1
|
Suthanthiraraj PPA, Shreve AP, Graves SW. Essential Fluidics for a Flow Cytometer. Curr Protoc 2024; 4:e1124. [PMID: 39401000 PMCID: PMC11483160 DOI: 10.1002/cpz1.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Flow cytometry is an inherently fluidic process that flows particles on a one-by-one basis through a sensing region to discretely measure their optical and physical properties. It can be used to analyze particles ranging in size from nanoparticles to whole organisms (e.g., zebrafish). It has particular value for blood analysis, and thus most instruments are fluidically optimized for particles that are comparable in size to a typical blood cell. The principles of fluid dynamics allow for particles of such size to be precisely positioned in flow as they pass through sensing regions that are tens of microns in length at linear velocities of meters per second. Such fluidic systems enable discrete analysis of cell-sized particles at rates approaching 100 kHz. For larger particles, the principles of fluidics greatly reduce the achievable rates, but such high rates of data acquisition for cell-sized particles allow rapid collection of information on many thousands to millions of cells and provides for research and clinical measurements of both rare and common cell populations with a high degree of statistical confidence. Additionally, flow cytometers can accurately count particles via the use of volumetric sample delivery and can be coupled with high-throughput sampling technologies to greatly increase the rate at which independent samples can be delivered to the system. Due to the combination of high analysis rates, sensitive multiparameter measurements, high-throughput sampling, and accurate counting, flow cytometry analysis is the gold standard for many critical applications in clinical, research, pharmaceutical, and environmental areas. Beyond the power of flow cytometry as an analytical technique, the fluidic pathway can be coupled with a sorting mechanism to collect particles based on desired properties. We present an overview of fluidic systems that enable flow cytometry-based analysis and sorting. We introduce historical approaches, explanations of commonly implemented fluidics, and brief discussions of potential future fluidics where appropriate. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Andrew P. Shreve
- The University of New Mexico, Department of Chemical and Biological Engineering, Albuquerque, NM, US
| | - Steven W. Graves
- The University of New Mexico, Department of Chemical and Biological Engineering, Albuquerque, NM, US
| |
Collapse
|
2
|
Yun HG, Cadierno YA, Kim TW, Muñoz-Barrutia A, Garica-Gonzalez D, Choi S. Computational Hyperspectral Microflow Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400019. [PMID: 38770741 DOI: 10.1002/smll.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Miniaturized flow cytometry has significant potential for portable applications, such as cell-based diagnostics and the monitoring of therapeutic cell manufacturing, however, the performance of current techniques is often limited by the inability to resolve spectrally-overlapping fluorescence labels. Here, the study presents a computational hyperspectral microflow cytometer (CHC) that enables accurate discrimination of spectrally-overlapping fluorophores labeling single cells. CHC employs a dispersive optical element and an optimization algorithm to detect the full fluorescence emission spectrum from flowing cells, with a high spectral resolution of ≈3 nm in the range from 450 to 650 nm. CHC also includes a dedicated microfluidic device that ensures in-focus imaging through viscoelastic sheathless focusing, thereby enhancing the accuracy and reliability of microflow cytometry analysis. The potential of CHC for analyzing T lymphocyte subpopulations and monitoring changes in cell composition during T cell expansion is demonstrated. Overall, CHC represents a major breakthrough in microflow cytometry and can facilitate its use for immune cell monitoring.
Collapse
Affiliation(s)
- Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yoel Alonso Cadierno
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Tae Won Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Arrate Muñoz-Barrutia
- Bioengineering Department, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Daniel Garica-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III De Madrid, Avda. de la Universidad 30, Leganés, Madrid, 28911, Spain
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Wei W, Guan X, Yang Y, Tang B, Guo W, Sun C, Duan X. A Microflow Cytometer Enabled by Monolithic Integration of a Microreflector with an Acoustic Resonator. ACS Sens 2024; 9:1428-1437. [PMID: 38382073 DOI: 10.1021/acssensors.3c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Current microflow cytometers suffer from complicated fluidic integration and low fluorescence collection efficiency, resulting in reduced portability and sensitivity. Herein, we demonstrated a new flow cell design based on an on-chip monolithically integrated microreflector with a bulk acoustic wave resonator (MBAW). It enables simultaneous 3D particle focusing and fluorescence enhancement without using shear flow. Benefited by the on-chip microreflector, the captured fluorescence intensity was 1.8-fold greater than that of the Si substrate and 8.3-fold greater than that of the SiO2 substrate, greatly improving the detection sensitivity. Combined with the contactless acoustic streaming-based focusing, particle sensing with a coefficient of variation as low as 6.1% was achieved. We also demonstrated the difference between live and dead cells and performed a cell cycle assay using the as-developed microflow cytometry. This monolithic integrated MBAW provides a new type of opto-acoustofluidic system and has the potential to be a highly integrated, highly sensitive flow cytometer for applications such as in vitro diagnostics and point of care.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xieruiqi Guan
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bingyi Tang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wenlan Guo
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chen Sun
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Yang IH, Kim N. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry. ULTRASONICS 2024; 138:107267. [PMID: 38367402 DOI: 10.1016/j.ultras.2024.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Ultrasonic standing waves with specific wavelengths generated in the multi-layered micro-resonators were numerically and experimentally analyzed. Using a three-dimensional scanning fluorescence microscope, the acoustophoretic motion of fluorescent microparticles within the micro-resonators was carefully and accurately measured. The manufactured micro-resonators were validated by comparing the location of the acoustic pressure nodal plane and the average energy density curves derived from numerical and experimental results. Results confirmed that the acoustic radiation force of the induced ultrasonic standing waves drives the microparticles vertically within the micro-resonators and their average energy density increases as the sinusoidal voltage applied to the piezoelectric transducer increases. Semi-empirical correlations were developed for the average energy density, based on experimental results for a wide range of the applied voltage amplitudes. The correlations were in good agreement, within less than 20 % of the experimental values measured for both the half-wavelength and quarter-wavelength micro-resonators.
Collapse
Affiliation(s)
- In-Hwan Yang
- Department of Chemical Engineering, Kyonggi University, Suwon-si 16227, Republic of Korea.
| | - Nahae Kim
- Department of Chemical Engineering, Kyonggi University, Suwon-si 16227, Republic of Korea
| |
Collapse
|
5
|
Zhang K, Xiang W, Jia N, Yu M, Liu J, Xie Z. A portable microfluidic device for thermally controlled granular sample manipulation. LAB ON A CHIP 2024; 24:549-560. [PMID: 38168724 DOI: 10.1039/d3lc00888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Effective granular sample manipulation with a portable and visualizable microfluidic device is significant for lots of applications, such as point-of-care testing and cargo delivery. Herein, we report a portable microfluidic device for controlled particle focusing, migration and double-emulsion droplet release via thermal fields. The device mainly contains a microfluidic chip, a microcontroller with a DC voltage control unit, a built-in microscope with a video transmission unit and a smartphone. Five microheaters located at the bottom of the microfluidic chip are used to unevenly heat fluids and then induce thermal buoyancy flow and a thermocapillary effect, and the experiments can be conveniently visualized through a smartphone, which provides convenient sample detection in outdoor environments. To demonstrate the feasibility and multifunctionality of this device, the focusing manipulation of multiple particles is first analyzed by using silica particles and yeast cells as experimental samples. We can directly observe the particle focusing states on the screen of a smartphone, and the particle focusing efficiency can be flexibly tuned by changing the control voltage of the microheater. Then the study focus is transferred to single-particle migration. By changing the voltage combinations applied on four strip microheaters, the single particle can migrate at predetermined trajectory and speed, showing attractiveness for those applications needing sample transportation. Finally, we manipulate the special three-phase flow system of double-emulsion drops in thermal fields. Under the combined effect of the thermocapillary effect and increased instability, the shell of double-emulsion droplets gradually thins and finally breaks, resulting in the release of samples in inner cores. The core release speed can also be flexibly adjusted by changing the control voltage of the microheater. These three experiments successfully demonstrate the effectiveness and multifunctionality of this thermally actuated microfluidic device on granular manipulation. Therefore, this portable microfluidic device will be promising for lots of applications, such as analytical detection, microrobot actuation and cargo release.
Collapse
Affiliation(s)
- Kailiang Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Wei Xiang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Na Jia
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Mingyu Yu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Jiuqing Liu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Zhijie Xie
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| |
Collapse
|
6
|
Libbrecht S, Vankerckhoven A, de Wijs K, Baert T, Thirion G, Vandenbrande K, Van Gorp T, Timmerman D, Coosemans A, Lagae L. A Microfluidics Approach for Ovarian Cancer Immune Monitoring in an Outpatient Setting. Cells 2023; 13:7. [PMID: 38201211 PMCID: PMC10778191 DOI: 10.3390/cells13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Among cancer diagnoses in women, ovarian cancer has the fifth-highest mortality rate. Current treatments are unsatisfactory, and new therapies are highly needed. Immunotherapies show great promise but have not reached their full potential in ovarian cancer patients. Implementation of an immune readout could offer better guidance and development of immunotherapies. However, immune profiling is often performed using a flow cytometer, which is bulky, complex, and expensive. This equipment is centralized and operated by highly trained personnel, making it cumbersome and time-consuming. We aim to develop a disposable microfluidic chip capable of performing an immune readout with the sensitivity needed to guide diagnostic decision making as close as possible to the patient. As a proof of concept of the fluidics module of this concept, acquisition of a limited immune panel based on CD45, CD8, programmed cell death protein 1 (PD1), and a live/dead marker was compared to a conventional flow cytometer (BD FACSymphony). Based on a dataset of peripheral blood mononuclear cells of 15 patients with ovarian cancer across different stages of treatment, we obtained a 99% correlation coefficient for the detection of CD8+PD1+ T cells relative to the total amount of CD45+ white blood cells. Upon further system development comprising further miniaturization of optics, this microfluidics chip could enable immune monitoring in an outpatient setting, facilitating rapid acquisition of data without the need for highly trained staff.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
| | - Ann Vankerckhoven
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Koen de Wijs
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
| | - Thaïs Baert
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Oncology, Gynecological Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Gitte Thirion
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Katja Vandenbrande
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Toon Van Gorp
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Oncology, Gynecological Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Dirk Timmerman
- Department of Gynecology and Obstetrics, UZ Leuven, B-3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, B-3000 Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory for Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (A.V.); (A.C.)
| | - Liesbet Lagae
- Life Science Technologies, imec, B-3001 Leuven, Belgium; (S.L.)
- Physics Department, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
7
|
Su X, Tárnok A. A mini review of recent development of flow cytometry in China. Cytometry A 2022; 101:614-616. [PMID: 35915877 DOI: 10.1002/cyto.a.24671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xuantao Su
- School of Microelectronics, Shandong University, Jinan, Shandong, China
| | - Attila Tárnok
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute Medical Informatics and Statistics, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Tárnok A. Many Shades of Sorting-How to Control Chaos and Erratic Circumstances? Cytometry A 2022; 101:280-281. [PMID: 35253354 DOI: 10.1002/cyto.a.24548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.,Dept. of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.,Dept. for Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Wang C, Ma Y, Pei Z, Song F, Zhong J, Wang Y, Yan X, Dai P, Jiang Y, Qiu J, Shi M, Wu X. Sheathless acoustic based flow cell sorter for enrichment of rare cells. Cytometry A 2021; 101:311-324. [PMID: 34806837 DOI: 10.1002/cyto.a.24521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022]
Abstract
Cell enrichment is a powerful tool in many kinds of cell research, especially in applications with low abundance cell types. In this work, we developed a microfluidic fluorescence activated cell sorting device that was able to perform on-demand, low loss cell detection, and sorting. The chip utilizes three-dimensional acoustic standing waves to position all cells in the same fluid velocity regime without sheath. When the cells pass through a laser interrogation region, the scattering and fluorescent signals are detected, translated and transported to software. The target cells are then identified by gating on the plots. Short bursts of standing acoustic waves are triggered by order from PC to sort target cells within predefined gating region. For very low abundance and rare labeled lymphocytes mixed with high concentration unlabeled white blood cells (WBCs), (1-100 labeled lymphocytes are diluted in 106 WBCs in 1 ml volume fluid), the device is able to remove more than 98% WBCs and recover labeled lymphocytes with efficiency of 80%. We further demonstrated that this device worked with real clinical samples by successfully isolating fetal nucleated red blood cells (FNRBCs) in the blood samples from pregnant women with male fetus. The obtained cells were sequenced and the expressions of (sex determining region Y) SRY genes were tested to determine fetal cell proportion. In genetic analysis, the proportion of fetal cells in the final picked sample is up to 40.64%. With this ability, the device proposed could be valuable for biomedical applications involving fetal cells, circulating tumor cells, and stem cells.
Collapse
Affiliation(s)
- Ce Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhiguo Pei
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xintao Yan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Yi Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianping Qiu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Mengdie Shi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiaodong Wu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|