1
|
Lee AJ, Yoon D, Han S, Hugonnet H, Park W, Park JK, Nam Y, Park Y. Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:6928-6939. [PMID: 34858689 PMCID: PMC8606138 DOI: 10.1364/boe.439404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/10/2023]
Abstract
The highly complex central nervous systems of mammals are often studied using three-dimensional (3D) in vitro primary neuronal cultures. A coupled confocal microscopy and immunofluorescence labeling are widely utilized for visualizing the 3D structures of neurons. However, this requires fixation of the neurons and is not suitable for monitoring an identical sample at multiple time points. Thus, we propose a label-free monitoring method for 3D neuronal growth based on refractive index tomograms obtained by optical diffraction tomography. The 3D morphology of the neurons was clearly visualized, and the developmental processes of neurite outgrowth in 3D spaces were analyzed for individual neurons.
Collapse
Affiliation(s)
- Ariel J Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Current Affiliation: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Contributed equally
| | - DongJo Yoon
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
- Contributed equally
| | - SeungYun Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Current Affiliation: Department of Applied Physics, Yale University, New Haven, CT 06520, USA
- Contributed equally
| | - Herve Hugonnet
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - WeiSun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - YoonKey Nam
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
- Tomocube Inc., Daejeon, Republic of Korea
| |
Collapse
|
2
|
Cauzzo J, Jayakumar N, Ahluwalia BS, Ahmad A, Škalko-Basnet N. Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics 2021; 13:pharmaceutics13050590. [PMID: 33919040 PMCID: PMC8142990 DOI: 10.3390/pharmaceutics13050590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system's instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.
Collapse
Affiliation(s)
- Jennifer Cauzzo
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Nikhil Jayakumar
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Balpreet Singh Ahluwalia
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Azeem Ahmad
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence: ; Tel.: +47-776-46-640
| |
Collapse
|
3
|
Narayanaswamy R, Torchilin VP. Targeted Delivery of Combination Therapeutics Using Monoclonal Antibody 2C5-Modified Immunoliposomes for Cancer Therapy. Pharm Res 2021; 38:429-450. [PMID: 33655395 DOI: 10.1007/s11095-021-02986-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop immunoliposomes modified with monoclonal cancer-specific antibody (mAb) 2C5 and co-loaded with a combination of two chemotherapeutics, in order to simultaneously target bulk cancer cells using paclitaxel and cancer stem cells (CSCs) using salinomycin to prevent cancer growth and metastases. METHODS Breast cancer cells (MDA-MB-231 and/or SK-BR-3) were chosen as models for all in vitro testing. Liposomes composed of natural phospholipids co-loaded with salinomycin and paclitaxel were prepared and physically characterized. Immunoliposomes modified with mAb 2C5 coupled to polymeric conjugate were prepared and characterized for specific targeting. Wound healing assay was performed using the combination of free drugs in vitro. In vitro studies on cellular interaction and uptake were followed by holographic imaging to study cell-killing, cell-division and proliferation inhibiting effects of the formulation. Ex-vivo study on hemolysis was investigated to check possible toxicity of the formulation. RESULTS Physical characterization of the liposomes showed stable nanoparticles of consistent and desirable size range (170-220 nm), zeta potential (-13 mV to - 20 mV), polydispersity indices (<0.2) and drug encapsulation efficiencies (~150 μg per ml for salinomycin, ~210 μg/ml for paclitaxel and 1:1 for combination drug loaded liposomes). Combination therapy strongly affected cancer cell proliferation as shown by significant diminishing of artificial gap closure at the wound site on MDA-MB-231 cells in culture using wound healing assay. Quantitation of changes in wound widths showed ~219 μm for drug combination, ~104 μm for only paclitaxel, and ~ 7 μm for only salinomycin treatments. Statistically significant increase in cellular interaction and specific uptake of the targeted drug co-loaded liposomal nanopreparation (p value ≤ 0.05) by MDA-MB-231 and SK-BR-3 cells confirmed the effectiveness of the approach. Holographic imaging using MDA-MB-231 cells produced visible increase in cell-killing, proliferation and division in vitro. Ex-vivo experimentation showed reduced hemolysis correlating with low toxicity in athymic nude mice model. CONCLUSION The results demonstrated the enhanced therapeutic efficacy of a combination of salinomycin and paclitaxel delivered by mAb 2C5-modified liposomal preparation in cancer therapy.
Collapse
Affiliation(s)
- Radhika Narayanaswamy
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway Building 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway Building 360 Huntington Avenue, Boston, Massachusetts, 02115, USA.
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
4
|
Mendes LP, Rostamizadeh K, Gollomp K, Myerson JW, Marcos-Contreras OA, Zamora M, Luther E, Brenner JS, Filipczak N, Li X, Torchilin VP. Monoclonal antibody 2C5 specifically targets neutrophil extracellular traps. MAbs 2020; 12:1850394. [PMID: 33323006 PMCID: PMC7755171 DOI: 10.1080/19420862.2020.1850394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 10/27/2022] Open
Abstract
Neutrophils can release DNA and granular cytoplasmic proteins that form smooth filaments of stacked nucleosomes (NS). These structures, called neutrophil extracellular traps (NETs), are involved in multiple pathological processes, and NET formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity toward intact NS but not to individual NS components, indicating that 2C5 could potentially target NS in NETs. In this study, NETs were generated in vitro using neutrophils and HL-60 cells differentiated into granulocyte-like cells. The specificity of 2C5 toward NETs was evaluated by ELISA, which showed that it binds to NETs with the specificity similar to that for purified nucleohistone substrate. Immunofluorescence showed that 2C5 stains NETs in both static and perfused microfluidic cell cultures, even after NET compaction. Modification of liposomes with 2C5 dramatically enhanced liposome association with NETs. Our results suggest that 2C5 could be used to identify and visualize NETs and serve as a ligand for NET-targeted diagnostics and therapies.
Collapse
Affiliation(s)
- Livia P. Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Pharmaceutical Biomaterials Department, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacob W. Myerson
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
| | - Oscar A. Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
| | - Marco Zamora
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, University of Philadelphia, Philadelphia, PA, USA
- Pulmonary, Allergy, & Critical Care Division, University of Philadelphia, PA, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Zhang Y, Judson RL. Evaluation of holographic imaging cytometer holomonitor M4® motility applications. Cytometry A 2018; 93:1125-1131. [PMID: 30343513 DOI: 10.1002/cyto.a.23635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Digital holographic cytometry (DHC) and other methods of quantitative phase imaging permit extended time-lapse imaging of mammalian cells in the absence of induced cellular toxicity. Manufactured DHC platforms equipped with semi-automated image acquisition, segmentation, and analysis software packages (or modules) for assessing cell behavior are now commercially available. When housed in mammalian cell incubators these cytometers offer the potential to monitor and quantify a range of cellular behaviors without disrupting routine culture. Realization of this potential requires validation against established standards. Two proprietary software modules for assessing cellular motility available using the HoloMonitor M4 DHC platform were evaluated on human melanoma cells lines with known relative motility and metastatic potential. One such software package, the Track Cells module, was run during routine culture. In addition, the Wound Healing module was conducted in parallel with established transwell migration and invasion assays. Each module was evaluated for reproducibility and correlation to established assays. Both software modules reliably recorded increased cellular motility in the metastatic 1205Lu line as compared with the non-metastatic WM793 line. In a direct comparison of the two propriety DHC software modules and two established transwell assays, the relative cell motilities were well correlated. The granularity of data provided by the Track Cells module permitted the additional identification of rare hyper-motile cells in the metastatic population and the distinction of motility from division associated displacement. The two HoloMonitor M4 DHC proprietary software modules for assessing cellular motility yielded reproducible results that were well-correlated with established standards. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yuntian Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, 94143.,Department of Dermatology, University of California San Francisco, San Francisco, California, 94115
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, 94143.,Department of Dermatology, University of California San Francisco, San Francisco, California, 94115
| |
Collapse
|
6
|
Quantitative Phase Imaging for Label-Free Analysis of Cancer Cells—Focus on Digital Holographic Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Lin M, Liu Q, Liu C, Qiao X, Shao C, Su X. Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells. BIOMEDICAL OPTICS EXPRESS 2018; 9:1692-1703. [PMID: 29675311 PMCID: PMC5905915 DOI: 10.1364/boe.9.001692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 05/08/2023]
Abstract
Label-free microfluidic cytometry is of increasing interest for single cell analysis due to its advantages of high-throughput, miniaturization, as well as noninvasive detection. Here we develop a next generation label-free light-sheet microfluidic cytometer for single cell analysis by two-dimensional (2D) light scattering measurements. Our cytometer integrates light sheet illumination with a disposable hydrodynamic focusing unit, which can achieve 3D hydrodynamic focusing of a sample fluid to a diameter of 19 micrometer without microfabrication. This integration also improves the signal to noise ratio (SNR) for the acquisition of 2D light scattering patterns from label-free cells. Particle sizing with submicron resolution is achieved by our light-sheet flow cytometer, where Euclidean distance-based similarity measures are performed. Label-free, automatic classification of senescent and normal cells is achieved with a high accuracy rate by incorporating our light-sheet flow cytometry with support vector machine (SVM) algorithms. Our light-sheet microfluidic cytometry with a microfabrication-free hydrodynamic focusing unit may find wide applications for automatic and label-free clinical diagnosis.
Collapse
Affiliation(s)
- Meiai Lin
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Qiao Liu
- Department of Molecular Medicine and Genetics, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Experimental Teratology (Ministry of Education), Shandong University, Jinan, Shandong, 250012, China
| | - Chao Liu
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xu Qiao
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Changshun Shao
- Department of Molecular Medicine and Genetics, School of Basic Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Experimental Teratology (Ministry of Education), Shandong University, Jinan, Shandong, 250012, China
| | - Xuantao Su
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|