1
|
Liu K, Mo M, Yu G, Yu J, Song SM, Cheng S, Li HM, Meng XL, Zeng XP, Xu GC, Luo H, Xu BX. Discovery of novel 2-(trifluoromethyl)quinolin-4-amine derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. Bioorg Chem 2023; 139:106727. [PMID: 37451147 DOI: 10.1016/j.bioorg.2023.106727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this work, a series of 2-(trifluoromethyl)quinolin-4-amine derivatives were designed and synthesized through structural optimization strategy as a microtubule-targeted agents (MTAs) and their cytotoxicity activity against PC3, K562 and HeLa cell lines were evaluated. The half maximal inhibitory concentration (IC50) of 5e, 5f, and 5o suggested that their potency of anti-proliferative activities against HeLa cell lines were better than the combretastatin A-4. Compound 5e showed the higher anti-proliferative activity against PC3, K562 and HeLa in vitro with IC50 values of 0.49 µM, 0.08 µM and 0.01 µM, respectively. Further mechanism study indicated that the representative compound 5e was new class of tubulin inhibitors by EBI competition assay and tubulin polymerization assays, it is similar to colchicine. Immunofluorescence staining revealed that compound 5e apparently disrupted tubulin network in HeLa cells, and compound 5e arrested HeLa cells at the G2/M phase and induced cells apoptosis in a dose-dependent manner. Molecular docking results illustrated that the hydrogen bonds of represented compounds reinforced the interactions in the pocket of colchicine binding site. Preliminary results suggested that 5e deserves further research as a promising tubulin inhibitor for the development of anticancer agents.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Min Mo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Shan-Min Song
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Hui-Min Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xue-Ling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xiao-Ping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Guang-Can Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| |
Collapse
|
2
|
Danova A, Nguyen DV, Toyoda R, Mahalapbutr P, Rungrotmongkol T, Wonganan P, Chavasiri W. 3′,4′,5′-Trimethoxy- and 3,4-Dimethoxychalcones Targeting A549 Cells: Synthesis, Cytotoxic Activity, and Molecular Docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
González M, Ovejero-Sánchez M, Vicente-Blázquez A, Álvarez R, Herrero AB, Medarde M, González-Sarmiento R, Peláez R. Microtubule Destabilizing Sulfonamides as an Alternative to Taxane-Based Chemotherapy. Int J Mol Sci 2021; 22:1907. [PMID: 33673002 PMCID: PMC7918738 DOI: 10.3390/ijms22041907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Pan-Gyn cancers entail 1 in 5 cancer cases worldwide, breast cancer being the most commonly diagnosed and responsible for most cancer deaths in women. The high incidence and mortality of these malignancies, together with the handicaps of taxanes-first-line treatments-turn the development of alternative therapeutics into an urgency. Taxanes exhibit low water solubility that require formulations that involve side effects. These drugs are often associated with dose-limiting toxicities and with the appearance of multi-drug resistance (MDR). Here, we propose targeting tubulin with compounds directed to the colchicine site, as their smaller size offer pharmacokinetic advantages and make them less prone to MDR efflux. We have prepared 52 new Microtubule Destabilizing Sulfonamides (MDS) that mostly avoid MDR-mediated resistance and with improved aqueous solubility. The most potent compounds, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methylaminobenzenesulfonamide 38, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 42, and N-benzyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 45 show nanomolar antiproliferative potencies against ovarian, breast, and cervix carcinoma cells, similar or even better than paclitaxel. Compounds behave as tubulin-binding agents, causing an evident disruption of the microtubule network, in vitro Tubulin Polymerization Inhibition (TPI), and mitotic catastrophe followed by apoptosis. Our results suggest that these novel MDS may be promising alternatives to taxane-based chemotherapy in chemoresistant Pan-Gyn cancers.
Collapse
Affiliation(s)
- Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (M.G.); (A.V.-B.); (R.Á.); (M.M.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - María Ovejero-Sánchez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Laboratorio de Diagnóstico en Cáncer Hereditario, Laboratorio 14, Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | - Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (M.G.); (A.V.-B.); (R.Á.); (M.M.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (M.G.); (A.V.-B.); (R.Á.); (M.M.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana B. Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Laboratorio de Diagnóstico en Cáncer Hereditario, Laboratorio 14, Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (M.G.); (A.V.-B.); (R.Á.); (M.M.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Laboratorio de Diagnóstico en Cáncer Hereditario, Laboratorio 14, Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC, 37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; (M.G.); (A.V.-B.); (R.Á.); (M.M.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain; (M.O.-S.); (A.B.H.)
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Kode J, Kovvuri J, Nagaraju B, Jadhav S, Barkume M, Sen S, Kasinathan NK, Chaudhari P, Mohanty BS, Gour J, Sigalapalli DK, Ganesh Kumar C, Pradhan T, Banerjee M, Kamal A. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2020; 105:104447. [PMID: 33207276 DOI: 10.1016/j.bioorg.2020.104447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
A library of new phenstatin based indole linked chalcone compounds (9a-z and 9aa-ad) were designed and synthesized. Of these, compound 9a with 1-methyl, 2- and 3-methoxy substituents in the aromatic ring was efficacious against the human oral cancer cell line SCC-29B, spheroids, and in a mouse xenograft model of oral cancer AW13516. Compound 9a exhibited anti-cancer activity through disrupting cellular integrity and affecting glucose metabolism-which is a hallmark of cancer. The cellular architecture was affected by inhibition of tubulin polymerization as observed by an immunofluorescence assay on 9a-treated SCC-29B cells. An in vitro tubulin polymerization kinetics assay provided evidence of direct interaction of 9a with tubulin. This physical interaction between tubulin and compound 9a was further confirmed by Surface Plasmon Resonance (SPR) analysis. Molecular docking experiments and validations revealed that compound 9a interacts and binds at the colchicine binding site of tubulin and at active sites of key enzymes in the glucose metabolism pathway. Based on in silico modeling, biophysical interactions, and pre-clinical observations, 9a consisting of phenstatin based indole-chalcone scaffolds, can be considered as an attractive tubulin polymerization inhibitor candidate for developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jyoti Kode
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| | - Jeshma Kovvuri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India; Department of Humanities and Sciences, Vardhaman College of Engineering (Autonomous), Shamshabad, Hyderabad, Telangana 501218, India.
| | - Burri Nagaraju
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| | - Shailesh Jadhav
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Subrata Sen
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Nirmal Kumar Kasinathan
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Pradip Chaudhari
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400085, India; Small Animal Imaging Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Bhabani Shankar Mohanty
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Jitendra Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - C Ganesh Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| | - Trupti Pradhan
- Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Manisha Banerjee
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400085, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | - Ahmed Kamal
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Gold M, Köhler L, Lanzloth C, Andronache I, Anant S, Dandawate P, Biersack B, Schobert R. Synthesis and bioevaluation of new vascular-targeting and anti-angiogenic thieno[2,3-d]pyrimidin-4(3H)-ones. Eur J Med Chem 2020; 189:112060. [PMID: 31958738 DOI: 10.1016/j.ejmech.2020.112060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/08/2023]
Abstract
A series of forty-six 5,6-annulated 2-arylthieno [2,3-d]pyrimidin-4(3H)-ones were prepared as potentially pleiotropic anticancer drugs with variance in the tubulin-binding trimethoxyphenyl motif at C-2 of a thieno [2,3-d]pyrimidine fragment, enlarged by additional rings of different size and substitution. By assessing their cytotoxicity against various cancer cells, their influence on the polymerization of neat tubulin and the dynamics of microtubule and F-actin cytoskeletons, and their vascular-disrupting and anti-angiogenic activities in vitro and in vivo, structure-activity relations were identified which suggest the 3-iodo-4,5-dimethoxyphenyl substituted thienopyrimidine 2e as a promising anticancer drug candidate for further research. 2020 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Madeleine Gold
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Leonhard Köhler
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Clarissa Lanzloth
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Ion Andronache
- Research Center for Integrated Analysis and Territorial Management, University of Bucharest, 4-12, Regina Elisabeta Avenue, Bucharest, 3rd District, 030018, Romania
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
6
|
Niu H, Strecker TE, Gerberich JL, Campbell JW, Saha D, Mondal D, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Structure Guided Design, Synthesis, and Biological Evaluation of Novel Benzosuberene Analogues as Inhibitors of Tubulin Polymerization. J Med Chem 2019; 62:5594-5615. [PMID: 31059248 DOI: 10.1021/acs.jmedchem.9b00551] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A promising design paradigm for small-molecule inhibitors of tubulin polymerization that bind to the colchicine site draws structural inspiration from the natural products colchicine and combretastatin A-4 (CA4). Our previous studies with benzocycloalkenyl and heteroaromatic ring systems yielded promising inhibitors with dihydronaphthalene and benzosuberene analogues featuring phenolic (KGP03 and KGP18) and aniline (KGP05 and KGP156) congeners emerging as lead agents. These molecules demonstrated dual mechanism of action, functioning both as potent vascular disrupting agents (VDAs) and as highly cytotoxic anticancer agents. A further series of analogues was designed to extend functional group diversity and investigate regioisomeric tolerance. Ten new molecules were effective inhibitors of tubulin polymerization (IC50 < 5 μM) with seven of these exhibiting highly potent activity comparable to CA4, KGP18, and KGP03. For one of the most effective agents, dose-dependent vascular shutdown was demonstrated using dynamic bioluminescence imaging in a human prostate tumor xenograft growing in a rat.
Collapse
Affiliation(s)
- Haichan Niu
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Jeni L Gerberich
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - James W Campbell
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Debabrata Saha
- Department of Radiology Oncology, Division of Molecular Radiation Biology , The University of Texas Southwestern Medical Center , 2201 Inwood Road , Dallas , Texas 75390-9187 , United States
| | - Deboprosad Mondal
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis , National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health , Frederick , Maryland 21702 , United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States.,Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , California 94080 , United States
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| |
Collapse
|
7
|
Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur J Med Chem 2017; 144:797-816. [PMID: 29291446 DOI: 10.1016/j.ejmech.2017.11.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/20/2022]
Abstract
A series of novel combretastatin A-4 (CA-4) thio derivatives containing different molecular cores, namely α-phenylcinnamic acids (core 1), (Z)-stilbenes (core 2), 4,5-disubstituted oxazoles (core 3), and 4,5-disubstituted N-methylimidazoles (core 4), as cis-restricted analogues were designed and synthesized. They were selected with the use of a parallel virtual screening protocol including the generation of a virtual combinatorial library based on an elaborated synthesis protocol of CA-4 analogues. The selected compounds were evaluated for antiproliferative activity against a panel of six human cancer cell lines (A431, HeLa, MCF7, MDA-MB-231, A549 and SKOV) and two human non-cancer cell lines (HaCaT and CCD39Lu). Moreover, the effect of the test compounds on the inhibition of tubulin polymerization in vitro was estimated. In the series studied here, oxazole-bridged analogues exhibited the most potent antiproliferative activity. Compounds 23a, 23e, and 23i efficiently inhibited tubulin polymerization with IC50 values of 0.86, 1.05, and 0.85 μM, respectively. Thio derivative 23i, when compared to its oxygen analogue 23j, showed a 5-fold higher inhibitory impact on tubulin polymerization. Compounds 23e and 23i, which showed both best cytotoxic and antitubulin activity, were further studied in terms of their effect on cell cycle distribution and proapoptotic activity. Compound 23e induced a statistically significant block of the cell cycle at the G2/M phase in A431, HaCaT, HeLa, MCF-7, MDA-MB-231, and SKOV-3 cells to an extent comparable to that observed in CA-4. In HeLa and SKOV-3 cells incubated with 23i, a concentration-dependent block of the G2/M phase was observed. The proapoptotic effect of 23e and 23i in A431, HaCaT, MCF-7, MDA-MB-231, and SKOV-3 was demonstrated with ELISA assay and double staining with Annexin V-FITC/PI. The results indicated that compound 23e and 23i may serve as novel lead compounds in research on more effective anticancer agents.
Collapse
|
8
|
Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300. Bioorg Med Chem 2017; 25:3623-3630. [DOI: 10.1016/j.bmc.2017.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
|
9
|
Kulshrestha A, Katara GK, Ibrahim SA, Patil R, Patil SA, Beaman KD. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget 2017; 8:67017-67028. [PMID: 28978013 PMCID: PMC5620153 DOI: 10.18632/oncotarget.17549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
In ovarian cancer (OVCA), treatment failure due to chemo-resistance is a serious challenge. It is therefore critical to identify new therapies that are effective against resistant tumors and have reduced side effects. We recently identified 4-H-chromenes as tubulin depolymerizing agents that bind to colchicine site of beta-tubulin. Here, we screened a chemical library of substituted 4-H-chromenes and identified SP-6-27 to exhibit most potent anti-proliferative activity towards a panel of human cisplatin sensitive and resistant OVCA cell lines with 50% inhibitory concentration (IC50; mean ± SD) ranging from 0.10 ± 0.01 to 0.84 ± 0.20 μM. SP-6-27 exhibited minimum cytotoxicity to normal ovarian epithelia. A pronounced decrease in microtubule density as well as G2/M cell cycle arrest was observed in SP-6-27 treated cisplatin sensitive/resistant OVCA cells. The molecular mechanism of SP-6-27 induced cell death revealed modulation in cell-cycle regulation by upregulation of growth arrest and DNA damage inducible alpha transcripts (GADD45). An enhanced intrinsic apoptosis was observed in OVCA cells through upregulation of Bax, Apaf-1, caspase-6, -9, and caspase-3. In vitro wound healing assay revealed reduced OVCA cell migration upon SP-6-27 treatment. Additionally, SP-6-27 and cisplatin combinatorial treatment showed enhanced cytotoxicity in chemo-sensitive/resistant OVCA cells. Besides effect on cancer cells, SP-6-27 further restrained angiogenesis by inhibiting capillary tube formation by human umbilical vein endothelial cells (HUVEC). Together, these findings show that the chromene analog SP-6-27 is a novel chemotherapeutic agent that offers important advantages for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Renukadevi Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| |
Collapse
|
10
|
Olazaran FE, Rivera G, Pérez-Vázquez AM, Morales-Reyes CM, Segura-Cabrera A, Balderas-Rentería I. Biological Evaluation in Vitro and in Silico of Azetidin-2-one Derivatives as Potential Anticancer Agents. ACS Med Chem Lett 2017; 8:32-37. [PMID: 28105271 DOI: 10.1021/acsmedchemlett.6b00313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022] Open
Abstract
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [N-(p-methoxy-phenyl)-2-(p-methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site.
Collapse
Affiliation(s)
- Fabián E. Olazaran
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias
Químicas, Monterrey, México
| | - Gildardo Rivera
- Centro
de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | | | | | - Aldo Segura-Cabrera
- Red
de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa
Enríquez, México
| | | |
Collapse
|
11
|
Herdman CA, Strecker TE, Tanpure RP, Chen Z, Winters A, Gerberich J, Liu L, Hamel E, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization. MEDCHEMCOMM 2016; 7:2418-2427. [PMID: 28217276 PMCID: PMC5308454 DOI: 10.1039/c6md00459h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and CA4 led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KGP18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administered as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC50 < 5 μM), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC50 = 11 μM) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7-luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control.
Collapse
Affiliation(s)
- Christine A Herdman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajendra P Tanpure
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Zhi Chen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Alex Winters
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Li Liu
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States; Mateon Therapeutics, Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
12
|
Exploring the size adaptability of the B ring binding zone of the colchicine site of tubulin with para-nitrogen substituted isocombretastatins. Eur J Med Chem 2015; 100:210-22. [DOI: 10.1016/j.ejmech.2015.05.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/19/2015] [Accepted: 05/31/2015] [Indexed: 01/05/2023]
|
13
|
Boscá F, Sastre G, Andreu JM, Jornet D, Tormos R, Miranda MA. Drug–tubulin interactions interrogated by transient absorption spectroscopy. RSC Adv 2015. [DOI: 10.1039/c5ra05636e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The triplet excited state of complexed COL and MTC gives well defined transient spectra undetectable in the absence of TU.
Collapse
Affiliation(s)
- F. Boscá
- Departamento de Química/Instituto Universitario Mixto de Tecnología Química UPV-CSIC
- E-46022 Valencia
- Spain
| | - G. Sastre
- Departamento de Química/Instituto Universitario Mixto de Tecnología Química UPV-CSIC
- E-46022 Valencia
- Spain
| | - J. M. Andreu
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - D. Jornet
- Departamento de Química/Instituto Universitario Mixto de Tecnología Química UPV-CSIC
- E-46022 Valencia
- Spain
| | - R. Tormos
- Departamento de Química/Instituto Universitario Mixto de Tecnología Química UPV-CSIC
- E-46022 Valencia
- Spain
| | - M. A. Miranda
- Departamento de Química/Instituto Universitario Mixto de Tecnología Química UPV-CSIC
- E-46022 Valencia
- Spain
| |
Collapse
|
14
|
Ghinet A, Abuhaie CM, Gautret P, Rigo B, Dubois J, Farce A, Belei D, Bîcu E. Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. Eur J Med Chem 2014; 89:115-27. [PMID: 25462232 DOI: 10.1016/j.ejmech.2014.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
With the aim of investigating new analogues of phenstatin with an indolizin-3-yl unit, in particular as the B-ring, three new series of compounds (6-8, 9-34 and 54) were synthesized and tested for interactions with tubulin polymerization and evaluated for cytotoxicity on an NCI-60 human cancer cell lines panel. The replacement of the 3'-hydroxy-4'-methoxyphenyl B-ring of phenstatin with substituted indolizine unit results in the conservation of both antitubulin and cytotoxic effect. Indolizines 9 and 17 were the most effective in the present study and showed the highest antiproliferative effect on melanoma cell lines MDA-MB-435 (GI50 = 30 nM) and could serve as new lead compounds for the development of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Alina Ghinet
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania; Univ Lille Nord de France, F-59000 Lille, France; UCLille, EA GRIIOT (4481), Laboratoire de pharmacochimie, HEI, 13 rue de Toul, F-59046 Lille, France
| | - Cristina-Maria Abuhaie
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania
| | - Philippe Gautret
- Univ Lille Nord de France, F-59000 Lille, France; UCLille, EA GRIIOT (4481), Laboratoire de pharmacochimie, HEI, 13 rue de Toul, F-59046 Lille, France
| | - Benoît Rigo
- Univ Lille Nord de France, F-59000 Lille, France; UCLille, EA GRIIOT (4481), Laboratoire de pharmacochimie, HEI, 13 rue de Toul, F-59046 Lille, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif, Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | - Amaury Farce
- Univ Lille Nord de France, F-59000 Lille, France; Institut de Chimie Pharmaceutique Albert Lespagnol, EA GRIIOT (4481), IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Dalila Belei
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania
| | - Elena Bîcu
- Department of Organic Chemistry, Faculty of Chemistry, 'Al. I. Cuza' University of Iasi, B-dul Carol I, Nr. 11, Corp A, 700506 Iasi, Romania.
| |
Collapse
|
15
|
Ma Y, Fang S, Li H, Han C, Lu Y, Zhao Y, Liu Y, Zhao C. Biological evaluation and molecular modelling study of podophyllotoxin derivatives as potent inhibitors of tubulin polymerization. Chem Biol Drug Des 2014; 82:12-21. [PMID: 23786349 DOI: 10.1111/cbdd.12130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 01/16/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
Microtubules are considered as important targets of anticancer therapy. Podophyllotoxin and its structural derivative are major microtubule-interfering agents with potent anticancer activity. In this study, we reported the anticancer effects of 10 representative podophyllotoxin derivatives on a panel of four human cancer cell lines. Deoxypodophyllotoxin (6b) and β-apopicropodophyllotoxin (6g) elicited strong antiproliferative effects (IC₅₀) at a range of 0.0073-0.14 μM. Direct tubulin depolymerization assay in vitro was also performed. Results showed that that the two compounds can inhibit microtubule polymerization. Experimental measurements were also supported by molecular dynamic simulations, which showed that the two active compounds formed interactions with the colchicine-binding site of the tubulin protein. Our results helped us understand the nature of tubulin binding and determine the core design of a new series of potent inhibitors of tubulin polymerization.
Collapse
Affiliation(s)
- Yaqiong Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Macdonough MT, Strecker TE, Hamel E, Hall JJ, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(3'-hydroxy-4'-methoxyphenyl)-3-(3″,4″,5″-trimethoxybenzoyl)-6-methoxyindole (OXi8006). Bioorg Med Chem 2013; 21:6831-43. [PMID: 23993969 DOI: 10.1016/j.bmc.2013.07.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/03/2013] [Accepted: 07/11/2013] [Indexed: 11/30/2022]
Abstract
The discovery of a 2-aryl-3-aroyl indole-based small-molecule inhibitor of tubulin assembly (referred to as OXi8006) inspired the design, synthesis, and biological evaluation of a series of diversely functionalized analogues. In the majority of examples, the pendant 2-aryl ring contained a 3-hydroxy-4-methoxy substitution pattern, and the fused aryl ring featured a 6-methoxy group. Most of the variability was in the 3-aroyl moiety, which was modified to incorporate methoxy (33-36), nitro (25-27), halogen (28-29), trifluoromethyl (30), or trifluoromethoxy (31-32) functionalities. In two analogues (34 and 36), the methoxy substitution pattern in the fused aryl ring varied, while in another derivative (35) the phenolic moiety was translocated from the pendant 2-aryl ring to position-7 of the fused aryl ring. Each of the compounds were evaluated for their cytotoxicity (in vitro) against the SK-OV-3 (ovarian), NCI-H460 (lung), and DU-145 (prostate) human cancer cell lines and for their ability to inhibit tubulin assembly. Four of the compounds (30, 31, 35, 36) proved to be potent inhibitors of tubulin assembly (IC50 <5μM), and three of these compounds (31, 35, 36) were strongly cytotoxic against the three cancer cell lines. The most active compound (36) in this series, which incorporated a methoxy group at position-7, was comparable in terms of inhibition of tubulin assembly and cytotoxicity to the lead compound OXi8006.
Collapse
Affiliation(s)
- Matthew T Macdonough
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents. Future Med Chem 2013; 4:2085-115. [PMID: 23157240 DOI: 10.4155/fmc.12.141] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Agents that interfere with tubulin function have a broad anti-tumor spectrum and they represent one of the most significant classes of anticancer agents. In the past few years, several small synthetic molecules that have an indole nucleus as a core structure have been identified as tubulin inhibitors. Among these, several aroylindoles, arylthioindoles, diarylindoles and indolylglyoxyamides have shown good inhibition towards the tubulin polymerization. This article reviews the synthesis, biological activities and SARs of these main classes of indoles. Brief mention has also been made about the fused indole analogs as tubulin inhibitors.
Collapse
|
18
|
Kandeel MM, Kamal AM, Abdelall EKA, Elshemy HAH. Synthesis of novel chromene derivatives of expected antitumor activity. Eur J Med Chem 2012; 59:183-93. [PMID: 23220647 DOI: 10.1016/j.ejmech.2012.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 11/19/2022]
Abstract
Inhibition of tubulin polymerization is one of the important tactics in cancer therapy. Since 4-aryl-4H-chromene derivatives are found to be microtubule-binding agents via interfering with tubulin polymerization so we decide to concentrate our exploration efforts on the combination of this nucleus with 5-, 6-, and/or 7-memebered heterocyclic moieties in a novel series of compounds to explore the effect that might result from this combination. Ten novel compounds were selected for anticancer screening assay against MCF-7 breast cancer cell line in comparison to colchicine as positive control and most of them showed excellent activity.
Collapse
Affiliation(s)
- Manal M Kandeel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11561 Egypt
| | | | | | | |
Collapse
|
19
|
Ghatak C, Rao VG, Pramanik R, Sarkar S, Sarkar N. Nanocavity Effect On Photophysical Properties Of Colchicine: A Proof by Circular Dichroism Study and Picosecond Time-Resolved Analysis in Various Reverse Micellar Assemblies. J Phys Chem B 2011; 115:6644-52. [DOI: 10.1021/jp201848c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chiranjib Ghatak
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Rajib Pramanik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Souravi Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
20
|
Abstract
Vascular disrupting agents (VDAs) are an exciting new group of targeted therapies under active clinical research in many solid tumors, in particular, lung cancer. Small-molecule VDAs are the focus of current clinical research, and consist of the flavonoids and the tubulin-binding agents. Toxicities of single-agent VDAs are characterized by acute, transient, and generally noncumulative side effects including headaches, nausea and vomiting, tumor pain, hypertension, and tachycardia. Flavonoid agents can also cause infusion site pain, visual disturbances, electrocardiac abnormalities, and symptoms consistent with an acute release of serotonin. Tubulin-binding agents can result in cardiac ischemia, abdominal pain, neuromotor abnormalities and cerebellar ataxia, and acute hemodynamic changes. Clinical trials investigating VDAs in combination with traditional chemotherapy have also shown the potential for significant pharmacologic and adverse toxicity interactions. Further research will need to focus on pharmacokinetic and pharmacodynamic parameters to optimize dosing schedules, determine effective combinations with chemotherapy, and minimize toxicities associated with VDAs.
Collapse
Affiliation(s)
- Arman Hasani
- Department of Medical Oncology and Hematology, University Health Network, Princess Margaret Hospital and The University of Toronto, 610 University Ave., Toronto, ON, Canada M5G 2M9
| | | |
Collapse
|
21
|
Mason RP, Zhao D, Liu L, Trawick ML, Pinney KG. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr Biol (Camb) 2011; 3:375-87. [PMID: 21321746 PMCID: PMC3071431 DOI: 10.1039/c0ib00135j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment provides a rich source of potential targets for selective therapeutic intervention with properly designed anticancer agents. Significant physiological differences exist between the microvessels that nourish tumors and those that supply healthy tissue. Selective drug-mediated damage of these tortuous and chaotic microvessels starves a tumor of necessary nutrients and oxygen and eventually leads to massive tumor necrosis. Vascular targeting strategies in oncology are divided into two separate groups: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs). The mechanisms of action between these two classes of compounds are profoundly distinct. The AIAs inhibit the actual formation of new vessels, while the VDAs damage and/or destroy existing tumor vasculature. One subset of small-molecule VDAs functions by inhibiting the assembly of tubulin into microtubules, thus causing morphology changes to the endothelial cells lining the tumor vasculature, triggered by a cascade of cell signaling events. Ultimately this results in catastrophic damage to the vessels feeding the tumor. The rapid emergence and subsequent development of the VDA field over the past decade has led to the establishment of a synergistic combination of preclinical state-of-the-art tumor imaging and biological evaluation strategies that are often indicative of future clinical efficacy for a given VDA. This review focuses on an integration of the appropriate biochemical and biological tools necessary to assess (preclinically) new small-molecule, tubulin active VDAs for their potential to be clinically effective anticancer agents.
Collapse
Affiliation(s)
- Ralph P. Mason
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Dawen Zhao
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Li Liu
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| |
Collapse
|
22
|
Shetty RS, Lee Y, Liu B, Husain A, Joseph RW, Lu Y, Nelson D, Mihelcic J, Chao W, Moffett KK, Schumacher A, Flubacher D, Stojanovic A, Bukhtiyarova M, Williams K, Lee KJ, Ochman AR, Saporito MS, Moore WR, Flynn GA, Dorsey BD, Springman EB, Fujimoto T, Kelly MJ. Synthesis and pharmacological evaluation of N-(3-(1H-indol-4-yl)-5-(2-methoxyisonicotinoyl)phenyl)methanesulfonamide (LP-261), a potent antimitotic agent. J Med Chem 2010; 54:179-200. [PMID: 21126027 DOI: 10.1021/jm100659v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and optimization of a series of orally bioavailable 1-(1H-indol-4-yl)-3,5-disubstituted benzene analogues as antimitotic agents are described. A functionalized dibromobenzene intermediate was used as a key scaffold, which when modified by sequential Suzuki coupling and Buchwald-Hartwig amination provided a flexible entry to 1,3,5-trisubstituted phenyl compounds. A 1H-indol-4-yl moiety at the 1-position was determined to be a critical feature for optimal potency. The compounds have been shown to induce cell cycle arrest at the G2/M phase and demonstrate efficacy in both cell viability and cell proliferation assays. The primary site of action for these agents is revealed by their colchicine competitive inhibition of tubulin polymerization, and a computational model has been developed for the association of these compounds to tubulin. An optimized lead LP-261 significantly inhibits growth of a human non-small-cell lung tumor (NCI-H522) in a mouse xenograft model.
Collapse
Affiliation(s)
- Rupa S Shetty
- Ansaris, Four Valley Square, Blue Bell, Pennsylvania 19401, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Colombel V, Joncour A, Thoret S, Dubois J, Bignon J, Wdzieczak-Bakala J, Baudoin O. Synthesis of antimicrotubule dibenzoxepines. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Pettit GR, Minardi MD, Hogan F, Price PM. An efficient synthetic strategy for obtaining 4-methoxy carbon isotope labeled combretastatin A-4 phosphate and other Z-combretastatins. JOURNAL OF NATURAL PRODUCTS 2010; 73:399-403. [PMID: 20028026 PMCID: PMC2862752 DOI: 10.1021/np9004486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human cancer and other clinical trials under development employing combretastatin A-4 phosphate (1b, CA4P) should benefit from the availability of a [(11)C]-labeled derivative for positron emission tomography (PET). In order to obtain a suitable precursor for addition of a [(11)C]methyl group at the penultimate step, several new synthetic pathways to CA4P were evaluated. Geometrical isomerization (Z to E) proved to be a challenge, but it was overcome by development of a new CA4P synthesis suitable for 4-methoxy isotope labeling.
Collapse
Affiliation(s)
- George R Pettit
- Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA.
| | | | | | | |
Collapse
|
25
|
Colchicine–protein interactions revealed by transient absorption spectroscopy after in situ photoisomerization to lumicolchicines. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Colombel V, Baudoin O. Synthetic Approaches to Amino Analogues of N-Acetylcolchinol. J Org Chem 2009; 74:4329-35. [DOI: 10.1021/jo900632a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Virginie Colombel
- Université Lyon 1, CNRS UMR5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Olivier Baudoin
- Université Lyon 1, CNRS UMR5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|