), which allow to investigate MHC-E/peptide binding at the molecular level through binding assays and by using peptide loaded HLA-E tetramers, to detect, isolate, and study peptide-specific HLA-E-restricted human T-cells.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lucy C Walters
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Schöllhorn A, Schuhmacher J, Besedovsky L, Fendel R, Jensen ATR, Stevanović S, Lange T, Rammensee HG, Born J, Gouttefangeas C, Dimitrov S. Integrin Activation Enables Sensitive Detection of Functional CD4 + and CD8 + T Cells: Application to Characterize SARS-CoV-2 Immunity. Front Immunol 2021; 12:626308. [PMID: 33854501 PMCID: PMC8040333 DOI: 10.3389/fimmu.2021.626308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/09/2021] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that conformational change in the β2-integrin is a very early activation marker that can be detected with fluorescent multimers of its ligand intercellular adhesion molecule (ICAM)-1 for rapid assessment of antigen-specific CD8+ T cells. In this study, we describe a modified protocol of this assay for sensitive detection of functional antigen-specific CD4+ T cells using a monoclonal antibody (clone m24 Ab) specific for the open, high-affinity conformation of the β2-integrin. The kinetics of β2-integrin activation was different on CD4+ and CD8+ T cells (several hours vs. few minutes, respectively); however, m24 Ab readily stained both cell types 4–6 h after antigen stimulation. With this protocol, we were able to monitor ex vivo effector and memory CD4+ and CD8+ T cells specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), Epstein–Barr virus (EBV), and hepatitis B virus (HBV) in whole blood or cryopreserved peripheral blood mononuclear cells (PBMCs) of infected or vaccinated individuals. By costaining β2-integrin with m24 and CD154 Abs, we assessed extremely low frequencies of polyfunctional CD4+ T cell responses. The novel assay used in this study allows very sensitive and simultaneous screening of both CD4+ and CD8+ T cell reactivities, with versatile applicability in clinical and vaccination studies.
Collapse
Affiliation(s)
- Anna Schöllhorn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Anja T R Jensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, " University of Tübingen, Tübingen, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, " University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, " University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Willis RA, Ramachandiran V, Shires JC, Bai G, Jeter K, Bell DL, Han L, Kazarian T, Ugwu KC, Laur O, Contreras-Alcantara S, Long DL, Altman JD. Production of Class II MHC Proteins in Lentiviral Vector-Transduced HEK-293T Cells for Tetramer Staining Reagents. Curr Protoc 2021; 1:e36. [PMID: 33539685 PMCID: PMC7880703 DOI: 10.1002/cpz1.36] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class II major histocompatibility complex peptide (MHC-IIp) multimers are precisely engineered reagents used to detect T cells specific for antigens from pathogens, tumors, and self-proteins. While the related Class I MHC/peptide (MHC-Ip) multimers are usually produced from subunits expressed in E. coli, most Class II MHC alleles cannot be produced in bacteria, and this has contributed to the perception that MHC-IIp reagents are harder to produce. Herein, we present a robust constitutive expression system for soluble biotinylated MHC-IIp proteins that uses stable lentiviral vector-transduced derivatives of HEK-293T cells. The expression design includes allele-specific peptide ligands tethered to the amino-terminus of the MHC-II β chain via a protease-cleavable linker. Following cleavage of the linker, HLA-DM is used to catalyze efficient peptide exchange, enabling high-throughput production of many distinct MHC-IIp complexes from a single production cell line. Peptide exchange is monitored using either of two label-free methods, native isoelectric focusing gel electrophoresis or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of eluted peptides. Together, these methods produce MHC-IIp complexes that are highly homogeneous and that form the basis for excellent MHC-IIp multimer reagents. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lentivirus production and expression line creation Support Protocol 1: Six-well assay for estimation of production cell line yield Support Protocol 2: Universal ELISA for quantifying proteins with fused leucine zippers and His-tags Basic Protocol 2: Cultures for production of Class II MHC proteins Basic Protocol 3: Purification of Class II MHC proteins by anti-leucine zipper affinity chromatography Alternate Protocol 1: IMAC purification of His-tagged Class II MHC Support Protocol 3: Protein concentration measurements and adjustments Support Protocol 4: Polishing purification by anion-exchange chromatography Support Protocol 5: Estimating biotinylation percentage by streptavidin precipitation Basic Protocol 4: Peptide exchange Basic Protocol 5: Analysis of peptide exchange by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry Alternate Protocol 2: Native isoelectric focusing to validate MHC-II peptide loading Basic Protocol 6: Multimerization Basic Protocol 7: Staining cells with Class II MHC tetramers.
Collapse
Affiliation(s)
- Richard A Willis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Vasanthi Ramachandiran
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - John C Shires
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Ge Bai
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kelly Jeter
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Donielle L Bell
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Lixia Han
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Tamara Kazarian
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kyla C Ugwu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Oskar Laur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Custom Cloning Core Facility, Emory University School of Medicine, Atlanta, Georgia
| | - Susana Contreras-Alcantara
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Dale L Long
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Center for AIDS Research, Emory University, Atlanta, Georgia
| |
Collapse
|
5
|
Pedersen NW, Laske K, Maurer D, Welters M, Walter S, Gouttefangeas C, Hadrup SR. Optimization in Detection of Antigen-Specific T Cells Through Differentially Labeled MHC Multimers. Cytometry A 2019; 97:955-964. [PMID: 31808999 PMCID: PMC7540688 DOI: 10.1002/cyto.a.23942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022]
Abstract
A large variety of fluorescent molecules are used on a regular basis to tag major histocompatibility complex (MHC) multimers for detection of antigen-specific T cells. We have evaluated the way in which the choice of fluorescent label can impact the detection of MHC multimer binding T cells in an exploratory proficiency panel where detection of MHC multimer binding T cells was assessed across 16 different laboratories. We found that the staining index (SI) of the multimer reagent provided the best direct correlation with the value of a given fluorochrome for T cell detection studies. The SI is dependent on flow cytometer settings and chosen antibody panel; hence, the optimal fluorochrome selection may differ from lab to lab. Consequently, we describe a strategy to evaluate performance of the detection channels and optimize the SI for selected fluorescent molecules. This approach can easily be used to test and optimize fluorescence detection in relation to MHC multimer staining and in general, for antibody-based identification of rare cell populations. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Karoline Laske
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | - Marij Welters
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Cécile Gouttefangeas
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
6
|
Rammensee HG, Wiesmüller KH, Chandran PA, Zelba H, Rusch E, Gouttefangeas C, Kowalewski DJ, Di Marco M, Haen SP, Walz JS, Gloria YC, Bödder J, Schertel JM, Tunger A, Müller L, Kießler M, Wehner R, Schmitz M, Jakobi M, Schneiderhan-Marra N, Klein R, Laske K, Artzner K, Backert L, Schuster H, Schwenck J, Weber ANR, Pichler BJ, Kneilling M, la Fougère C, Forchhammer S, Metzler G, Bauer J, Weide B, Schippert W, Stevanović S, Löffler MW. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 2019; 7:307. [PMID: 31730025 PMCID: PMC6858783 DOI: 10.1186/s40425-019-0796-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.
Collapse
Affiliation(s)
- Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.
| | | | - P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Henning Zelba
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Daniel J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Moreno Di Marco
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Sebastian P Haen
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Yamel Cardona Gloria
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Johanna Bödder
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jill-Marie Schertel
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Müller
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Kießler
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Reinhild Klein
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Kerstin Artzner
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Linus Backert
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Johannes Schwenck
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Bernd J Pichler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany.,Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Christian la Fougère
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Gisela Metzler
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Jürgen Bauer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Wilfried Schippert
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Markus W Löffler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany. .,Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Tübingen, Germany. .,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Gouttefangeas C, Schuhmacher J, Dimitrov S. Adhering to adhesion: assessing integrin conformation to monitor T cells. Cancer Immunol Immunother 2019; 68:1855-1863. [PMID: 31309255 PMCID: PMC11028104 DOI: 10.1007/s00262-019-02365-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/02/2019] [Indexed: 11/27/2022]
Abstract
Monitoring T cells is of major importance for the development of immunotherapies. Recent sophisticated assays can address particular aspects of the anti-tumor T-cell repertoire or support very large-scale immune screening for biomarker discovery. Robust methods for the routine assessment of the quantity and quality of antigen-specific T cells remain, however, essential. This review discusses selected methods that are commonly used for T-cell monitoring and summarizes the advantages and limitations of these assays. We also present a new functional assay, which specifically detects activated β2 integrins within a very short time following CD8+ T-cell stimulation. Because of its unique and favorable characteristics, this assay could be useful for implementation into our T-cell monitoring toolbox.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany.
| | - Juliane Schuhmacher
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University, Otfried-Müller Straße 25, 72076, Tübingen, Germany.
- German Center for Diabetes Research, 72076, Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tübingen (IDM), Otfried-Müller Straße 10, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Magnin M, Guillaume P, Coukos G, Harari A, Schmidt J. High-throughput identification of human antigen-specific CD8 + and CD4 + T cells using soluble pMHC multimers. Methods Enzymol 2019; 631:21-42. [PMID: 31948548 DOI: 10.1016/bs.mie.2019.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peptide major histocompatibility complex (pMHC) multimers have been used since decades to identify, isolate and analyze antigen-specific T cells by flow (and more recently mass) cytometry. Yet well established as a standard technology, improvements are still required to face the growing needs of personalized immune monitoring. Here we review the latest developments about (i) the quality of pMHC class I and II monomers, (ii) the importance of the multimeric scaffold, (iii) the staining conditions and (iv) the high-throughput synthesis of pMHC monomers. Finally, innovative multiplexed, combinatorial strategies for parallel detection of antigen-specific T cells in a single sample are discussed.
Collapse
Affiliation(s)
- Morgane Magnin
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc 2019; 14:1926-1943. [DOI: 10.1038/s41596-019-0170-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
|
10
|
Dimitrov S, Lange T, Gouttefangeas C, Jensen ATR, Szczepanski M, Lehnnolz J, Soekadar S, Rammensee HG, Born J, Besedovsky L. Gα s-coupled receptor signaling and sleep regulate integrin activation of human antigen-specific T cells. J Exp Med 2019; 216:517-526. [PMID: 30755455 PMCID: PMC6400544 DOI: 10.1084/jem.20181169] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/03/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
This study demonstrates a regulatory role of Gαs-coupled receptor agonists (catecholamines, prostaglandins, and adenosine) and sleep on integrin activation on T cells in humans. The findings point to a mechanism by which T cell responses are altered in several conditions characterized by aberrant levels of these substances. Efficient T cell responses require the firm adhesion of T cells to their targets, e.g., virus-infected cells, which depends on T cell receptor (TCR)–mediated activation of β2-integrins. Gαs-coupled receptor agonists are known to have immunosuppressive effects, but their impact on TCR-mediated integrin activation is unknown. Using multimers of peptide major histocompatibility complex molecules (pMHC) and of ICAM-1—the ligand of β2-integrins—we show that the Gαs-coupled receptor agonists isoproterenol, epinephrine, norepinephrine, prostaglandin (PG) E2, PGD2, and adenosine strongly inhibit integrin activation on human CMV- and EBV-specific CD8+ T cells in a dose-dependent manner. In contrast, sleep, a natural condition of low levels of Gαs-coupled receptor agonists, up-regulates integrin activation compared with nocturnal wakefulness, a mechanism possibly underlying some of the immune-supportive effects of sleep. The findings are also relevant for several pathologies associated with increased levels of Gαs-coupled receptor agonists (e.g., tumor growth, malaria, hypoxia, stress, and sleep disturbances).
Collapse
Affiliation(s)
- Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany .,German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Tanja Lange
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Anja T R Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Szczepanski
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jannik Lehnnolz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Surjo Soekadar
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Clinical Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, Neuroscience Research Center, Charité - University Medicine Berlin, Berlin, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Partner Site Tübingen, German Cancer Consortium, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Eckert F, Schaedle P, Zips D, Schmid-Horch B, Rammensee HG, Gani C, Gouttefangeas C. Impact of curative radiotherapy on the immune status of patients with localized prostate cancer. Oncoimmunology 2018; 7:e1496881. [PMID: 30393582 PMCID: PMC6208674 DOI: 10.1080/2162402x.2018.1496881] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Combination of radiotherapy with immunotherapy has become an attractive concept for the treatment of cancer. The objective of this study was to assess the effect of curative, normofractionated radiotherapy on peripheral immune lymphocytes in prostate cancer patients, in order to propose a rationale for scheduling of normofractionated radiotherapy with T-cell based immunotherapy. In a prospective study (clinicaltrials.gov: NCT01376674), eighteen patients with localized prostate cancer were treated with radiotherapy with or without hormonal therapy. Irradiation volumes encompassed prostate and, in select cases, elective pelvic nodal regions. Blood samples were collected from all patients before, during, and after radiotherapy, as well as from 6 healthy individuals as control. Normofractionated radiotherapy of prostate cancer over eight weeks had a significant influence on the systemic immune status of patients compared to healthy controls. Absolute leukocyte and lymphocyte counts decreased during treatment as did peripheral blood immune subsets (T cells, CD8+ and naïve CD4+ T cells, B cells). Regulatory T cells and NK cells increased. Proliferation of all immune cells except regulatory T cells increased during RT. Most of these changes were transient. Importantly, the functionality of T lymphocytes and the frequency of antigen-specific CD8+ T cells were not affected during therapy. Our data indicate that combination of normofractionated radiotherapy with immunotherapy might be feasible for patients with prostate cancer. Conceptually, beginning with immunotherapy early during the course of radiotherapy could be beneficial, as the percentage of T cells is highest, the percentage of regulatory T cells is lowest, and as the effects of radiotherapy did not completely subside 3 months after end of radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Philipp Schaedle
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Department for Internal Medicine I, Marienhospital Stuttgart, Stuttgart, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Barbara Schmid-Horch
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tuebingen, Eberhard-Karls-University, Tuebingen, Germany
| | - Hans-Georg Rammensee
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Cécile Gouttefangeas
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Dimitrov S, Gouttefangeas C, Besedovsky L, Jensen ATR, Chandran PA, Rusch E, Businger R, Schindler M, Lange T, Born J, Rammensee HG. Activated integrins identify functional antigen-specific CD8 + T cells within minutes after antigen stimulation. Proc Natl Acad Sci U S A 2018; 115:E5536-E5545. [PMID: 29844168 PMCID: PMC6004473 DOI: 10.1073/pnas.1720714115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Immediate β2-integrin activation upon T cell receptor stimulation is critical for effective interaction between T cells and their targets and may therefore be used for the rapid identification and isolation of functional T cells. We present a simple and sensitive flow cytometry-based assay to assess antigen-specific T cells using fluorescent intercellular adhesion molecule (ICAM)-1 multimers that specifically bind to activated β2-integrins. The method is compatible with surface and intracellular staining; it is applicable for monitoring of a broad range of virus-, tumor-, and vaccine-specific CD8+ T cells, and for isolating viable antigen-reacting cells. ICAM-1 binding correlates with peptide-MHC multimer binding but, notably, it identifies the fraction of antigen-specific CD8+ T cells with immediate and high functional capability (i.e., expressing high levels of cytotoxic markers and cytokines). Compared with the currently available methods, staining of activated β2-integrins presents the unique advantage of requiring activation times of only several minutes, therefore delivering functional information nearly reflecting the in vivo situation. Hence, the ICAM-1 assay is most suitable for rapid and precise monitoring of functional antigen-specific T cell responses, including for patient samples in a variety of clinical settings, as well as for the isolation of functional T cells for adoptive cell-transfer immunotherapies.
Collapse
Affiliation(s)
- Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen, 72076 Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany;
| | - Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Anja T R Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Ramona Businger
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Tanja Lange
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, 23562 Lübeck, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany;
- Partner Site Tübingen, German Cancer Consortium (DKTK), 72076 Tübingen, Germany
| |
Collapse
|
13
|
Luimstra JJ, Garstka MA, Roex MCJ, Redeker A, Janssen GMC, van Veelen PA, Arens R, Falkenburg JHF, Neefjes J, Ovaa H. A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J Exp Med 2018; 215:1493-1504. [PMID: 29666167 PMCID: PMC5940271 DOI: 10.1084/jem.20180156] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022] Open
Abstract
Luimstra et al. describe a temperature-mediated peptide exchange method for generating many different epitope-specific MHC class I multimers in parallel. This simple and versatile technology allows fast and efficient production of MHC I reagents for immune monitoring of T cell responses. Adaptive immunity is initiated by T cell recognition of specific antigens presented by major histocompatibility complexes (MHCs). MHC multimer technology has been developed for the detection, isolation, and characterization of T cells in infection, autoimmunity, and cancer. Here, we present a simple, fast, flexible, and efficient method to generate many different MHC class I (MHC I) multimers in parallel using temperature-mediated peptide exchange. We designed conditional peptides for HLA-A*02:01 and H-2Kb that form stable peptide–MHC I complexes at low temperatures, but dissociate when exposed to a defined elevated temperature. The resulting conditional MHC I complexes, either alone or prepared as ready-to-use multimers, can swiftly be loaded with peptides of choice without additional handling and within a short time frame. We demonstrate the ease and flexibility of this approach by monitoring the antiviral immune constitution in an allogeneic stem cell transplant recipient and by analyzing CD8+ T cell responses to viral epitopes in mice infected with lymphocytic choriomeningitis virus or cytomegalovirus.
Collapse
Affiliation(s)
- Jolien J Luimstra
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Cell Biology II, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Malgorzata A Garstka
- Core Research Lab, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China .,Department of Cell Biology II, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marthe C J Roex
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands .,Department of Cell Biology II, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands .,Department of Cell Biology II, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
14
|
Chandran PA, Laske K, Cazaly A, Rusch E, Schmid-Horch B, Rammensee HG, Ottensmeier CH, Gouttefangeas C. Validation of Immunomonitoring Methods for Application in Clinical Studies: The HLA-Peptide Multimer Staining Assay. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2018; 94:342-353. [PMID: 27363684 DOI: 10.1002/cyto.b.21397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/27/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND Validated assays are essential to generate data with defined specificity, consistency, and reliability. Although the process of validation is required for applying immunoassays in the context of clinical studies, reports on systematic validation of in vitro T cell assays are scarce so far. We recently validated our HLA-peptide multimer staining assay in a systematic manner so as to qualify the method for monitoring antigen-specific T cell responses after immunotherapy. METHODS Parameters of the assay, specificity, precision, linearity, sensitivity, and robustness were assessed systematically. Experiments were designed to address specifically each parameter and are detailed. RESULTS Nonspecific multimer staining was below the acceptance limit of 0.02% multimer(+) CD8(+) cells. The assay showed acceptable precision in all dimensions it was repeated (CV < 10%) and also demonstrated a linear detection (R2 > 0.99) of antigen specific cells. CONCLUSIONS We succeeded in validating the HLA-multimer staining assay in a systematic manner. Additionally, we propose a technical framework and recommendations that can be applied for validating other T cell assessment methods. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Angelica Cazaly
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | | | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Christian H Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Pedersen NW, Chandran PA, Qian Y, Rebhahn J, Petersen NV, Hoff MD, White S, Lee AJ, Stanton R, Halgreen C, Jakobsen K, Mosmann T, Gouttefangeas C, Chan C, Scheuermann RH, Hadrup SR. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells. Front Immunol 2017; 8:858. [PMID: 28798746 PMCID: PMC5526901 DOI: 10.3389/fimmu.2017.00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8+ T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (<0.1% of live, single lymphocytes), SWIFT outperformed the other tools. As used in this study, none of the algorithms offered a completely automated pipeline for identification of MHC multimer populations, as varying degrees of human interventions were needed to complete the analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss the main properties, differences, and advantages of the different methods tested.
Collapse
Affiliation(s)
- Natasja Wulff Pedersen
- Division of Immunology and Vaccinology, Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - P. Anoop Chandran
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Yu Qian
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
| | - Jonathan Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Nadia Viborg Petersen
- Division of Immunology and Vaccinology, Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Mathilde Dalsgaard Hoff
- Division of Immunology and Vaccinology, Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Scott White
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Alexandra J. Lee
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
| | - Rick Stanton
- Human Longevity Inc., San Diego, CA, United States
| | | | | | - Tim Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Cécile Gouttefangeas
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Richard H. Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Sine Reker Hadrup
- Division of Immunology and Vaccinology, Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
16
|
Chandran PA, Heidu S, Zelba H, Schmid-Horch B, Rammensee HG, Pascolo S, Gouttefangeas C. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex-Peptide Monomers by Flow Cytometry. Front Immunol 2017; 8:96. [PMID: 28228758 PMCID: PMC5296342 DOI: 10.3389/fimmu.2017.00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/19/2017] [Indexed: 11/29/2022] Open
Abstract
Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage.
Collapse
Affiliation(s)
- P. Anoop Chandran
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Sonja Heidu
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Henning Zelba
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Barbara Schmid-Horch
- Center for Clinical Transfusion Medicine GmbH, University Hospital, Tuebingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Steve Pascolo
- Department of Dermatology, University Hospital, Zürich, Switzerland
| | - Cécile Gouttefangeas
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Altman JD, Davis MM. MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells. ACTA ACUST UNITED AC 2016; 115:17.3.1-17.3.44. [DOI: 10.1002/cpim.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mark M. Davis
- Stanford University School of Medicine and The Howard Hughes Medical Institute Palo Alto California
| |
Collapse
|
18
|
Löffler MW, Chandran PA, Laske K, Schroeder C, Bonzheim I, Walzer M, Hilke FJ, Trautwein N, Kowalewski DJ, Schuster H, Günder M, Carcamo Yañez VA, Mohr C, Sturm M, Nguyen HP, Riess O, Bauer P, Nahnsen S, Nadalin S, Zieker D, Glatzle J, Thiel K, Schneiderhan-Marra N, Clasen S, Bösmüller H, Fend F, Kohlbacher O, Gouttefangeas C, Stevanović S, Königsrainer A, Rammensee HG. Personalized peptide vaccine-induced immune response associated with long-term survival of a metastatic cholangiocarcinoma patient. J Hepatol 2016; 65:849-855. [PMID: 27397612 PMCID: PMC5756536 DOI: 10.1016/j.jhep.2016.06.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. METHODS Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. RESULTS Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. CONCLUSIONS This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. LAY SUMMARY Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival.
Collapse
Affiliation(s)
- Markus W Löffler
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany.
| | - P Anoop Chandran
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Karoline Laske
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Current address: Immatics Biotechnologies GmbH, Paul Ehrlich Str. 15, 72076 Tübingen, Germany
| | - Christopher Schroeder
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Irina Bonzheim
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Mathias Walzer
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany
| | - Franz J Hilke
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Nico Trautwein
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Daniel J Kowalewski
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; Current address: Immatics Biotechnologies GmbH, Paul Ehrlich Str. 15, 72076 Tübingen, Germany
| | - Heiko Schuster
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Marc Günder
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Viviana A Carcamo Yañez
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Christopher Mohr
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany
| | - Marc Sturm
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Huu-Phuc Nguyen
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Olaf Riess
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany
| | - Peter Bauer
- University Hospital Tübingen, Institute of Medical Genetics and Applied Genomics, Calwerstr. 7, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Sven Nahnsen
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Silvio Nadalin
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Derek Zieker
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Jörg Glatzle
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Current address: Klinikum Konstanz, Luisenstr. 7, 78464 Konstanz, Germany
| | - Karolin Thiel
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Stephan Clasen
- University Hospital Tübingen, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Hans Bösmüller
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Falko Fend
- University Hospital Tübingen, Institute of Pathology, Liebermeisterstr. 8, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Oliver Kohlbacher
- University of Tübingen, Center for Bioinformatics, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Dept. of Computer Science, Sand 14, 72076 Tübingen, Germany; University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, 72076 Tübingen, Germany; Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Cécile Gouttefangeas
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefan Stevanović
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Alfred Königsrainer
- University Hospital Tübingen, Department of General, Visceral and Transplant Surgery, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| | - Hans-Georg Rammensee
- University of Tübingen, Interfaculty Institute for Cell Biology, Department of Immunology, Auf der Morgenstelle 15, 72076 Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Germany
| |
Collapse
|
19
|
Rekers NV, von Herrath MG, Wesley JD. Immunotherapies and immune biomarkers in Type 1 diabetes: A partnership for success. Clin Immunol 2015; 161:37-43. [PMID: 26122172 DOI: 10.1016/j.clim.2015.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/16/2022]
Abstract
The standard of care (SoC) for Type 1 diabetes (T1D) today is much the same as it was in the early 1920s, simply with more insulin options-fast-acting, slow-acting, injectable, and inhalable insulins. However, these well-tolerated treatments only manage the symptoms and complications, but do nothing to halt the underlying immune response. There is an unmet need for better treatment options for T1D that address all aspects of the disease. For decades, we have successfully treated T1D in preclinical animal models with immune-modifying therapies that have not demonstrated comparable efficacy in humans. The path to bringing such options to the clinic will depend on the implementation and standard inclusion of biomarkers of immune and therapeutic efficacy in T1D clinical trials, and dictate if we can create a new SoC that treats the underlying autoimmunity as well as the symptoms it causes.
Collapse
Affiliation(s)
- Niels V Rekers
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | - Johnna D Wesley
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA.
| |
Collapse
|