1
|
López-García P, Tejero-Ojeda MM, Vaquero ME, Carrión-Vázquez M. Current amyloid inhibitors: Therapeutic applications and nanomaterial-based innovations. Prog Neurobiol 2025; 247:102734. [PMID: 40024279 DOI: 10.1016/j.pneurobio.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Amyloid proteins have long been in the spotlight for being involved in many degenerative diseases including Alzheimer´s, Parkinson´s or type 2 diabetes, which currently cannot be prevented and for which there is no effective treatment or cure. Here we provide a comprehensive review of inhibitors that act directly on the amyloidogenic pathway (at the monomer, oligomer or fibril level) of key pathological amyloids, focusing on the most representative amyloid-related diseases. We discuss the latest advances in preclinical and clinical trials, focusing on cutting-edge developments, particularly on nanomaterials-based inhibitors, which offer unprecedented opportunities to address the complexity of protein misfolding disorders and are revolutionizing the landscape of anti-amyloid therapeutics. Notably, nanomaterials are impacting critical areas such as bioavailability, penetrability and functionality of compounds currently used in biomedicine, paving the way for more specific therapeutic solutions tailored to various amyloid-related diseases. Finally, we highlight the window of opportunity opened by comparative analysis with so-called functional amyloids for the development of innovative therapeutic approaches for these devastating diseases.
Collapse
|
2
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Preetham HD, Muddegowda U, Sharath Kumar KS, Rangappa S, Rangappa KS. Identification of β-aminopyrrolidine containing peptides as β-amyloid aggregation inhibitors for Alzheimer's disease. J Pept Sci 2022; 28:e3386. [PMID: 34981876 DOI: 10.1002/psc.3386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is caused by a series of events initiated by the production and aggregation of the amyloid β-protein (Aβ). In the early stages of the disease, Aβ is released in a soluble form then progressively forms oligomeric, multimeric, and fibrillar aggregates, triggering neurodegeneration. Thus, development of inhibitors that initiate reverse Aβ aggregation is thought to be a logical approach in treating AD. In this context, we developed β-aminopyrrolidine containing 12 mer peptide 3 which is very potent in inhibiting the Aβ aggregation and also reducing Aβ(42)-induced cytotoxicity.
Collapse
Affiliation(s)
- Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Umashankara Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University, Mysuru, Karnataka, India
| | | | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya, Karnataka, India
| | | |
Collapse
|
4
|
Yadav KK, Ojha M, Pariary R, Arakha M, Bhunia A, Jha S. Zinc oxide nanoparticle interface moderation with tyrosine and tryptophan reverses the pro-amyloidogenic property of the particle. Biochimie 2021; 193:64-77. [PMID: 34699915 DOI: 10.1016/j.biochi.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Zinc oxide nanoparticle with negative surface potential (ZnONP) enhances bovine insulin fibrillation. Here, we are exploring ZnONP with positive surface potential (ZnONPUnc) and surface functionalized with tyrosine and tryptophan amino acids to observe the effects of surface potential and surface functional groups on the fibrillation. ZnONPUnc, despite of inversed surface potential, enhances the insulin fibrillation with increase in the interface concentration at physiological pH. Whereas, the interface moderation with the amino acids mitigates the surface-mediated insulin fibrillation propensity. Additionally, the study indicates that the change in interfacial functional groups at ZnONPUnc significantly reverses the interface-mediated destabilization of insulin conformation. The functional groups from the amino acids, like CO, N-H and aromatic functional groups, are anticipated to further stabilize the insulin conformation by forming hydrogen bond and van der Waals interactions with the key amyloidogenic sequences of insulin, A13-A20 from A-chain and B9-B20 from B-chain. Hence, the altered interaction profile, with change in interfacial functional groups, mitigates the interface-mediated insulin fibrillation and the ZnONPUnc-/fibril-mediated cytotoxicity.
Collapse
Affiliation(s)
- Kanti Kusum Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India; Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Monalisha Ojha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan, Bhubaneswar, Odisha, 751003, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
5
|
Wang P, Zhao J, Hossaini Nasr S, Otieno SA, Zhang F, Qiang W, Linhardt RJ, Huang X. Probing Amyloid β Interactions with Synthetic Heparan Sulfate Oligosaccharides. ACS Chem Biol 2021; 16:1894-1899. [PMID: 33592143 DOI: 10.1021/acschembio.0c00904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparan sulfate (HS) can play important roles in the biology and pathology of amyloid β (Aβ), a hallmark of Alzheimer's disease. To better understand the structure-activity relationship of HS/Aβ interactions, synthetic HS oligosaccharides ranging from tetrasaccharides to decasaccharides have been utilized to study Aβ interactions. Surface plasmon resonance experiments showed that the highly sulfated HS tetrasaccharides bearing full 2-O, 6-O, and N-sulfations exhibited the strongest binding with Aβ among the tetrasaccharides investigated. Elongating the glycan length to hexa- and deca-saccharides significantly enhanced Aβ affinity compared to the corresponding HS tetrasaccharide. Solid state NMR studies of the complexes of Aβ with HS hexa- and deca-saccharides showed most significant chemical shift perturbation in the C-terminus residues of Aβ. The strong binding HS oligosaccharides could reduce the cellular toxicities induced by Aβ. This study provides new insights into HS/Aβ interactions, highlighting how synthetic structurally well-defined HS oligosaccharides can assist in biological understanding of Aβ.
Collapse
Affiliation(s)
| | - Jing Zhao
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Sarah A. Otieno
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | |
Collapse
|
6
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
7
|
Zhu L, Li R, Jiao S, Wei J, Yan Y, Wang ZA, Li J, Du Y. Blood-Brain Barrier Permeable Chitosan Oligosaccharides Interfere with β-Amyloid Aggregation and Alleviate β-Amyloid Protein Mediated Neurotoxicity and Neuroinflammation in a Dose- and Degree of Polymerization-Dependent Manner. Mar Drugs 2020; 18:488. [PMID: 32992800 PMCID: PMC7650801 DOI: 10.3390/md18100488] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
It is proven that β-amyloid (Aβ) aggregates containing cross-β-sheet structures led to oxidative stress, neuroinflammation, and neuronal loss via multiple pathways. Therefore, reduction of Aβ neurotoxicity via inhibiting aggregation of Aβ or dissociating toxic Aβ aggregates into nontoxic forms might be effective therapeutic methods for Alzheimer's disease (AD) treatment. This study was designed to explore interference of chitosan oligosaccharides (COS) on β-(1-42)-amyloid protein (Aβ42) aggregation and Aβ42-induced cytotoxicity. Here it was demonstrated that COS showed good blood-brain barrier (BBB) penetration ability in vitro and in vivo. The experimental results showed that COS efficiently interfered with Aβ42 aggregation in dose- and degree of polymerization (DP)-dependent manners, and COS monomer with DP6 showed the best effect on preventing conformational transition into β-sheet-rich structures. Based on the binding affinity analysis by microscale thermophoresis (MST), it was confirmed that COS could directly bind with Aβ42 in a DP-dependent manner. Our findings demonstrated that different performance of COS monomers with different DPs against Aβ42 assembly was, to some extent, attributable to their different binding capacities with Aβ42. As a result, COS significantly ameliorated Aβ42-induced cytotoxicity. Taken together, our studies would point towards a potential role of COS in treatment of AD.
Collapse
Affiliation(s)
- Limeng Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilian Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
| | - Yalu Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
| | - Zhuo A. Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (L.Z.); (R.L.); (S.J.); (J.W.); (Y.Y.)
| |
Collapse
|
8
|
Mezeiova E, Chalupova K, Nepovimova E, Gorecki L, Prchal L, Malinak D, Kuca K, Soukup O, Korabecny J. Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:772-800. [PMID: 30819078 DOI: 10.2174/1567205016666190228122956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
García-Viñuales S, Ahmed R, Sciacca MFM, Lanza V, Giuffrida ML, Zimbone S, Romanucci V, Zarrelli A, Bongiorno C, Spinella N, Galati C, Di Fabio G, Melacini G, Milardi D. Trehalose Conjugates of Silybin as Prodrugs for Targeting Toxic Aβ Aggregates. ACS Chem Neurosci 2020; 11:2566-2576. [PMID: 32687307 DOI: 10.1021/acschemneuro.0c00232] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is linked to the abnormal accumulation of amyloid β peptide (Aβ) aggregates in the brain. Silybin B, a natural compound extracted from milk thistle (Silybum marianum), has been shown to significantly inhibit Aβ aggregation in vitro and to exert neuroprotective properties in vivo. However, further explorations of silybin B's clinical potential are currently limited by three main factors: (a) poor solubility, (b) instability in blood serum, and (c) only partial knowledge of silybin's mechanism of action. Here, we address these three limitations. We demonstrate that conjugation of a trehalose moiety to silybin significantly increases both water solubility and stability in blood serum without significantly compromising its antiaggregation properties. Furthermore, using a combination of biophysical techniques with different spatial resolution, that is, TEM, ThT fluorescence, CD, and NMR spectroscopy, we profile the interactions of the trehalose conjugate with both Aβ monomers and oligomers and evidence that silybin may shield the "toxic" surfaces formed by the N-terminal and central hydrophobic regions of Aβ. Finally, comparative analysis with silybin A, a less active diastereoisomer of silybin B, revealed how even subtle differences in chemical structure may entail different effects on amyloid inhibition. The resulting insight on the mechanism of action of silybins as aggregation inhibitors is anticipated to facilitate the future investigation of silybin's therapeutic potential.
Collapse
Affiliation(s)
- Sara García-Viñuales
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Rashik Ahmed
- Departments of Chemistry and Chemical Biology & Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Michele F. M. Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Corrado Bongiorno
- Institute for Microelectronics and Microsystems, National Research Council, Stradale Primosole 50, 95121 Catania, Italy
| | | | - Clelia Galati
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Giuseppe Melacini
- Departments of Chemistry and Chemical Biology & Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S 4M1, Canada
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
10
|
Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:418-452. [PMID: 30907320 DOI: 10.2174/1567205016666190321163438] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.
Collapse
Affiliation(s)
- Lídia Pinheiro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Célia Faustino
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| |
Collapse
|
11
|
Yang J, Liu W, Sun Y, Dong X. LVFFARK-PEG-Stabilized Black Phosphorus Nanosheets Potently Inhibit Amyloid-β Fibrillogenesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1804-1812. [PMID: 32011894 DOI: 10.1021/acs.langmuir.9b03612] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Deposition of amyloid-β (Aβ) aggregates in the brain is a main pathological hallmark of Alzheimer's disease (AD), so inhibition of Aβ aggregation has been considered as a promising strategy for AD prevention and treatment. Black phosphorus (BP) is a 2D nanomaterial with high biocompatibility and unique biodegradability, but its potential application in biomedicine suffers from the rapid degradability and unfunctionability. To overcome the drawbacks and broaden its application, we have herein designed an Aβ inhibitor (LK7)-coupled and polyethylene glycol (PEG)-stabilized BP-based nanosystem. The PEGylated-LK7-BP nanosheets (PEG-LK7@BP) not only exhibited a good stability but also demonstrated a significantly enhanced inhibitory potency on Aβ42 fibrillogenesis in comparison with its counterparts. This elaborately designed PEG-LK7@BP stopped the conformational transition and suppressed the fibrillization of Aβ42, so it could completely rescue cultured cells from the toxicity of Aβ42 (by increasing the cell viability from 72 to 100%) at 100 μg/mL. It is considered that PEG-LK7@BP could bind Aβ species by enhanced electrostatic and hydrophobic interactions and thus efficiently alleviated Aβ-Aβ interactions. Meanwhile, the coupled LK7 on the BP surface formed a high local concentration that enhanced the affinity between the nanosystem and Aβ species. Finally, PEG could improve the stability and dispersibility of the nanoplatform to make it show an increased inhibitory effect on the amyloid formation. Hence, this work proved that PEG-LK7@BP is a promising nanosystem for the development of amyloid inhibitors fighting against AD.
Collapse
Affiliation(s)
- Junnan Yang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
12
|
Fan Q, Liu Y, Wang X, Zhang Z, Fu Y, Liu L, Wang P, Ma H, Ma H, Seeram NP, Zheng J, Zhou F. Ginnalin A Inhibits Aggregation, Reverses Fibrillogenesis, and Alleviates Cytotoxicity of Amyloid β(1-42). ACS Chem Neurosci 2020; 11:638-647. [PMID: 31967782 DOI: 10.1021/acschemneuro.9b00673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aggregation of misfolded amyloid beta (Aβ) peptides into neurotoxic oligomers and fibrils has been implicated as a key event in the etiopathogenesis of Alzheimer's disease (AD). Ginnalin A (GA), a polyphenolic compound isolated from the red maple (Acer rubrum), has been found to possess anticancer, antiglycation, and antioxidation properties. Using thioflavin T (ThT) fluorescence, surface plasmon resonance (SPR), and atomic force microscopy (AFM), we demonstrate that GA can also effectively inhibit Aβ aggregation by primarily binding to Aβ monomers in a dose-dependent manner. Furthermore, GA can bind to multiple sites of Aβ aggregates to disassemble preformed fibrils and convert them into small aggregates. Circular dichroism (CD) spectra showed that these small aggregates are much less abundant in β-sheets, while cell viability assay confirms that they are essentially innocuous. Molecular dynamics (MD) simulations revealed that GA preferentially contacts with the C- and N-terminal β-sheets and the U-turn region of Aβ(1-42) oligomers through hydrophobic interactions and hydrogen bonding. Compared with other natural compounds that have shown promise in anti-Aβ fibrillogenesis and ameliorating Aβ-induced cytotoxicity, GA is unique in that it exhibits a more efficient inhibition of Aβ aggregation at the very early stage through its strong interaction with Aβ monomers and exerts its inhibitory effect at a lower dosage.
Collapse
Affiliation(s)
- Qi Fan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaoying Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhuang Zhang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yaru Fu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Luyao Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Hongmin Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
13
|
Sorout N, Chandra A. Effects of Boron Nitride Nanotube on the Secondary Structure of Aβ(1–42) Trimer: Possible Inhibitory Effect on Amyloid Formation. J Phys Chem B 2020; 124:1928-1940. [DOI: 10.1021/acs.jpcb.9b11986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nidhi Sorout
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
14
|
Sharma V, Ghosh KS. Inhibition of Amyloid Fibrillation by Small Molecules and Nanomaterials: Strategic Development of Pharmaceuticals Against Amyloidosis. Protein Pept Lett 2019; 26:315-323. [PMID: 30848182 DOI: 10.2174/0929866526666190307164944] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Amyloid fibrils are a special class of self-assembled protein molecules, which exhibit various toxic effects in cells. Different physiological disorders such as Alzheimer's, Parkinson's, Huntington's diseases, etc. happen due to amyloid formation and lack of proper cellular mechanism for the removal of fibrils. Therefore, inhibition of amyloid fibrillation will find immense applications to combat the diseases associated with amyloidosis. The development of therapeutics against amyloidosis is definitely challenging and numerous strategies have been followed to find out anti-amyloidogenic molecules. Inhibition of amyloid aggregation of proteins can be achieved either by stabilizing the native conformation or by decreasing the chances of assembly formation by the unfolded/misfolded structures. Various small molecules such as naturally occurring polyphenols, flavonoids, small organic molecules, surfactants, dyes, chaperones, etc. have demonstrated their capability to interrupt the amyloid fibrillation of proteins. In addition to that, in last few years, different nanomaterials were evolved as effective therapeutic inhibitors against amyloidosis. Aromatic and hydrophobic interactions between the partially unfolded protein molecules and the inhibitors had been pointed as a general mechanism for inhibition. In this review article, we are presenting an overview on the inhibition of amyloidosis by using different small molecules (both natural and synthetic origin) as well as nanomaterials for development of pharmaceutical strategies against amyloid diseases.
Collapse
Affiliation(s)
- Vandna Sharma
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| |
Collapse
|
15
|
Bartus É, Olajos G, Schuster I, Bozsó Z, Deli MA, Veszelka S, Walter FR, Datki Z, Szakonyi Z, Martinek TA, Fülöp L. Structural Optimization of Foldamer-Dendrimer Conjugates as Multivalent Agents against the Toxic Effects of Amyloid Beta Oligomers. Molecules 2018; 23:molecules23102523. [PMID: 30279351 PMCID: PMC6222781 DOI: 10.3390/molecules23102523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease is one of the most common chronic neurodegenerative disorders. Despite several in vivo and clinical studies, the cause of the disease is poorly understood. Currently, amyloid β (Aβ) peptide and its tendency to assemble into soluble oligomers are known as a main pathogenic event leading to the interruption of synapses and brain degeneration. Targeting neurotoxic Aβ oligomers can help recognize the disease at an early stage or it can be a potential therapeutic approach. Unnatural β-peptidic foldamers are successfully used against many different protein targets due to their favorable structural and pharmacokinetic properties compared to small molecule or protein-like drug candidates. We have previously reported a tetravalent foldamer-dendrimer conjugate which can selectively bind Aβ oligomers. Taking advantage of multivalency and foldamers, we synthesized different multivalent foldamer-based conjugates to optimize the geometry of the ligand. Isothermal titration calorimetry (ITC) was used to measure binding affinity to Aβ, thereafter 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based tissue viability assay and impedance-based viability assay on SH-SY5Y cells were applied to monitor Aβ toxicity and protective effects of the compounds. Important factors for high binding affinity were determined and a good correlation was found between influencing the valence and the capability of the conjugates for Aβ binding.
Collapse
Affiliation(s)
- Éva Bartus
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Gábor Olajos
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Ildikó Schuster
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Mária A Deli
- Institute of Biophysics, Biological Research Center of HAS, Temesvári krt. 26, H-6726 Szeged, Hungary.
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Center of HAS, Temesvári krt. 26, H-6726 Szeged, Hungary.
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Center of HAS, Temesvári krt. 26, H-6726 Szeged, Hungary.
| | - Zsolt Datki
- Department of Psychiatry, University of Szeged, Kálvária sgt. 57, H-6725 Szeged, Hungary.
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Livia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| |
Collapse
|
16
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
17
|
Liu Y, Xu LP, Wang Q, Yang B, Zhang X. Synergistic Inhibitory Effect of GQDs-Tramiprosate Covalent Binding on Amyloid Aggregation. ACS Chem Neurosci 2018; 9:817-823. [PMID: 29244487 DOI: 10.1021/acschemneuro.7b00439] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inhibiting the amyloid aggregation is considered to be an effective strategy to explore possible treatment of amyloid-related diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. Herein, a new high-efficiency and low-cytotoxicity Aβ aggregation inhibitors, GQD-T, was designed through the combination of two Aβ aggregation inhibitors, graphene quantum dots (GQDs) and tramiprosate. GQD-T showed the capability of efficiently inhibiting the aggregation of Aβ peptides and rescuing Aβ-induced cytotoxicity due to the synergistic effect of the GQDs and tramiprosate. In addition, the GQD-T has the characteristics of low toxicity and great biocompatibility. It is believed that GQD-T may be a potential candidate for an Alzheimer's drug and this work provides a new strategy for exploring Aβ peptide aggregation inhibitors.
Collapse
Affiliation(s)
- Yibiao Liu
- Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
- Henan Provincial Key Laboratory of Nano-composite Materials and Applications, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Qiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, The Chinese Academy of Sciences, Taiyuan 030001, P.R. China
| | - Baocheng Yang
- Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
- Henan Provincial Key Laboratory of Nano-composite Materials and Applications, Huanghe Science & Technology College, Zhengzhou 450006, P.R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
18
|
Mittal S, Bravo-Rodriguez K, Sanchez-Garcia E. Mechanism of Inhibition of Beta Amyloid Toxicity by Supramolecular Tweezers. J Phys Chem B 2018; 122:4196-4205. [DOI: 10.1021/acs.jpcb.7b10530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sumit Mittal
- University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | | | | |
Collapse
|
19
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
20
|
|
21
|
Wang Y, Xu X, Wu X, Chen W, Huang F, Gui X. Dihydroartemisinin treatment of multiple myeloma cells causes activation of c-Jun leading to cell apoptosis. Oncol Lett 2017; 15:2562-2566. [PMID: 29434974 DOI: 10.3892/ol.2017.7582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 10/04/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of dihydroartemisinin (DHA) on a multiple myeloma cell line. An MTT assay, flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR) were used for the analysis of cell viability, cell cycle distribution and c-Jun N-terminal kinase (JNK) expression, respectively. Treatment of U266 cells using DHA caused a significant (P<0.05) decrease in cell viability compared with the control cells. An increase in the concentration of DHA from 1 to 100 µmol/l reduced cell viability from 87 to 35% compared with 100% in the control cultures at 48 h. A significant (P<0.05) increase was observed in the sub-G0/G1 phase population of the U266 cells with an increase in DHA concentration from 1 to 100 µmol/l. Treatment with 1, 3, 10, 30 and 100 µmol/l concentrations of DHA increased the sub-G0/G1 phase cell population to 3.13, 8.25, 24.91, 31.47 and 38.54%, respectively. RT-PCR analysis of DHA-treated or -untreated U266 cells after 48 h demonstrated a significant (P<0.01) increase in caspase-3 expression. Treatment of the cells for 48 h with DHA led to a significant increase in c-Jun expression. DHA treatment at 1, 3, 10, 30 and 100 µmol/l concentrations caused an increase in the level of c-Jun by 0.174±0.001, 0.254±0.002, 0.387±0.001, 0.502±0.003 and 0.679±0.005, respectively, compared with 0.982±0.001 in the control cells. The addition of SP600125 to the cells incubated with DHA resulted in a significant decrease in the caspase-3 and c-Jun expression levels compared with those cells incubated with DHA alone. These findings confirm that treatment with DHA increased caspase-3 and c-Jun expression in the U266 cells through activation of the JNK signaling pathway. Thus, DHA inhibited proliferation of multiple myeloma cells by interfering with the JNK signaling pathway.
Collapse
Affiliation(s)
- Yong Wang
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China.,Key Laboratory of System Bio-Medicine of Jiangxi, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio-Medicine of Jiangxi, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaojian Wu
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Weibin Chen
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Fangmei Huang
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaomin Gui
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
22
|
Synthesis and preliminary in vivo evaluation of new [ 18F]fluoro-inositols as Positron Emission Tomography radiotracers. Bioorg Med Chem 2017; 25:5603-5612. [PMID: 28893600 DOI: 10.1016/j.bmc.2017.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 08/20/2017] [Indexed: 11/24/2022]
Abstract
This study describes the synthesis and radiosynthesis of eight new [18F]fluoro-inositol-based radiotracers in myo- and scyllo-inositol configuration. These radiotracers are equipped with a propyl linker bearing fluorine-18. This fluorinated arm is either on a hydroxyl group, i.e. O-alkylated inositols, or on the cyclohexyl backbone, i.e. C-branched derivatives. To modulate lipophilicity, inositols were synthesized in acetylated or hydroxylated form. Automated radiosynthesis was performed on the AllInOne module and the radiotracers were produced in good radiochemical yields (15-31.5% dc). Preliminary in vivo preclinical evaluation of these eight [18F]fluoro-inositols as Positron Emission Tomography (PET) imaging agents in a breast tumour-bearing mouse model was performed and compared with [18F]-2-fluoro-2-deoxy-d-glucose ([18F]FDG). Amongst the different inositols, [18F]myo-2 showed the highest tumour uptake 2.34±0.39%ID/g, revealing the potential of this tracer for monitoring breast cancer.
Collapse
|
23
|
Fan Y, Wu D, Yi X, Tang H, Wu L, Xia Y, Wang Z, Liu Q, Zhou Z, Wang J. TMPyP Inhibits Amyloid-β Aggregation and Alleviates Amyloid-Induced Cytotoxicity. ACS OMEGA 2017; 2:4188-4195. [PMID: 30023716 PMCID: PMC6044923 DOI: 10.1021/acsomega.7b00877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 05/27/2023]
Abstract
The aggregation or misfolding of amyloid-β (Aβ) is a major pathological hallmark of Alzheimer's disease (AD). The regulation of Aβ aggregation is thought to be an effective strategy for AD treatment. The capability of a water-soluble porphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP), to inhibit Aβ aggregation and to lower Aβ-induced toxicity was demonstrated. As evidenced by surface plasmon resonance and circular dichroism, TMPyP can not only disrupt Aβ aggregation but also disassemble the preformed Aβ aggregates. The atomic force microscopy imaging proves that TMPyP inhibits the formation of both oligomers and fibrils. Molecular dynamic simulations provide an insight into the interaction between TMPyP and Aβ at the molecular level. The half-maximal inhibitory concentrations of TMPyP acting on the oligomers and fibrils were determined to be 0.6 and 0.43 μM, respectively. As a member of porphyrin family, TMPyP is of rather low cytotoxicity, and the cytotoxicity of the Aβ aggregates was also relieved upon coincubation with TMPyP. The excellent performance of TMPyP thus makes it a potential drug candidate for AD therapy.
Collapse
Affiliation(s)
- Yujuan Fan
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Daohong Wu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Xinyao Yi
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Hailin Tang
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-Sen
University Cancer Center, Guangzhou 510060, Guangdong, P. R. China
| | - Ling Wu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Yonghong Xia
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Zixiao Wang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| | - Qiuhua Liu
- School
of Chemistry and Chemical Engineering and Key Laboratory of Theoretical
Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Zaichun Zhou
- School
of Chemistry and Chemical Engineering and Key Laboratory of Theoretical
Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Jianxiu Wang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
24
|
Sciacca MFM, Romanucci V, Zarrelli A, Monaco I, Lolicato F, Spinella N, Galati C, Grasso G, D’Urso L, Romeo M, Diomede L, Salmona M, Bongiorno C, Di Fabio G, La Rosa C, Milardi D. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem Neurosci 2017; 8:1767-1778. [PMID: 28562008 DOI: 10.1021/acschemneuro.7b00110] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The self-assembling of the amyloid β (Aβ) peptide into neurotoxic aggregates is considered a central event in the pathogenesis of Alzheimer's disease (AD). Based on the "amyloid hypothesis", many efforts have been devoted to designing molecules able to halt disease progression by inhibiting Aβ self-assembly. Here, we combine biophysical (ThT assays, TEM and AFM imaging), biochemical (WB and ESI-MS), and computational (all-atom molecular dynamics) techniques to investigate the capacity of four optically pure components of the natural product silymarin (silybin A, silybin B, 2,3-dehydrosilybin A, 2,3-dehydrosilybin B) to inhibit Aβ aggregation. Despite TEM analysis demonstrated that all the four investigated flavonoids prevent the formation of mature fibrils, ThT assays, WB and AFM investigations showed that only silybin B was able to halt the growth of small-sized protofibrils thus promoting the formation of large, amorphous aggregates. Molecular dynamics (MD) simulations indicated that silybin B interacts mainly with the C-terminal hydrophobic segment 35MVGGVV40 of Aβ40. Consequently to silybin B binding, the peptide conformation remains predominantly unstructured along all the simulations. By contrast, silybin A interacts preferentially with the segments 17LVFF20 and 27NKGAII32 of Aβ40 which shows a high tendency to form bend, turn, and β-sheet conformation in and around these two domains. Both 2,3-dehydrosilybin enantiomers bind preferentially the segment 17LVFF20 but lead to the formation of different small-sized, ThT-positive Aβ aggregates. Finally, in vivo studies in a transgenic Caenorhabditis elegans strain expressing human Aβ indicated that silybin B is the most effective of the four compounds in counteracting Aβ proteotoxicity. This study underscores the pivotal role of stereochemistry in determining the neuroprotective potential of silybins and points to silybin B as a promising lead compound for further development in anti-AD therapeutics.
Collapse
Affiliation(s)
- Michele. F. M. Sciacca
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Irene Monaco
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| | - Fabio Lolicato
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Department of Physics, Tampere University of Technology, P.O.
Box 692, FI-33101 Tampere, Finland
| | | | - Clelia Galati
- STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy
| | - Giuseppe Grasso
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Luisa D’Urso
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Margherita Romeo
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Luisa Diomede
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa 19, 20156, Milano, Italy
| | - Corrado Bongiorno
- Institute for Microelectronics
and Microsystems, National Research Council, Stradale Primosole 50, 95121 Catania, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia 4, I-80126 Napoli, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze
Chimiche, Università degli Studi di Catania, Viale Andrea
Doria 6, 95125 Catania, Italy
| | - Danilo Milardi
- Institute of Biostructures and
Bioimages—Catania, National Research Council, Via Paolo Gaifami 8, 95126 Catania, Italy
| |
Collapse
|
25
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
26
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
27
|
Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment. Biochim Biophys Acta Mol Basis Dis 2017; 1863:607-619. [DOI: 10.1016/j.bbadis.2016.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 12/30/2022]
|
28
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
29
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
30
|
Thai NQ, Tseng NH, Vu MT, Nguyen TT, Linh HQ, Hu CK, Chen YR, Li MS. Discovery of DNA dyes Hoechst 34580 and 33342 as good candidates for inhibiting amyloid beta formation: in silico and in vitro study. J Comput Aided Mol Des 2016; 30:639-50. [PMID: 27511370 PMCID: PMC5021751 DOI: 10.1007/s10822-016-9932-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/27/2016] [Indexed: 01/14/2023]
Abstract
Combining Lipinski's rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer's disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer's disease by inhibiting Aβ formation.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
- Division of Theoretical Physics, Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap Vietnam
| | - Ning-Hsuan Tseng
- Genomics Research Center, Academia Sinica, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Mui Thi Vu
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Tin Trung Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, 128 Academia Road Section 2, Taipei, 11529 Taiwan
- National Center for Theoretical Sciences, National Tsing Hua University, 101 Kuang-Fu Road Section 2, Hsinch, 30013 Taiwan
- Business School, University of Shanghai for Science and Technology, 334 Jun Gong Road, Shanghai, 200093 China
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Academia Rd., Sec. 2, Nankang Dist., Taipei 115, Taiwan
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
31
|
Mahmoodabadi N, Ajloo D. QSAR, docking, and Molecular dynamic studies on the polyphenolic as inhibitors of β-amyloid aggregation. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1620-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation. Biomaterials 2016; 94:84-92. [DOI: 10.1016/j.biomaterials.2016.03.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/16/2022]
|
33
|
Negatively charged hydrophobic nanoparticles inhibit amyloid β-protein fibrillation: The presence of an optimal charge density. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Collet C, Chrétien F, Chapleur Y, Lamandé-Langle S. Diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues. Beilstein J Org Chem 2016; 12:353-61. [PMID: 26977196 PMCID: PMC4778503 DOI: 10.3762/bjoc.12.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023] Open
Abstract
Efficient routes were developed for the diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues. The key steps of the synthesis were the easy accessibility of different types of arms in term of configuration (myo and scyllo), the linking method and length, which could modulate the biological properties. These inositol derivatives, bearing an arm terminated either with a hydroxy group or a fluorine atom, could be interesting candidates for diastereoisomeric intermediates and biological evaluations, especially for PET imaging experiments.
Collapse
Affiliation(s)
- Charlotte Collet
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Françoise Chrétien
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Yves Chapleur
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Sandrine Lamandé-Langle
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| |
Collapse
|
35
|
Joshi P, Chia S, Habchi J, Knowles TPJ, Dobson CM, Vendruscolo M. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins. ACS COMBINATORIAL SCIENCE 2016; 18:144-53. [PMID: 26923286 DOI: 10.1021/acscombsci.5b00129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Sean Chia
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Johnny Habchi
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
36
|
Batkulwar KB, Jana AK, Godbole RK, Khandelwal P, Sengupta N, Kulkarni MJ. Hydralazine inhibits amyloid beta (Aβ) aggregation and glycation and ameliorates Aβ1–42 induced neurotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra20225j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Top panel (red) depicts the formation beta sheet rich neurotoxic amyloid aggregates and bottom panel (blue) shows disordered non toxic amyloid aggregates formation upon hydralazine treatment.
Collapse
Affiliation(s)
- Kedar B. Batkulwar
- Mass-spectrometry and Proteomics Facility
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Asis K. Jana
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Physical Chemistry Division
| | - Rashmi K. Godbole
- Mass-spectrometry and Proteomics Facility
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Puneet Khandelwal
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Physical Chemistry Division
| | - Neelanjana Sengupta
- Academy of Scientific and Innovative Research (AcSIR)
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Physical Chemistry Division
| | - Mahesh J. Kulkarni
- Mass-spectrometry and Proteomics Facility
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
37
|
Navarro S, Carija A, Muñoz-Torrero D, Ventura S. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. Eur J Med Chem 2015; 121:785-792. [PMID: 26608003 DOI: 10.1016/j.ejmech.2015.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022]
Abstract
The aggregation of a large variety of amyloidogenic proteins is linked to the onset of devastating human disorders. Therefore, there is an urgent need for effective molecules able to modulate the aggregative properties of these polypeptides in their natural environment, in order to prevent, delay or halt the progression of such diseases. On the one hand, the complexity and cost of animal models make them inefficient at early stages of drug discovery, where large chemical libraries are usually screened. On the other hand, in vitro aggregation assays in aqueous solutions hardly reproduce (patho)physiological conditions. In this context, because the formation of insoluble aggregates in bacteria shares mechanistic and functional properties with amyloid self-assembly in higher organisms, they have emerged as a promising system to model aggregation in the cell. Here we show that bacteria provide a powerful and cost-effective system to screen for amyloid inhibitors using fluorescence spectroscopy and flow cytometry, thanks to the ability of the novel red fluorescent ProteoStat dye to detect specifically intracellular amyloid-like aggregates. We validated the approach using the Alzheimer's linked Aβ40 and Aβ42 peptides and tacrine- and huprine-based aggregation inhibitors. Overall, the present method bears the potential to replace classical in vitro anti-aggregation assays.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Anita Carija
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
38
|
Liu H, Ojha B, Morris C, Jiang M, Wojcikiewicz EP, Rao PPN, Du D. Positively Charged Chitosan and N-Trimethyl Chitosan Inhibit Aβ40 Fibrillogenesis. Biomacromolecules 2015; 16:2363-73. [DOI: 10.1021/acs.biomac.5b00603] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | | | | | - Praveen P. N. Rao
- School
of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
39
|
Ding H, Wang H, Zhao Y, Sun D, Zhai X. Protective Effects of Baicalin on Aβ₁₋₄₂-Induced Learning and Memory Deficit, Oxidative Stress, and Apoptosis in Rat. Cell Mol Neurobiol 2015; 35:623-32. [PMID: 25596671 PMCID: PMC11486265 DOI: 10.1007/s10571-015-0156-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
The accumulation and deposition of β-amyloid peptide (Aβ) in senile plaques and cerebral vasculature is believed to facilitate the progressive neurodegeneration that occurs in the Alzheimer's disease (AD). The present study sought to elucidate possible effects of baicalin, a natural phytochemical, on Aβ toxicity in a rat model of AD. By morris water maze test, Aβ1-42 injection was found to cause learning and memory deficit in rat, which was effectively improved by baicalin treatment. Besides, histological examination showed that baicalin could attenuate the hippocampus injury caused by Aβ. The neurotoxicity mechanism of Aβ is associated with oxidative stress and apoptosis, as revealed by increased malonaldehyde generation and TUNEL-positive cells. Baicalin treatment was able to increase antioxidant capabilities by recovering activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and up-regulating their gene expression. Moreover, baicalin effectively prevented Aβ-induced mitochondrial membrane potential decrease, Bax/Bcl-2 ratio increase, cytochrome c release, and caspase-9/-3 activation. In addition, we found that the anti-oxidative effect of baicalin was associated with Nrf2 activation. In conclusion, baicalin effectively improved Aβ-induced learning and memory deficit, hippocampus injury, and neuron apoptosis, making it a promising drug to preventive interventions for AD.
Collapse
Affiliation(s)
- Haitao Ding
- Linyi City Yishui Central Hospital, Linyi, 276400 Shandong China
| | - Haitao Wang
- Linyi City Yishui Central Hospital, Linyi, 276400 Shandong China
| | - Yexia Zhao
- Linyi City Yishui Central Hospital, Linyi, 276400 Shandong China
| | - Deke Sun
- Linyi City Yishui Central Hospital, Linyi, 276400 Shandong China
| | - Xu Zhai
- The First Affiliated Hospital of Liaoning Medical University, Jinzhou, 121001 Liaoning China
| |
Collapse
|
40
|
Kai T, Zhang L, Wang X, Jing A, Zhao B, Yu X, Zheng J, Zhou F. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42). ACS Chem Neurosci 2015; 6:879-88. [PMID: 25874995 DOI: 10.1021/acschemneuro.5b00015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid fibrils are key events in the amyloid cascade hypothesis for the etiology of Alzheimer's disease (AD). Using thioflavin-T (ThT) fluorescence assay, atomic force microscopy, circular dichroism, size exclusion chromatography, surface plasmon resonance (SPR), and cytotoxicity tests, we demonstrate that tabersonine, an ingredient extracted from the bean of Voacanga africana, disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. A small amount of tabersonine (e.g., 10 μM) can effectively inhibit the formation of Aβ(1-42) (e.g., 80 μM) fibrils or convert mature fibrils into largely innocuous amorphous aggregates. SPR results indicate that tabersonine binds to Aβ(1-42) oligomers in a dose-dependent way. Molecular dynamics (MD) simulations further confirm that tabersonine can bind to oligomers such as the pentamer of Aβ(1-42). Tabersonine preferentially interact with the β-sheet grooves of Aβ(1-42) containing aromatic and hydrophobic residues. The various binding sites and modes explain the diverse inhibitory effects of tabersonine on Aβ aggregation. Given that tabersonine is a natural product and a precursor for vincristine used in cancer chemotherapy, the biocompatibility and small size essential for permeating the blood-brain barrier make it a potential therapeutic drug candidate for treating AD.
Collapse
Affiliation(s)
- Tianhan Kai
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lin Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaoying Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Aihua Jing
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China
| | - Bingqing Zhao
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| | - Xiang Yu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
| |
Collapse
|
41
|
Viet MH, Siposova K, Bednarikova Z, Antosova A, Nguyen TT, Gazova Z, Li MS. In Silico and in Vitro Study of Binding Affinity of Tripeptides to Amyloid β Fibrils: Implications for Alzheimer’s Disease. J Phys Chem B 2015; 119:5145-55. [DOI: 10.1021/acs.jpcb.5b00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Man Hoang Viet
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Katarina Siposova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Andrea Antosova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Truc Trang Nguyen
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward,
District 12, Ho Chi Minh City, Vietnam
| | - Zuzana Gazova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
42
|
β-Sheet interfering molecules acting against β-amyloid aggregation and fibrillogenesis. Bioorg Med Chem 2015; 23:1671-83. [DOI: 10.1016/j.bmc.2015.02.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
|
43
|
Xiong N, Dong XY, Zheng J, Liu FF, Sun Y. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5650-5662. [PMID: 25700145 DOI: 10.1021/acsami.5b00915] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aggregation of amyloid β-protein (Aβ) into amyloid oligomers and fibrils is pathologically linked to Alzheimer's disease (AD). Hence, the inhibition of Aβ aggregation is essential for the prevention and treatment of AD, but the development of potent agents capable of inhibiting Aβ fibrillogenesis has posed significant challenges. Herein, we designed Ac-LVFFARK-NH2 (LK7) by incorporating two positively charged residues, R and K, into the central hydrophobic fragment of Aβ17-21 (LVFFA) and examined its inhibitory effect on Aβ42 aggregation and cytotoxicity by extensive physical, biophysical, and biological analyses. LK7 was observed to inhibit Aβ42 fibrillogenesis in a dose-dependent manner, but its strong self-assembly characteristic also resulted in high cytotoxicity. In order to prevent the cytotoxicity that resulted from the self-assembly of LK7, the peptide was then conjugated to the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to fabricate a nanosized inhibitor, LK7@PLGA-NPs. It was found that LK7@PLGA-NPs had little cytotoxicity because the self-assembly of the LK7 conjugated on the NPs was completely inhibited. Moreover, the NPs-based inhibitor showed remarkable inhibitory capability against Aβ42 aggregation and significantly alleviated its cytotoxicity at a low LK7@PLGA-NPs concentration of 20 μg/mL. At the same peptide concentration, free LK7 showed little inhibitory effect. It is considered that several synergetic effects contributed to the strong inhibitory ability of LK7@PLGA-NPs, including the enhanced interactions between Aβ42 and LK7@PLGA-NPs brought on by inhibiting LK7 self-assembly, restricting conformational changes of Aβ42, and thus redirecting Aβ42 aggregation into unstructured, off-pathway aggregates. The working mechanisms of the inhibitory effects of LK7 and LK7@PLGA-NPs on Aβ42 aggregation were proposed based on experimental observations. This work provides new insights into the design and development of potent NPs-based inhibitors against Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Neng Xiong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Zheng
- ‡Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fu-Feng Liu
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
44
|
Zheng X, Liu D, Klärner FG, Schrader T, Bitan G, Bowers MT. Amyloid β-protein assembly: The effect of molecular tweezers CLR01 and CLR03. J Phys Chem B 2015; 119:4831-41. [PMID: 25751170 PMCID: PMC4415044 DOI: 10.1021/acs.jpcb.5b00692] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
The early oligomerization of amyloid
β-protein (Aβ)
has been shown to be an important event in the pathology of Alzheimer’s
disease (AD). Designing small molecule inhibitors targeting Aβ
oligomerization is one attractive and promising strategy for AD treatment.
Here we used ion mobility spectrometry coupled to mass spectrometry
(IMS-MS) to study the different effects of the molecular tweezers
CLR01 and CLR03 on Aβ self-assembly. CLR01 was found to bind
to Aβ directly and disrupt its early oligomerization. Moreover,
CLR01 remodeled the early oligomerization of Aβ42 by compacting
the structures of dimers and tetramers and as a consequence eliminated
higher-order oligomers. Unexpectedly, the negative-control derivative,
CLR03, which lacks the hydrophobic arms of the tweezer structure,
was found to facilitate early Aβ oligomerization. Our study
provides an example of IMS as a powerful tool to study and better
understand the interaction between small molecule modulators and Aβ
oligomerization, which is not attainable by other methods, and provides
important insights into therapeutic development of molecular tweezers
for AD treatment.
Collapse
Affiliation(s)
- Xueyun Zheng
- †Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Deyu Liu
- †Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Frank-Gerrit Klärner
- ‡Institute of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Thomas Schrader
- ‡Institute of Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Gal Bitan
- §Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Michael T Bowers
- †Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
45
|
Determining binding sites of polycyclic aromatic small molecule-based amyloid-beta peptide aggregation modulators using sequence-specific antibodies. Anal Biochem 2015; 470:61-70. [DOI: 10.1016/j.ab.2014.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
|
46
|
|
47
|
Mangione MR, Palumbo Piccionello A, Marino C, Ortore MG, Picone P, Vilasi S, Di Carlo M, Buscemi S, Bulone D, San Biagio PL. Photo-inhibition of Aβ fibrillation mediated by a newly designed fluorinated oxadiazole. RSC Adv 2015. [DOI: 10.1039/c4ra13556c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaction of oxadiazole3photo-stimulated with Aβ1–40induces a structural modification responsible for fibrillogenesis inhibition.
Collapse
Affiliation(s)
- M. R. Mangione
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
| | - A. Palumbo Piccionello
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies
| | - C. Marino
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
- Department of Neurology
| | - M. G. Ortore
- Department of Life and Environmental Sciences
- National Interuniversity Consortium for the Physical Sciences of Matter
- Marche Polytechnic University
- Ancona
- Italy
| | - P. Picone
- Institute of Biomedicine and Molecular Immunology
- National Research Council
- Palermo
- Italy
| | - S. Vilasi
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
| | - M. Di Carlo
- Institute of Biomedicine and Molecular Immunology
- National Research Council
- Palermo
- Italy
| | - S. Buscemi
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies
| | - D. Bulone
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
| | | |
Collapse
|
48
|
Joshi P, Vendruscolo M. Druggability of Intrinsically Disordered Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:383-400. [DOI: 10.1007/978-3-319-20164-1_13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Huy PDQ, Li MS. Binding of fullerenes to amyloid beta fibrils: size matters. Phys Chem Chem Phys 2014; 16:20030-40. [DOI: 10.1039/c4cp02348j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Cho PY, Joshi G, Johnson JA, Murphy RM. Transthyretin-derived peptides as β-amyloid inhibitors. ACS Chem Neurosci 2014; 5:542-51. [PMID: 24689444 DOI: 10.1021/cn500014u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Self-association of β-amyloid (Aβ) into soluble oligomers and fibrillar aggregates is associated with Alzheimer's disease pathology, motivating the search for compounds that selectively bind to and inhibit Aβ oligomerization and/or neurotoxicity. Numerous small-molecule inhibitors of Aβ aggregation or toxicity have been reported in the literature. However, because of their greater size and complexity, peptides and peptidomimetics may afford improved specificity and affinity as Aβ aggregation modulators compared to small molecules. Two divergent strategies have been employed in the search for peptides that bind Aβ: (i) using recognition domains corresponding to sequences in Aβ itself (such as KLVFF) and (ii) screening random peptide-based libraries. In this study, we propose a third strategy, specifically, designing peptides that mimic binding domains of Aβ-binding proteins. Transthyretin, a plasma transport protein that is also relatively abundant in cerebrospinal fluid, has been shown to bind to Aβ, inhibit aggregation, and reduce its toxicity. Previously, we identified strand G of transthyretin as a specific Aβ binding domain. In this work we further explore and define the necessary features of this binding domain. We demonstrate that peptides derived from transthyretin bind Aβ and inhibit its toxicity. We also show that, although both transthyretin and transthyretin-derived peptides bind Aβ and inhibit toxicity, they differ significantly in their effect on Aβ aggregation.
Collapse
Affiliation(s)
- Patricia Y. Cho
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Gururaj Joshi
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey A. Johnson
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Regina M. Murphy
- Department of Chemical and Biological
Engineering, and ‡School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|