1
|
Zádor E. Molecular Targets of 20-Hydroxyecdysone in Mammals, Mechanism of Action: Is It a Calorie Restriction Mimetic and Anti-Aging Compound? Cells 2025; 14:431. [PMID: 40136680 PMCID: PMC11941724 DOI: 10.3390/cells14060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The 20-hydroxyecdysone (20E) has been used in traditional medicine for a long time and acquired attention in the last decade as a food supplement and stimulant in physical activities. This polyhydroxylated cholesterol is found in the highest concentration in plants, and it is one of the secondary plant products that has a real hormonal influence in arthropods. Various beneficial effects have been reported in vivo and in vitro for 20E and its related compounds in mammals. Trials for the safety of clinical application showed a remarkably high tolerance in humans. This review aims to assess the latest development in the involvement of various pathways in tissues and organs and look if it is plausible to find a single primary target of this compound. The similarities with agents mimicking calorie restriction and anti-aging effects are also elucidated and discussed.
Collapse
Affiliation(s)
- Ernő Zádor
- Institute of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
2
|
He Q, Tian D, Wang Z, Zheng D, Zhi L, Ma J, An J, Zhang R. Modified Si Miao Powder granules alleviates osteoarthritis progression by regulating M1/M2 polarization of macrophage through NF-κB signaling pathway. Front Pharmacol 2024; 15:1361561. [PMID: 38974041 PMCID: PMC11224909 DOI: 10.3389/fphar.2024.1361561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background Osteoarthritis (OA) is a chronic degenerative disease mainly characterized by cartilage damage and synovial inflammation. Si Miao Powder, an herbal formula, was recorded in ancient Chinese medicine prescription with excellent anti-inflammatory properties. Based on the classical formula, the modified Si Miao Powder (MSMP) was developed with the addition of two commonly Chinese orthopedic herbs, which had the efficacy of strengthening the therapeutic effect for OA. Methods In the in vivo experiments, thirty-six 8-week-old male C57BL/6 mice were randomly divided into six groups: sham group, OA group, celecoxib group, low-MSMP group, middle-MSMP group, and high-MSMP group. OA mice were constructed by destabilization of medial meniscus (DMM) and treated with MSMP granules or celecoxib by gavage. The effects of MSMP on cartilage, synovitis and inflammatory factor of serum were tested. For in vitro experiments, control serum and MSMP-containing serum were prepared from twenty-five C57BL/6 mice. Macrophages (RAW264.7 cells) were induced by lipopolysaccharide (LPS) and then treated with MSMP-containing serum. The expression of inflammatory factors and the change of the NF-κB pathway were tested. Results In vivo, celecoxib and MSMP alleviated OA progression in the treated groups compared with OA group. The damage was partly recovered in cartilage, the synovial inflammatory were reduced in synovium, and the concentrations of IL-6 and TNF-α were reduced and the expression of IL-10 was increased in serum. The function of the middle MSMP was most effective for OA treatment. The results of in vitro experiments showed that compared with the LPS group, the MSMP-containing serum significantly reduced the expression levels of pro-inflammatory (M1-type) factors, such as CD86, iNOS, TNF-α and IL-6, and promoted the expression levels of anti-inflammatory (M2-type) factors, such as Arg1 and IL-10. The MSMP-containing serum further inhibited NF-κB signaling pathway after LPS induction. Conclusion The study demonstrated that MSMP alleviated OA progression in mice and MSMP-containing serum modulated macrophage M1/M2 phenotype by inhibiting the NF-κB signaling pathway. Our study provided experimental evidence and therapeutic targets of MSMP for OA treatment.
Collapse
Affiliation(s)
- Qi He
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ding Tian
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Zheng
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Wang L, Huang X, Qin J, Qi B, Sun C, Guo X, Liu Q, Liu Y, Ma Y, Wei X, Zhang Y. The Role of Traditional Chinese Medicines in the Treatment of Osteoporosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:949-986. [PMID: 38879748 DOI: 10.1142/s0192415x24500393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Osteoporosis (OP) represents a substantial public health issue and is associated with increasing rates of morbidity and mortality. It is characterized by reduced bone mineral density, deterioration of bone tissue quality, disruption of the microarchitecture of bones, and compromised bone strength. These changes may be attributed to the following factors: intercellular communication between osteoblasts and osteoclasts; imbalanced bone remodeling; imbalances between osteogenesis and adipogenesis; imbalances in hormonal regulation; angiogenesis; chronic inflammation; oxidative stress; and intestinal microbiota imbalances. Treating a single aspect of the disease is insufficient to address its multifaceted nature. In recent decades, traditional Chinese medicine (TCM) has shown great potential in the treatment of OP, and the therapeutic effects of Chinese patent drugs and Chinese medicinal herbs have been scientifically proven. TCMs, which contain multiple components, can target the diverse pathogeneses of OP through a multitargeted approach. Herbs such as XLGB, JTG, GSB, Yinyanghuo, Gusuibu, Buguzhi, and Nvzhenzi are among the TCMs that can be used to treat OP and have demonstrated promising effects in this context. They exert their therapeutic effects by targeting various pathways involved in bone metabolism. These TCMs balance the activity of osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells), and they exhibit anti-inflammatory, immunomodulatory, anti-oxidative, and estrogen-like functions. These multifaceted mechanisms underlie the efficacy of these herbs in the management and treatment of OP. Herein, we examine the efficacy of various Chinese herbs and Chinese patent drugs in treating OP by reviewing previous clinical trials and basic experiments, and we examine the potential mechanism of these therapies to provide evidence regarding the use of TCM for treating OP.
Collapse
Affiliation(s)
- Liang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xinyi Huang
- School of Public Health, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jinran Qin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
| | - Xiangyun Guo
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qingqing Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yichen Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, P. R. China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P. R. China
- Institute of Orthopaedics of Beijing Integrative Medicine, Beijing 100061, P. R. China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Peng W, Chen Q, Zheng F, Xu L, Fang X, Wu Z. The emerging role of the semaphorin family in cartilage and osteoarthritis. Histochem Cell Biol 2024:10.1007/s00418-024-02303-y. [PMID: 38849589 DOI: 10.1007/s00418-024-02303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
In the pathogenesis of osteoarthritis, various signaling pathways may influence the bone joint through a common terminal pathway, thereby contributing to the pathological remodeling of the joint. Semaphorins (SEMAs) are cell-surface proteins actively involved in and primarily responsible for regulating chondrocyte function in the pathophysiological process of osteoarthritis (OA). The significance of the SEMA family in OA is increasingly acknowledged as pivotal. This review aims to summarize the mechanisms through which different members of the SEMA family impact various structures within joints. The findings indicate that SEMA3A and SEMA4D are particularly relevant to OA, as they participate in cartilage injury, subchondral bone remodeling, or synovitis. Additionally, other elements such as SEMA4A and SEMA5A may also contribute to the onset and progression of OA by affecting different components of the bone and joint. The mentioned mechanisms demonstrate the indispensable role of SEMA family members in OA, although the detailed mechanisms still require further exploration.
Collapse
Affiliation(s)
- Wenjing Peng
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Chen
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Fengjuan Zheng
- The Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Li Xu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Fang
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| | - Zuping Wu
- School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology HospitalZhejiang University School of MedicineKey Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Du G, Sun X, He S, Mi L. The Nrf2/HO-1 pathway participates in the antiapoptotic and anti-inflammatory effects of platelet-rich plasma in the treatment of osteoarthritis. Immun Inflamm Dis 2024; 12:e1169. [PMID: 38860757 PMCID: PMC11165680 DOI: 10.1002/iid3.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1β. Both models were then treated with PRP. RESULTS In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Guangyu Du
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuegang Sun
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Shengwei He
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lidong Mi
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
6
|
Park DR, Choi BR, Yeo C, Yoon JE, Hong EY, Baek SH, Lee YJ, Ha IH. Mume Fructus reduces interleukin-1 beta-induced cartilage degradation via MAPK downregulation in rat articular chondrocytes. PLoS One 2024; 19:e0302906. [PMID: 38718039 PMCID: PMC11078424 DOI: 10.1371/journal.pone.0302906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1β-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.
Collapse
Affiliation(s)
- Doo Ri Park
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Bo Ram Choi
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Jee Eun Yoon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Eun Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang, Gyeonggi Province, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
7
|
Todorova V, Ivanova S, Chakarov D, Kraev K, Ivanov K. Ecdysterone and Turkesterone-Compounds with Prominent Potential in Sport and Healthy Nutrition. Nutrients 2024; 16:1382. [PMID: 38732627 PMCID: PMC11085066 DOI: 10.3390/nu16091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The naturally occurring compounds ecdysterone and turkesterone, which are present in plants, including Rhaponticum carthamoides Willd. (Iljin), Spinacia oleracea L., Chenopodium quinoa Willd., and Ajuga turkestanica (Regel) Briq, are widely recognized due to their possible advantages for both general health and athletic performance. The current review investigates the beneficial biological effects of ecdysterone and turkesterone in nutrition, highlighting their roles not only in enhancing athletic performance but also in the management of various health problems. Plant-based diets, associated with various health benefits and environmental sustainability, often include sources rich in phytoecdysteroids. However, the therapeutic potential of phytoecdysteroid-rich extracts extends beyond sports nutrition, with promising applications in treating chronic fatigue, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Dzhevdet Chakarov
- Department of Propedeutics of Surgical Diseases, Section of General Surgery, Faculty of Medicine, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Fang S, Zhang B, Xiang W, Zheng L, Wang X, Li S, Zhang T, Feng D, Gong Y, Wu J, Yuan J, Wu Y, Zhu Y, Liu E, Ni Z. Natural products in osteoarthritis treatment: bridging basic research to clinical applications. Chin Med 2024; 19:25. [PMID: 38360724 PMCID: PMC10870578 DOI: 10.1186/s13020-024-00899-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
Collapse
Affiliation(s)
- Shunzheng Fang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
- Rehabilitation Center, Key Specialty of Neck and Low Back Pain Rehabilitation, Strategic Support Force Xingcheng Special Duty Sanatorium, Liaoning, 125100, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Liujie Zheng
- Department of Orthopaedic Surgery, The Fourth Hospital of Wuhan, Wuhan, 430000, Hubei, China
| | - Xiaodong Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yunquan Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jinhui Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jing Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yaran Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yizhen Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Enli Liu
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China.
| |
Collapse
|
9
|
Gu Z, Zhou G, Zhang X, Liang G, Xiao X, Dou Y. Research progress of plant medicine and Chinese herbal compounds in the treatment of rheumatoid arthritis combined with osteoporosis. Front Med (Lausanne) 2024; 10:1288591. [PMID: 38274450 PMCID: PMC10808767 DOI: 10.3389/fmed.2023.1288591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. The clinical manifestations of various joint pain and bone destruction are common. RA has a high disability rate and is closely related to local and systemic osteoporosis (OP). RA can occur at any age, however, its incidence increases with age. Most patients are 40 to 50 years old with an incidence among women approximately 3 to 5 times more than among men. Osteoporosis is a kind of metabolic bone disease characterized by bone mass and bone microstructure damage and is one of the common complications of RA. Currently, in the clinic, more patients develop RA with OP symptoms. Therefore, both OP and RA-related factors should be considered in the OP treatment of RA. Currently, there is more and more research on RA combined with OP drugs, including basic drugs, bone resorption inhibitors, bone formation promoters, and anti-rheumatic drugs to improve the condition. The high cost or limited efficacy of certain Western drugs, coupled with their potential for adverse reactions during treatment highlight the pressing need for novel pharmaceuticals in clinical practice. In recent years, traditional Chinese medicine (TCM) can improve the bone formation and bone resorption indexes of patients with RA, regulate the balance of osteoclasts and osteoblasts, and regulate the immune inflammatory response, so as to treat RA combined with OP. This article discusses the advancements in single Chinese medicine and Chinese medicine combination treatments for RA complicated with OP, focusing on the mechanism of action and syndrome differentiation and classification, to offer new ideas for future clinical prevention and treatment.
Collapse
Affiliation(s)
- Zhuoxu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianquan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guihong Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
11
|
Ye JN, Su CG, Jiang YQ, Zhou Y, Sun WX, Zheng XX, Miao JT, Li XY, Zhu J. Effects of acupuncture on cartilage p38MAPK and mitochondrial pathways in animal model of knee osteoarthritis: A systematic evaluation and meta-analysis. Front Neurosci 2023; 16:1098311. [PMID: 36711149 PMCID: PMC9875597 DOI: 10.3389/fnins.2022.1098311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Background Most previous studies on acupuncture in the treatment of knee osteoarthritis (KOA) have focused on improving functional efficacy and safety, while related mechanisms have not been systematically reviewed. Acupuncture modulates cytokines to attenuate cartilage extracellular matrix degradation and apoptosis, key to the pathogenesis of KOA, but the mechanisms are complex. Objectives The purpose of this study is to assess the efficacy of acupuncture quantitatively and summarily in animal studies of KOA. Methods Nine databases including PubMed, Embase, Web of Science (including Medline), Cochrane library, Scopus, CNKI, Wan Fang, and VIP were searched to retrieve animal studies on acupuncture interventions in KOA published since the inception of the journal. Relevant literature was screened, and information extracted. Meta-analysis was performed using Revman 5.4 and Stata 17.0 software. Results The 35 included studies involved 247 animals, half of which were in acupuncture groups and half in model groups. The mean quality level was 6.7, indicating moderate quality. Meta-analysis showed that acupuncture had the following significant effects on cytokine levels in p38MAPK and mitochondrial pathways: (1) p38MAPK pathway: It significantly inhibits p38MAPK, interleukin-1beta (IL-1β), tumor necrosis factor alpha (TNF-α), phosphorylated (p)-p38MAPK, matrix metalloproteinase-13 (MMP-13), MMP-1, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMST-5) expression, and significantly increased the expression of collagen II and aggrecan. (2) mitochondrial pathway: It significantly inhibited the expression of Bcl-2-associated X protein (Bax), cysteine protease-3 (caspase-3), caspase-9, and Cytochrome-c (Cyt-c). And significantly increased the expression of B cell lymphocytoma-2 (Bcl-2). In addition, acupuncture significantly reduced chondrocyte apoptosis, Mankin's score (a measure of cartilage damage), and improved cartilage morphometric characteristics. Conclusion Acupuncture may inhibit cytokine expression in the p38MAPK pathway to attenuate cartilage extracellular matrix degradation, regulate cytokines in the mitochondrial pathway to inhibit chondrocyte apoptosis, and improve cartilage tissue-related phenotypes to delay cartilage degeneration. These findings provide possible explanations for the therapeutic mechanisms and clinical benefits of acupuncture for KOA. Systematic review registration https://inplasy.com, identifier INPLASY20 2290125.
Collapse
Affiliation(s)
- Jiang-nan Ye
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-guo Su
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-qing Jiang
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-xi Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-xia Zheng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-tao Miao
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-yue Li
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhu
- School of Acupuncture–Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Kulyar MFEA, Yao W, Mo Q, Ding Y, Zhang Y, Gao J, Li K, Pan H, Nawaz S, Shahzad M, Mehmood K, Iqbal M, Akhtar M, Bhutta ZA, Waqas M, Li J, Qi D. Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry. Animals (Basel) 2022; 12:ani12162028. [PMID: 36009620 PMCID: PMC9404426 DOI: 10.3390/ani12162028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jindong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
- Correspondence: (J.L.); (D.Q.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.L.); (D.Q.)
| |
Collapse
|
13
|
Yan CP, Wang XK, Jiang K, Yin C, Xiang C, Wang Y, Pu C, Chen L, Li YL. β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway. Front Cell Dev Biol 2022; 10:883228. [PMID: 35669516 PMCID: PMC9164109 DOI: 10.3389/fcell.2022.883228] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Bone defects are a global public health problem. However, the available methods for inducing bone regeneration are limited. The application of traditional Chinese herbs for bone regeneration has gained popularity in recent years. β-ecdysterone is a plant sterol similar to estrogen, that promotes protein synthesis in cells; however, its function in bone regeneration remains unclear. In this study, we investigated the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro and in vivo. MC3T3-E1 cells were used to test the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro. The results of the Cell Counting Kit-8 assay suggested that the proliferation of MC3T3-E1 cells was promoted by β-ecdysterone. Furthermore, β-ecdysterone influenced the expression of osteogenesis-related genes, and the bone regeneration capacity of MC3T3-E1 cells was detected by polymerase chain reaction, the alkaline phosphatase (ALP) test, and the alizarin red test. β-ecdysterone could upregulate the expression of osteoblastic-related genes, and promoted ALP activity and the formation of calcium nodules. We also determined that β-ecdysterone increased the mRNA and protein levels of components of the BMP-2/Smad/Runx2/Osterix pathway. DNA sequencing further confirmed these target effects. β-ecdysterone promoted bone formation by enhancing gene expression of the BMP-2/Smad/Runx2/Osterix signaling pathway and by enrichment biological processes. For in vivo experiments, a femoral condyle defect model was constructed by drilling a bone defect measuring 3 mm in diameter and 4 mm in depth in the femoral condyle of 8-week-old Sprague Dawley male rats. This model was used to further assess the bone regenerative functions of β-ecdysterone. The results of micro-computed tomography showed that β-ecdysterone could accelerate bone regeneration, exhibiting higher bone volume, bone surface, and bone mineral density at each observation time point. Immunohistochemistry confirmed that the β-ecdysterone also increased the expression of collagen, osteocalcin, and bone morphogenetic protein-2 in the experiment group at 4 and 8 weeks. In conclusion, β-ecdysterone is a new bone regeneration regulator that can stimulate MC3T3-E1 cell proliferation and induce bone regeneration through the BMP-2/Smad/Runx2/Osterix pathway. This newly discovered function of β-ecdysterone has revealed a new direction of osteogenic differentiation and has provided novel therapeutic strategies for treating bone defects.
Collapse
Affiliation(s)
- Cai-Ping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xing-Kuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lu Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu-Ling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
14
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
15
|
Todorova V, Ivanov K, Ivanova S. Comparison between the Biological Active Compounds in Plants with Adaptogenic Properties ( Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). PLANTS (BASEL, SWITZERLAND) 2021; 11:64. [PMID: 35009068 PMCID: PMC8747685 DOI: 10.3390/plants11010064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND In the 1960s, research into plant adaptogens began. Plants with adaptogenic properties have rich phytochemical compositions and have been used by humanity since ancient times. However, it is not still clear whether the adaptogenic properties are because of specific compounds or because of the whole plant extracts. The aim of this review is to compare the bioactive compounds in the different parts of these plants. METHODS The search strategy was based on studies related to the isolation of bioactive compounds from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. RESULTS This review includes data from 259 articles. The phytochemicals isolated from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng were described and classified in several categories. CONCLUSIONS Plant species have always played an important role in drug discovery because their effectiveness is based on the hundreds of years of experience with folk medicine in different nations. In our view, there is great potential in the near future for some of the phytochemicals found in these plants species to become pharmaceutical agents.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|
16
|
Per2 attenuates LPS-induced chondrocyte injury through the PTEN/PI3K/Akt signalling pathway. Biosci Rep 2021; 40:224736. [PMID: 32426819 PMCID: PMC7256672 DOI: 10.1042/bsr20200417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
This research aimed to explore the role of period circadian clock 2 (Per2) in the evolution of osteoarthritis (OA) and the relevant mechanisms. Per2 messenger RNA (mRNA) and protein levels were markedly reduced in NHAC-kn cells treated with 5 µg/ml lipopolysaccharide (LPS) for 12 h. Then, pcDNA3.1-Per2 and si-Per2 were recruited to boost and reduce the expression of Per2, respectively. MTT assay, apoptosis analysis and enzyme-linked immunosorbent assay (ELISA) results showed that Per2 increased cell proliferation, while inhibited apoptosis and inflammation. Furthermore, the PTEN/PI3K/Akt signalling pathway was activated by Per2 overexpression; the CO-IP data confirmed that Per2 specifically bound to PTEN. Through employing IGF-1, a PI3K activator, we determined that Per2-mediated inflammation response in LPS-stimulated NHAC-kn cells through the PTEN/PI3K/Akt signalling pathway. In summary, the present study indicates that Per2 may serve as a novel therapeutic target through activating the PTEN/PI3K/Akt signalling pathway.
Collapse
|
17
|
Treatment of tibial dyschondroplasia with traditional Chinese medicines: "Lesson and future directions". Poult Sci 2020; 99:6422-6433. [PMID: 33248557 PMCID: PMC7704743 DOI: 10.1016/j.psj.2020.08.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/14/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) is a metabolic tibiotarsal bone disease in rapidly growing birds throughout the world, which is characterized by gait disorders, reduced growth, and in an unrecoverable lameness in many cases. The short production cycle in chickens, long metabolism cycle in most of the drugs with the severe drug residue, and high treatment cost severely restrict the enthusiasm for the treatment of TD. Traditional Chinese medicine (TCM) has been used for the prevention, treatment, and cure of avian bone diseases. Previously, a couple of traditional Chinese medicines has been reported being useful in treating TD. This review will discuss the TCM used in TD and the alternative TCM to treat TD. Selecting a TCM approach and its pharmacologic effects on TD chickens mainly focused on the differentiation, proliferation, and apoptosis of chondrocytes, angiogenesis, matrix metabolism, oxidative damage, cytokines, and calcification of cartilage in tibia.
Collapse
|
18
|
Jian GH, Su BZ, Zhou WJ, Xiong H. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Eucommia ulmoides- Radix Achyranthis Bidentatae against osteoarthritis. BioData Min 2020; 13:12. [PMID: 32874205 PMCID: PMC7456016 DOI: 10.1186/s13040-020-00221-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoarthritis is a disabling disease, which seriously affects the quality of life of patients. Increasing evidence has indicated that Chinese herbal medicine including Eucommia ulmoides (EU) and Radix Achyranthis Bidentatae (RAB) have potential in the treatment of osteoarthritis, and this is associated with their multi-target and multi-link action characteristics. Although their potential anti-arthritic activity has been reported, the exact mechanism of EU-RAB action in osteoarthritis remains unexplored. Therefore, this study explores the mechanism of EU-RAB against osteoarthritis using network pharmacology and molecular docking technology. METHODS Public databases including TCMSP、BATMAN-TCM、OMIM and Genecards were used to predict the bioactive ingredients and putative targets of EU-RAB against osteoarthritis. Enrichment analysis was performed to expound the biological functions and associated pathways of the hub targets. Cytoscape software was used to construct a "compounds-targets-pathways" network for elucidating the comprehensive molecular mechanism of EU-RAB against osteoarthritis. Molecular docking was used to verify the correlation between the main active ingredients and hub targets. RESULTS Network pharmacological analysis of EU-RAB in the treatment of osteoarthritis, identified 50 active ingredients including quercetin, kaempferol, wogonin, and baicalein with important biological effect. A total of 68 key targets were screened, including IL-6, EGFR, MAPK8, etc., and they were found to be enriched in a series of signaling pathways, such as apoptosis, TNF, MAPK, PI3K/AKT, and IL-17 signaling pathways. Moreover, molecular docking analysis showed that the main ingredients were tightly bound to the core targets, further confirming the anti-arthritic effects. CONCLUSION Based on network pharmacology and molecular docking analysis, the present study provides insights into the potential mechanism of EU-RAB in osteoarthritis after successfully screening for associated key target genes and signaling pathways. These findings further provide a theoretical basis for further pharmacological research into the potential mechanism of EU-RAB in osteoarthritis.
Collapse
Affiliation(s)
- Gong-hui Jian
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| | - Bing-zhu Su
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| | - Wen-jia Zhou
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| |
Collapse
|
19
|
Siu WS, Shum WT, Cheng W, Wong CW, Shiu HT, Ko CH, Leung PC, Lam CWK, Wong CK. Topical application of Chinese herbal medicine DAEP relieves the osteoarthritic knee pain in rats. Chin Med 2019; 14:55. [PMID: 31827595 PMCID: PMC6902578 DOI: 10.1186/s13020-019-0278-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background The potential adverse effects of conventional oral pharmacotherapy of osteoarthritis (OA) restrict their long-term use. Topical application of a Chinese herbal paste for relieving OA knee pain can be effective and safe. However, evidence-based scientific research is insufficient to support its application worldwide. The aim of this study was to investigate the in vivo efficacy of a topical Chinese herbal paste on relieving OA knee pain and its underlying mechanism. Methods An OA rat model was developed by anterior cruciate ligament transection (ACLT) followed by treadmill running. A herbal paste including Dipsaci Radix, Achyranthis Bidentatae Radix, Eucommiae Cortex and Psoraleae Fructus, named as DAEP, was applied topically on the knee joint of the rats (DAEP). The rats without DAEP treatment served as Control. Rats with surgery but without ACLT, treadmill running and DAEP treatment acted as Sham. The morphologic change of the knee joint was observed radiographically. Nociception from the knee of the rats was assessed using Incapacitent test and CatWalk gait system. The therapeutic mechanism was investigated by analyzing the gene and protein expression of inflammatory markers via qPCR and Western blot, respectively. Results Radiographic images showed less destruction at the posterior tibial plateau of the DAEP group compared with the Control after 2 weeks of treatment. The static weight ratio and the gait parameters of the Control were reduced significantly via Incapacitance test and CatWalk gait analysis, respectively. DAEP treatment increased the Print Area and Maximum Intensity significantly compared with the Control. DAEP significantly suppressed the upregulation of gene expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS). Conclusions DAEP exhibited its effect via the nuclear factor (NF)-κB pathway by suppressing the phosphorylation of IκB kinase αβ (p-IKKαβ) and cyclooxygenase-2 (COX-2) protein expression. This study provides scientific evidence to support the clinical application of the Chinese herbal paste on reliving OA pain.
Collapse
Affiliation(s)
- Wing Sum Siu
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,2State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Wai Ting Shum
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,2State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Wen Cheng
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,2State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Chun Wai Wong
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,2State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Hoi Ting Shiu
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Chun Hay Ko
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Ping Chung Leung
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,2State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China
| | - Christopher Wai Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chun Kwok Wong
- 1Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,2State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, NT Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT Hong Kong SAR, China.,5Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Lee TG, Hyun SW, Jo K, Park B, Lee IS, Song SJ, Kim CS. Achyranthis radix Extract Improves Urban Particulate Matter-Induced Dry Eye Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183229. [PMID: 31487776 PMCID: PMC6765805 DOI: 10.3390/ijerph16183229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Dry eye disease (DED) is a multifactorial inflammatory disease that severely impairs patients' quality of life. Particulate matter comprises a harmful mixture of particles less than 10 μm in size, which on contact with the eye, causes inflammation in the cornea/conjunctival epithelium, threatening eye health and triggering the onset of DED. Achyranthis radix is an ingredient of traditional medicine generally used for treating osteoporosis, trauma, and thrombosis in Asian countries. However, the effect of Achyranthis radix on eye health has not been elucidated. In this study, we evaluate the protective effect of Achyranthis radix hot water extract (ARE) in a rat model of urban particulate matter (UPM)-induced DED. UPM with or without ARE were topically administered on both eyes thrice daily for 10 days. ARE induced tear secretion and improved corneal irregularity. Additionally, ARE treatment protected the corneal epithelial cells from UPM-induced apoptosis. It also restored rMuc4 expression in the cornea and increased goblet cell density in the conjunctiva. These results are suggestive of the potential of ARE as a topical therapeutic agent for treating DED.
Collapse
Affiliation(s)
- Tae Gu Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Wang Hyun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Kyuhyung Jo
- Non-clinical Research Collaboration Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Bongkyun Park
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Ik Soo Lee
- Non-clinical Research Collaboration Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Su Jeong Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Korean Convergence Medicine, University of Science Technology (UST), Daejeon 34054, Korea.
| |
Collapse
|
21
|
Lin LW, Tsai FH, Lan WC, Cheng YD, Lee SC, Wu CR. Steroid-Enriched Fraction of Achyranthes bidentata Protects Amyloid β Peptide 1-40-Induced Cognitive Dysfunction and Neuroinflammation in Rats. Mol Neurobiol 2019; 56:5671-5688. [PMID: 30666561 DOI: 10.1007/s12035-018-1436-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
The roots of Achyranthes bidentata Blume (AB) is commonly used in the treatment of osteoporosis and dementia in traditional Chinese medicine. Pharmacological reports evidenced that AB possessed anti-osteoarthritis effects. However, there is little literature about the anti-dementia activities of AB. The present study was designed to prepare steroid-enriched fraction of AB (ABS) and investigate whether ABS can protect from cognitive dysfunction and neuroinflammation against Aβ 1-40-induced Alzheimer's disease (AD) model in rats. ABS only contained 135.11 ± 4.28 mg of ecdysterone per gram. ABS (50 mg/kg) reversed the dysfunction of exploratory activity and memory function on plus-maze and Morris water maze caused by Aβ 1-40 in rats. ABS (50 mg/kg) also decreased amyloid deposition, neurofibrillary tangle, neural damage, activated astrocyte, and microglial caused by Aβ 1-40. Furthermore, ABS reversed the phenomenon of neural oxidative damage and neuroinflammation, including the higher levels of MDA and cytokines, and the lower activities of antioxidant enzymes and GSH levels caused by Aβ 1-40 in rat cortex and hippocampus. Finally, ABS restored the activation of ERK pathway and decreased NF-κB phosphorylation and translocation altered by Aβ 1-40. ABS alone (50 mg/kg) promoted cognitive function, activated brain antioxidant defense system, and decreased brain TNF-α levels in sham group. Therefore, ABS has the cognition-promoting and antidementia potential. Steroids especial ecdysterone are major active components of AB. The action mechanism is due to decreasing oxidative stress and neuroinflammation through modulating ERK pathway, NF-κB phosphorylation, and translocation in Aβ 1-40-induced AD rat model.
Collapse
Affiliation(s)
- Li-Wei Lin
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Fan-Hsuan Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Wan-Cheng Lan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan
| | - Yih-Dih Cheng
- Department of Pharmacy, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Sheng-Chi Lee
- Pintung Branch, Kaohsiung Veterans General Hospital, Pitung, 91245, Taiwan.
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
22
|
Tricetin Protects Rat Chondrocytes against IL-1 β-Induced Inflammation and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4695381. [PMID: 31231454 PMCID: PMC6512055 DOI: 10.1155/2019/4695381] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 01/25/2023]
Abstract
Tricetin is a well-studied flavonoid with a wide range of pharmacological activities in cancer and inflammation. However, the ability of tricetin to ameliorate the inflammation that occurs in osteoarthritis (OA) has not been determined. This study explored the effects of tricetin on interleukin- (IL-) 1β-induced rat chondrocytes. Chondrocytes harvested from rat cartilage were incubated in vitro with tricetin in the presence of IL-1β. The expression of matrix metalloproteinase- (MMP-) 1, MMP-3, MMP-13, nitric oxide (NO), prostaglandin E2 (PGE2), Bax, and Bcl-2 was evaluated by real-time-PCR, ELISA, Griess reaction, and western blotting. Caspase-3 activity in chondrocytes was determined using a caspase-3 activity assay and MAPK pathway activity by western blotting. Tricetin decreased the expression of MMP-1, MMP-3, and MMP-13 at both the gene and protein level in IL-1β-induced rat chondrocytes. It also inhibited IL-1β-induced NO and PGE2 production, by modulating inducible NO synthase and cyclooxygenase 2 gene expression. An antiapoptotic role of tricetin involving the Bax/Bcl-2/caspase-3 pathway was also determined. The chondroprotective effect of tricetin was shown to be partly related to the suppression of the MAPK signaling pathway. The results of this study demonstrate the chondroprotective role of tricetin, based on its anticatabolic, anti-inflammatory, and antiapoptotic effects in chondrocytes. The therapeutic potential of tricetin in OA patients should be explored in future studies.
Collapse
|
23
|
Pan T, Shi X, Chen H, Chen R, Wu D, Lin Z, Zhang J, Pan J. Geniposide Suppresses Interleukin-1β-Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF-κB Signaling Pathway. Inflammation 2018; 41:390-399. [PMID: 29214554 DOI: 10.1007/s10753-017-0694-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that is principally characterized by progressive joint dysfunction and cartilage degradation. Inflammation and apoptosis play critical roles in the progression of OA. Geniposide (GPO), one of the principal components of the fruit of Gardenia jasminoides Ellis, has been reported to have anti-inflammatory and other pharmacological effects. In this study, we performed in vitro experiments on rat chondrocytes to examine the therapeutic effects of GPO on OA and investigated its effects in vivo in a rat model of OA induced by medial meniscal tear (MMT). The results suggest that GPO can inhibit the expression of INOS, COX-2, and MMP-13 in vitro, and promote the expression of collagen II in rat chondrocytes stimulated with interleukin-1β (IL-1β). In addition, we also found that GPO can inhibit the expression of pro-apoptotic proteins such as Bax, Cyto-c, and C-caspase3 and increase the expression of the anti-apoptotic protein Bcl-2. These changes may be related to GPO-induced inhibition of the IL-1β-induced activation of the PI3K/Akt/NF-κB signaling pathway. In vivo, we also found that GPO can limit the development of OA in a rat model. Taken together, the above results indicate that GPO has potential therapeutic value for treating OA.
Collapse
Affiliation(s)
- Tianlong Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Xuchao Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Huan Chen
- Department of Orthopaedics, Yongjia County People's Hospital, 37 Yong Zhong Road, Shang Tang Town, Yongjia County, Zhejiang, 325100, China
| | - Rong Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Dengying Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Jingdong Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
24
|
Tang YH, Yue ZS, Xin DW, Zeng LR, Xiong ZF, Hu ZQ, Xu CD. β‑Ecdysterone promotes autophagy and inhibits apoptosis in osteoporotic rats. Mol Med Rep 2017; 17:1591-1598. [PMID: 29138818 PMCID: PMC5780099 DOI: 10.3892/mmr.2017.8053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/19/2017] [Indexed: 01/28/2023] Open
Abstract
Osteoporosis is an aging process of skeletal tissues with characteristics of reductions in bone mass and microarchitectural deterioration of bone tissue. The present study aimed to investigate the effects of glucocorticoid-induced osteoporosis on osteoblasts and to examine the roles of β-ecdysterone (β-Ecd) involved. In the present study, an in vivo model of osteoporosis was established through the subcutaneous implantation of prednisolone (PRED) into Sprague-Dawley rats, with or without a subcutaneous injection of β-Ecd (5 or 10 mg/kg body weight). Expression of Beclin-1 and microtubule-associated protein 1A/1B-light chain 3I/II and apoptosis in lumbar vertebrae tissues was measured by immunofluorescence and TUNEL assays, respectively. Serum concentration of calcium and phosphorus, and the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were measured by biochemical assay. Reverse transcription-quantitative polymerase chain reaction and western blotting was used for detect the expression of related genes and proteins. PRED treatment inhibited bone formation by decreasing bone mineral density, and suppressing the expression of Runt-related transcription factor 2 and bone morphogenetic protein 2, while enhancing the activity of alkaline phosphatase, upregulating the expression of receptor activator of nuclear factor-κB ligand, and increasing the serum content of calcium, phosphorus and tartrate-resistant acid phosphatase in rats. Additionally, PRED was revealed to inhibit autophagy through the downregulation of Beclin-1, autophagy protein 5 and microtubule-associated protein 1A/1B-light chain 3I/II expression, whereas it induced the apoptosis, through the activation of caspase-3 and the suppression of apoptosis regulator BCL2 expression. Notably, the PRED-induced alterations in bone formation, autophagy and apoptosis were revealed to be attenuated by β-Ecd administration. In conclusion, the findings of the present study suggested that β-Ecd may be a promising candidate for the development of therapeutic strategies for the treatment of osteoporosis, through the induction of autophagy and the inhibition of apoptosis in vivo.
Collapse
Affiliation(s)
- Yang-Hua Tang
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Zhen-Shuang Yue
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Da-Wei Xin
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Lin-Ru Zeng
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Zhen-Fei Xiong
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Zhong-Qing Hu
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Can-Da Xu
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| |
Collapse
|
25
|
Cao Y, Gu C, Zhao F, Tang Y, Cui X, Shi L, Xu L, Yin L. Therapeutic Effects of Cyathula officinalis Kuan and Its Active Fraction on Acute Blood Stasis Rat Model and Identification Constituents by HPLC-QTOF/MS/MS. Pharmacogn Mag 2017; 13:693-701. [PMID: 29200735 PMCID: PMC5701413 DOI: 10.4103/pm.pm_560_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cyathula officinalis Kuan is widely used in the clinics for the treatment of blood stasis in China. OBJECTIVE To evaluate the improving blood rheology and anti-inflammatory properties of C. officinalis Kuan extract (CO) and its active fraction (ACO) on acute blood stasis model Wistar rats and characterize the correlative constituents. MATERIALS AND METHODS CO at 0.26, 0.53, and 1.04 g/kg and ACO at 0.38, 0.75, and 1.5 g/kg were administered to acute blood stasis model Wistar rats for 3 days. Whole blood viscosity, plasma viscosity, and the levels of interleukin-6 (IL-6), nitric oxide (NO), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) in the plasma were measured. HPLC-QTOF/MS/MS method was used to identify the major constituents of ACO; the properties of two representative components (cyasterone and chikusetsusaponin IV) from ACO on thrombin-induced human umbilical vein endothelial cells damage model were also assessed by the levels of thromboxane A2 (TXA2), endothelin (ET), malondialdehyde (MDA), COX-2, endothelial nitric oxide synthase (eNOS), and superoxide dismutase (SOD). RESULTS CO and ACO significantly reduced whole blood viscosity, plasma viscosity, and levels of IL-6, NO, TNF-α, and COX-2 in vivo. Forty compounds were identified from ACO, mainly as phytoecdysteroids and saponins. Cyasterone and chikusetsusaponin IV could significantly inhibit levels of TXA2, ET, MDA, and COX-2 and promote the activities of eNOS and SOD in vitro. CONCLUSION CO and ACO possessed significant improving blood rheology and anti-inflammatory effects on acute blood stasis model rats and the representative components Cyasterone and chikusetsusaponin IV showed significant anti-inflammatory, antioxidant, and anticoagulant effects in vitro. SUMMARY Cyathula officinalis Kuan is widely used in the clinic for the treatment of blood stasis in ChinaThe C. officinalis Kuan extract and the active fraction of C. officinalis Kuan (ACO) possessed significant improving blood rheology and anti-inflammatory effects on acute blood stasis model ratsForty compounds were identified from ACO, mainly as phytoecdysteroids and saponins Abbreviations used: TCM: Traditional Chinese Medicine, CO: Cyathula officinalis Kuan extract, ACO: Active fraction of Cyathula officinalis Kuan, ROS: Reactive oxygen species, IL-6: Interleukin-6, TNF-α: Tumor necrosis factor alpha, NO: Nitric oxide, COX-2: Cyclooxygenase-2, TXA2: Thromboxane A2, ET: Endothelin, MDA: Malondialdehyde, eNOS: Endothelial nitric oxide synthase, SOD: Superoxide dismutase, ESI: Electronic spray ionization, ELISA: Enzyme-linked immunosorbent assay, HUVECs: Human umbilical vein endothelial cells, DMEM: Dulbecco's modified Eagle medium, MMP: Matrix metalloproteinase.
Collapse
Affiliation(s)
- Yanmei Cao
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Cuicui Gu
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Fangli Zhao
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Yuanlin Tang
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Xiaobing Cui
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Le Shi
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Li Xu
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Lian Yin
- Department of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| |
Collapse
|
26
|
Zhou X, Siu WS, Zhang C, Liu CL, Cheng L, Kwok HF, Fung CH, Tam JCW, Lau CP, Lau CBS, Leung PC, Hung LK, Ko CH. Whole extracts of Radix Achyranthis Bidentatae and Radix Cyathulae promote angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish in vivo. Exp Ther Med 2017; 13:1032-1038. [PMID: 28450937 PMCID: PMC5403333 DOI: 10.3892/etm.2017.4053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2016] [Indexed: 01/04/2023] Open
Abstract
Although Radix Achyranthis Bidentatae (RAB) and Radix Cyathulae (RC) are from two different medicinal plants, they are both used as 'Niu-Xi', a widely used traditional Chinese medicine that is believed to stimulate menstruation and affect bone injury. Angiogenesis is actively involved in treating these illnesses. The aim of the present study was to investigate whether the whole extracts of RAB and RC possess pro-angiogenic effects. In order to examine this idea whole extracts of RAB and RC were extracted with boiling water followed by ethanol, respectively. Results from the MTT, wound healing and tube formation assays in human umbilical vein endothelial cells (HUVECs) in vitro revealed that the whole extracts of RAB and RC did not increase cell proliferation or tube formation, but enhanced cell migration. Their angiogenic effects were also confirmed in zebrafish in vivo via increasing the sprout numbers in the sub-intestinal vessel. As determined by quantitative polymerase chain reaction, the whole extracts of RAB and RC both regulated the expression of cell migration-related genes in zebrafish. It is concluded that the whole extracts of RAB and RC induced angiogenesis in HUVECs in vitro and in zebrafish in vivo via increasing cell migration.
Collapse
Affiliation(s)
- Xuelin Zhou
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
| | - Cheng Zhang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Cheuk-Lun Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Ling Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Hin-Fai Kwok
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Chak-Hei Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
| | - Jacqueline Chor-Wing Tam
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Ching-Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Leung-Kim Hung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Chun-Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Shatin, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
27
|
Li J, Wang C, Han X, Qi W, Chen Y, Wang T, Zheng Y, Zhao X. Transcriptome Analysis to Identify the Putative Biosynthesis and Transport Genes Associated with the Medicinal Components of Achyranthes bidentata Bl. FRONTIERS IN PLANT SCIENCE 2016; 7:1860. [PMID: 28018396 PMCID: PMC5149546 DOI: 10.3389/fpls.2016.01860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 05/27/2023]
Abstract
Achyranthes bidentata is a popular perennial medicine herb used for 1000s of years in China to treat various diseases. Although this herb has multiple pharmaceutical purposes in China, no transcriptomic information has been reported for this species. In addition, the understanding of several key pathways and enzymes involved in the biosynthesis of oleanolic acid and ecdysterone, two pharmacologically active classes of metabolites and major chemical constituents of A. bidentata root extracts, is limited. The aim of the present study was to characterize the transcriptome profile of the roots and leaves of A. bidentata to uncover the biosynthetic and transport mechanisms of the active components. In this study, we identified 100,987 transcripts, with an average length of 1146.8 base pairs. A total of 31,634 (31.33%) unigenes were annotated, and 12,762 unigenes were mapped to 303 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. Moreover, we identified a total of 260 oleanolic acid and ecdysterone genes encoding biosynthetic enzymes. Furthermore, the key enzymes involved in the oleanolic acid and ecdysterone synthesis pathways were analyzed using quantitative real-time polymerase chain reaction, revealing that the roots expressed these enzymes to a greater extent than the leaves. In addition, we identified 85 ATP-binding cassette transporters, some of which might be involved in the translocation of secondary metabolites.
Collapse
Affiliation(s)
- Jinting Li
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan ProvinceXinxiang, China
| | - Can Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Xueping Han
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Wanzhen Qi
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Yanqiong Chen
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Taixia Wang
- College of Life Sciences, Henan Normal UniversityXinxiang, China
| | - Yi Zheng
- Boyce Thompson Institute, IthacaNY, USA
| | - Xiting Zhao
- College of Life Sciences, Henan Normal UniversityXinxiang, China
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan ProvinceXinxiang, China
| |
Collapse
|
28
|
Controlled Release of Interleukin-1 Receptor Antagonist from Hyaluronic Acid-Chitosan Microspheres Attenuates Interleukin-1 β-Induced Inflammation and Apoptosis in Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6290957. [PMID: 27872853 PMCID: PMC5107216 DOI: 10.1155/2016/6290957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 04/10/2016] [Indexed: 02/02/2023]
Abstract
This paper investigates the protective effect of interleukin-1 receptor antagonist (IL-1Ra) released from hyaluronic acid chitosan (HA-CS) microspheres in a controlled manner on IL-1β-induced inflammation and apoptosis in chondrocytes. The IL-1Ra release kinetics was characterized by an initial burst release, which was reduced to a linear release over eight days. Chondrocytes were stimulated with 10 ng/ml IL-1β and subsequently incubated with HA-CS-IL-1Ra microspheres. The cell viability was decreased by IL-1β, which was attenuated by HA-CS-IL-1Ra microspheres as indicated by an MTT assay. ELISA showed that HA-CS-IL-1Ra microspheres inhibited IL-1β-induced inflammation by attenuating increases in NO2− and prostaglandin E2 levels as well as increase in glycosaminoglycan release. A terminal deoxyribonucleotide transferase deoxyuridine triphosphate nick-end labeling assay revealed that the IL-1β-induced chondrocyte apoptosis was decreased by HA-CS-IL-1Ra microspheres. Moreover, HA-CS-IL-1Ra microspheres blocked IL-1β-induced chondrocyte apoptosis by increasing B-cell lymphoma 2 (Bcl-2) and decreasing Bcl-2-associated X protein and caspase-3 expressions at mRNA and protein levels, as indicated by reverse-transcription quantitative polymerase chain reaction and western blot analysis, respectively. The results of the present study indicated that HA-CS-IL-1Ra microspheres as a controlled release system of IL-1Ra possess potential anti-inflammatory and antiapoptotic properties in rat chondrocytes due to their ability to regulate inflammatory factors and apoptosis associated genes.
Collapse
|
29
|
Yang J, Lu Y, Guo A. Platelet-rich plasma protects rat chondrocytes from interleukin-1β-induced apoptosis. Mol Med Rep 2016; 14:4075-4082. [PMID: 27665780 PMCID: PMC5101884 DOI: 10.3892/mmr.2016.5767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2016] [Indexed: 01/21/2023] Open
Abstract
Interleukin (IL)-1β-induced chondrocyte apoptosis is associated with the pathogenesis of arthritis. Platelet‑rich plasma (PRP), which is derived from the patient's own blood and contains numerous growth factors, has the potential for arthritis treatment. Therefore, the present study aimed to determine the effects of PRP on chondrocyte apoptosis, under IL‑1β‑induced pathological conditions. Chondrocytes isolated from the knee joint of Sprague Dawley rats were used in the present study. Cell viability was determined using the Cell Counting kit‑8 assay, cell apoptosis was evaluated by flow cytometry, and the expression of apoptosis‑, anabolism‑ and catabolism-associated genes were detected by quantitative polymerase chain reaction; protein expression was detected by western blot analysis. The results demonstrated that 10% PRP in the culture medium increased chondrocyte proliferation, whereas IL‑1β induced cell apoptosis. Treatment with PRP significantly attenuated cell apoptosis in IL‑1β‑treated chondrocytes, and altered apoptosis‑associated expression at the gene and protein level. Furthermore, treatment with PRP significantly reduced matrix metalloproteinase production and promoted anabolism of cartilage extracellular matrix under IL‑1β treatment. The present study demonstrated the protective effects of PRP on chondrocyte apoptosis and extracellular matrix anabolism, and provided scientific evidence to support the potential use of PRP as a promising therapeutic strategy for the treatment of arthritis.
Collapse
Affiliation(s)
- Jinjiang Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ying Lu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
30
|
Hong IH, Choi JY, Kim AY, Lee EM, Kim JH, Park JH, Choi SW, Jeong KS. Anti-rheumatoid arthritic effect of fermented Adlay and Achyranthes japonica Nakai on collagen-induced arthritis in mice. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1202207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
31
|
Pan Z, Niu Y, Liang Y, Zhang X, Dong M. β-Ecdysterone Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Apoptosis via Mitochondria-Dependent Mechanism: Involvement of p38(MAPK)-p53 Signaling Pathway. Neurotox Res 2016; 30:453-66. [PMID: 27229883 DOI: 10.1007/s12640-016-9631-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/24/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder pathologically characterized by loss of dopaminergic neurons in the substantia nigra. No curative therapy is available for PD. We recently found that phytoestrogen β-ecdysterone (β-Ecd) is able to reduce MPP(+)-induced apoptosis in PC12 cells. This study investigated the potential of β-Ecd to protect against SH-SY5Y cell apoptosis induced by the PD-related neurotoxin 6-hydroxydopamine (6-OHDA) and the underlying mechanism for this cytoprotection. In the present study, pretreatment with β-Ecd significantly reduced 6-OHDA-induced apoptosis of SH-SY5Y cells by a mitochondria-dependent pathway, as indicated by downregulation of Bax and PUMA (p53 upregulated modulator of apoptosis) expression, suppressing ΔΨm loss, inhibiting cytochrome c release, and attenuating caspase-9 activation. Furthermore, we showed that the inhibition of p38 mitogen-activated protein kinase (p38(MAPK))-dependent p53 promoter activity contributed to the protection of SH-SY5Y cells from apoptosis, which was validated by the use of SB203580 or p38β dominant negative (DN) mutants. Additionally, knock-down apoptosis signal-regulating kinase 1 (ASK1) by specific shRNA and blockade reactive oxygen species (ROS) by pharmacological inhibitor competently prevented β-Ecd-mediated inhibition of p38(MAPK) and ASK1 phosphorylation, respectively. These data provide the first evidence that β-Ecd protects SH-SY5Y cells against 6-OHDA-induced apoptosis, possibly through mitochondria protection and p53 modulation via ROS-dependent ASK1-p38(MAPK) pathways. The neuroprotective effects of β-Ecd make it a promising candidate as a therapeutic agent for PD.
Collapse
Affiliation(s)
- Zhi Pan
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China
| | - Yini Liang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, 333 BuKui Street, Jianhua District, Qiqihar, 161006, China.
| |
Collapse
|
32
|
Liu Z, Ma C, Shen J, Wang D, Hao J, Hu Z. SDF‑1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF‑κB pathway. Mol Med Rep 2016; 14:783-9. [PMID: 27220474 PMCID: PMC4918601 DOI: 10.3892/mmr.2016.5341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell-derived factor-1 (SDF-1)/C-X-C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF-1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF-1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor-κB (NF-κB) signaling pathway was investigated using CXCR4-siRNA and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF-1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF-1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post-transfection with CXCR4 siRNA compared with SDF-1 stimulation alone. Furthermore, SDF-1 treatment increased the level of phosphorylated NF-κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF-1. Taken together, SDF-1-mediated apoptosis was suppressed by NF-κB inhibition using PDTC. In conclusion, the SDF-1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF-κB pathway, thus suggesting that SDF-1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases.
Collapse
Affiliation(s)
- Zongchao Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chuan Ma
- Department of Orthopedic Surgery, The Traditional Chinese Medicine Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jieliang Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dawu Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie Hao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
33
|
Lee GJ, Cho IA, Kang KR, Kim DK, Sohn HM, You JW, Oh JS, Seo YS, Yu SJ, You JS, Kim CS, Kim SG, Im HJ, Kim JS. Biological Effects of the Herbal Plant-Derived Phytoestrogen Bavachin in Primary Rat Chondrocytes. Biol Pharm Bull 2016; 38:1199-207. [PMID: 26235583 DOI: 10.1248/bpb.b15-00198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to examine the anabolic and anticatabolic functions of bavachin in primary rat chondrocytes. With bavachin treatment, chondrocytes survived for 21 d without cell proliferation, and the proteoglycan content and extracellular matrix increased. Short-term monolayer culture of chondrocytes showed that gene induction of both aggrecan and collagen type II, major extracellular matrix components, was significantly upregulated by bavachin. The expression and activities of cartilage-degrading enzymes such as matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs were inhibited significantly by bavachin, while tissue inhibitors of metalloprotease were significantly upregulated. Bavachin inhibits the expression of inducible nitric oxide synthase, a representative catabolic factor, and downregulated the expression of nitric oxide, cyclooxygenase-2, and prostaglandin E2 in a dose-dependent manner in chondrocytes. Our results suggest that the bavachin has anabolic and potent anticatabolic biological effects on chondrocytes, which may have considerable promise in treating articular cartilage degeneration in the future.
Collapse
Affiliation(s)
- Gyeong-Je Lee
- Department of Prosthodontics, School of Dentistry, Chosun University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang P, Li SS, Wang XH. Myricetin Exerts Anti-osteoarthritic Effects in IL-1β Stimulated SW1353 Cells via Regulating Matrix Metalloproteinases and Modulating JNK/P38MAPK/Ap-1/c-Fos and JAK/STAT Signalling. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.440.450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
A Network Pharmacology Approach to Uncover the Pharmacological Mechanism of XuanHuSuo Powder on Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3246946. [PMID: 27110264 PMCID: PMC4823500 DOI: 10.1155/2016/3246946] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
As the most familiar type of arthritis and a chronic illness of the joints, Osteoarthritis (OA) affects a great number of people on the global scale. XuanHuSuo powder (XHSP), a conventional herbal formula from China, has been extensively applied in OA treatment. Nonetheless, its pharmacological mechanism has not been completely expounded. In this research, a network pharmacology approach has been chosen to study the pharmacological mechanism of XHSP on OA, and the pharmacology networks were established based on the relationship between four herbs found in XHSP, compound targets, and OA targets. The pathway enrichment analysis revealed that the significant bioprocess networks of XHSP on OA were regulation of inflammation, interleukin-1β (IL-1β) production and nitric oxide (NO) biosynthetic process, response to cytokine or estrogen stimuli, and antiapoptosis. These effects have not been reported previously. The comprehensive network pharmacology approach developed by our research has revealed, for the first time, a connection between four herbs found in XHSP, corresponding compound targets, and OA pathway systems that are conducive to expanding the clinical application of XHSP. The proposed network pharmacology approach could be a promising complementary method by which researchers might better evaluate multitarget or multicomponent drugs on a systematic level.
Collapse
|
36
|
Sheu SY, Ho SR, Sun JS, Chen CY, Ke CJ. Arthropod steroid hormone (20-Hydroxyecdysone) suppresses IL-1β-induced catabolic gene expression in cartilage. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:1. [PMID: 25617057 PMCID: PMC4310028 DOI: 10.1186/s12906-015-0520-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Background In osteoarthritis (OA), the imbalance of chondrocytes’ anabolic and catabolic factors can induce cartilage destruction. Interleukin-1 beta (IL-1β) is a potent pro-inflammatory cytokine that is capable of inducing chondrocytes and synovial cells to synthesize MMPs. The hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by Epas1) is the catabolic transcription factor in the osteoarthritic process. The purpose of this study is to validate the effects of ecdysteroids (Ecd) on IL-1β- induced cartilage catabolism and the possible role of Ecd in treatment or prevention of early OA. Methods Chondrocytes and articular cartilage was harvested from newborn ICR mice. Ecd effect on chondrocytes viability was tested and the optimal concentration was determined by MTT assay. The effect of HIF-2α (EPAS1) in cartilage catabolism simulated by IL-1β (5 ng/ml) was evaluated by articular cartilage explants culture. The effects of Ecd on IL-1β-induced inflammatory conditions and their related catabolic genes expression were analyzed. Results Interleukin-1β (IL-1β) treatment on primary mouse articular cartilage explants enhanced their Epas1, matrix metalloproteinases (MMP-3, MMP-13) and ADAMTS-5 genes expression and down-regulated collagen type II (Col2a1) gene expression. With the pre-treatment of 10−8M Ecd, the catabolic effects of IL-1β on articular cartilage were scavenged. Conclusion In conclusions, Ecd can reduce the IL-1β-induced inflammatory effect of the cartilage. Ecd may suppress IL-1β- induced cartilage catabolism via HIF-2α pathway.
Collapse
|
37
|
The characteristics of thrombin in osteoarthritic pathogenesis and treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:407518. [PMID: 25313362 PMCID: PMC4182002 DOI: 10.1155/2014/407518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a mechanical abnormality associated with degradation of joints. It is characterized by chronic, progressive degeneration of articular cartilage, abnormalities of bone, and synovial change. The most common symptom of OA is local inflammation resulting from exogenous stress or endogenous abnormal cytokines. Additionally, OA is associated with local and/or systemic activation of coagulation and anticoagulation pathways. Thrombin plays an important role in the stimulation of fibrin deposition and the proinflammatory processes in OA. Thrombin mediates hemostatic and inflammatory responses and guides the immune response to tissue damage. Thrombin activates intracellular signaling pathways by interacting with transmembrane domain G protein coupled receptors (GPCRs), known as protease-activated receptors (PARs). In pathogenic mechanisms, PARs have been implicated in the development of acute and chronic inflammatory responses in OA. Therefore, discovery of thrombin signaling pathways would help us to understand the mechanism of OA pathogenesis and lead us to develop therapeutic drugs in the future.
Collapse
|