1
|
Effect of preconditioning on propofol-induced neurotoxicity during the developmental period. PLoS One 2022; 17:e0273219. [PMID: 35984772 PMCID: PMC9390907 DOI: 10.1371/journal.pone.0273219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
At therapeutic concentrations, propofol (PPF), an anesthetic agent, significantly elevates intracellular calcium concentration ([Ca2 +]i) and induces neural death during the developmental period. Preconditioning enables specialized tissues to tolerate major insults better compared with tissues that have already been exposed to sublethal insults. Here, we investigated whether the neurotoxicity induced by clinical concentrations of PPF could be alleviated by prior exposure to sublethal amounts of PPF. Cortical neurons from embryonic day (E) 17 Wistar rat fetuses were cultured in vitro, and on day in vitro (DIV) 2, the cells were preconditioned by exposure to PPF (PPF-PC) at either 100 nM or 1 μM for 24 h. For morphological observations, cells were exposed to clinical concentrations of PPF (10 μM or 100 μM) for 24 h and the survival ratio (SR) was calculated. Calcium imaging revealed significant PPF-induced [Ca2+]i elevation in cells on DIV 4 regardless of PPF-PC. Additionally, PPF-PC did not alleviate neural cell death induced by PPF under any condition. Our findings indicate that PPF-PC does not alleviate PPF-induced neurotoxicity during the developmental period.
Collapse
|
2
|
Short-Term Exposure to Enriched Environment in Adult Rats Restores MK-801-Induced Cognitive Deficits and GABAergic Interneuron Immunoreactivity Loss. Mol Neurobiol 2019; 55:26-41. [PMID: 28822057 DOI: 10.1007/s12035-017-0715-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Perinatal injections of N-methyl-D-aspartate (NMDA) receptor antagonist in rodents emulate some cognitive impairments and neurochemical alterations, such as decreased GABAergic (gamma aminobutyric acid) interneuron immunoreactivity, also found in schizophrenia. These features are pervasive, and developing neuroprotective or neurorestorative strategies is of special interest. In this work, we aimed to investigate if a short exposure to enriched environment (EE) in early adulthood (P55-P73) was an effective strategy to improve cognitive dysfunction and to restore interneuron expression in medial prefrontal cortex (mPFC) and hippocampus (HPC). For that purpose, we administered MK-801 intraperitoneally to Long Evans rats from postnatal days 10 to 20. Twenty-four hours after the last injection, MK-801 produced a transient decrease in spontaneous motor activity and exploration, but those abnormalities were absent at P24 and P55. The open field test on P73 manifested that EE reduced anxiety-like behavior. In addition, MK-801-treated rats showed cognitive impairment in novel object recognition test that was reversed by EE. We quantified different interneuron populations based on their calcium-binding protein expression (parvalbumin, calretinin, and calbindin), glutamic acid decarboxylase 67, and neuronal nuclei-positive cells by means of unbiased stereology and found that EE enhanced interneuron immunoreactivity up to normal values in MK-801-treated rats. Our results demonstrate that a timely intervention with EE is a powerful tool to reverse long-lasting changes in cognition and neurochemical markers of interneurons in an animal model of schizophrenia.
Collapse
|
3
|
Shibuta S, Morita T, Kosaka J. Intravenous anesthetic-induced calcium dysregulation and neurotoxic shift with age during development in primary cultured neurons. Neurotoxicology 2018; 69:320-329. [PMID: 30107222 DOI: 10.1016/j.neuro.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/29/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Anesthetic-induced neurotoxicity in the developing brain is a concern. This neurotoxicity is closely related to anesthetic exposure time, dose, and developmental stages. Using calcium imaging and morphological examinations in vitro, we sought to determine whether intravenous anesthetic-induced direct neurotoxicity varies according to different stages of the days in vitro (DIV) of neurons in primary culture. Cortical neurons from E17 Wistar rats were prepared. On DIV 3, 7, and 13, cells were exposed to the intravenous anesthetics thiopental sodium (TPS), midazolam (MDZ), or propofol (PPF), to investigate direct neurotoxicity using morphological experiments. Furthermore, using calcium imaging, the anesthetic-induced intracellular calcium concentration ([Ca2+]i) elevation was monitored in cells on DIV 4, 8, and 13. All anesthetics elicited significant [Ca2+]i increases on DIV 4. While TPS (100 μM) and MDZ (10 μM) did not alter neuronal death, PPF (10 μM and 100 μM) decreased the survival ratio (SR) significantly. On DIV 8, TPS and MDZ did not elicit [Ca2+]i elevation or SR decrease, while PPF still induced [Ca2+]i elevation (both at 10 μM and 100 μM) and significant SR decrease at 100 μM (0.76 ± 0.03; P < 0.05), but not at 10 μM (0.91 ± 0.03). Such anesthetic-induced [Ca2+]i elevation and SR decrease were not observed on DIV 13-14 for any of the anesthetic drugs. Our study indicates that more caution may be exercised when using PPF compared to TPS or MDZ during development.
Collapse
Affiliation(s)
- Satoshi Shibuta
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare, Narita, Chiba, Japan; Department of Anesthesiology and Intensive Care Medicine, Osaka University, Suita, Osaka, Japan.
| | - Tomotaka Morita
- Department of Anesthesiology and Intensive Care Medicine, Osaka University, Suita, Osaka, Japan.
| | - Jun Kosaka
- Department of Anatomy, International University of Health and Welfare, Narita, Chiba, Japan.
| |
Collapse
|
4
|
Hayakawa T, Hata M, Kuwahara-Otani S, Yamanishi K, Yagi H, Okamura H. Fine structure of interleukin 18 (IL-18) receptor-immunoreactive neurons in the retrosplenial cortex and its changes in IL18 knockout mice. J Chem Neuroanat 2016; 78:96-101. [PMID: 27593389 DOI: 10.1016/j.jchemneu.2016.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
Interleukin 18 (IL-18) participates in the inflammatory immune response of lymphocytes. Delay in learning or memory are common in the IL-18 knockout mouse. Many IL-18-immunoreactive neurons are found in the retrosplenial cortex (RSC) and the subiculum. These neurons also contain the IL-18 receptor. We determined the location and the ultrastructure of the IL-18 receptor-immunoreactive neurons in the RSC and observed changes in the IL-18 receptor-immunoreactive neurons of the IL-18 knockout mouse. The IL-18 receptor-immunoreactive neurons were found specifically in layer V of the granular RSC. They were medium-sized neurons with a light oval nucleus and had little cytoplasm with many free ribosomes, rough endoplasmic reticulum and many mitochondria, but no Nissl bodies. The number of axosomatic terminals was about six per section. The IL-18 receptor-immunoreactive neurons were not found in the RSC in the IL-18 knockout mouse at 5 or 9 weeks of age. However, many small electron-dense neurons were found in layer V. Both the nucleus and cytoplasm were electron-dense, but not necrotic. The mitochondria and rough endoplasmic reticulum were swollen. The IL-18 receptor-immunoreactive neurons were presumed to be degenerating. The degeneration of the IL18-receptor-immunoreactive neurons in the RSC may cause the abnormal behaviors of the IL-18 knockout mice.
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | - Masaki Hata
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hideshi Yagi
- Department of Anatomy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
5
|
Salaj M, Druga R, Cerman J, Kubová H, Barinka F. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses. Brain Res 2015; 1627:201-15. [DOI: 10.1016/j.brainres.2015.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/20/2015] [Accepted: 09/26/2015] [Indexed: 02/04/2023]
|
6
|
Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS One 2014; 9:e103696. [PMID: 25116473 PMCID: PMC4130531 DOI: 10.1371/journal.pone.0103696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors (Fgfs) and their receptors (Fgfr) are expressed in the developing and adult CNS. Previous studies demonstrated a decrease in cortical interneurons and locomotor hyperactivity in mice with a conditional Fgfr1 deletion generated in radial glial cells during midneurogenesis (Fgfr1f/f;hGfapCre+). Here, we report earlier and more extensive inactivation of Fgfr1 in neuroepithelial cells of the CNS (Fgfr1f/f;NesCre+). Similar to findings in Fgfr1f/f;hGfapCre+ mice, parvalbumin positive (PV+) cortical interneurons are also decreased in the neocortex of Fgfr1f/f;NesCre+ mice when compared to control littermates (Fgfr1f/f). Fgfr1f/f;NesCre+ embryos do not differ from controls in the initial specification of GABAergic cells in the ganglionic eminence (GE) as assessed by in situ hybridization for Dlx2, Mash1 and Nkx2. Equal numbers of GABAergic neuron precursors genetically labeled with green fluorescent protein (GFP) were observed at P0 in Fgfr1f/f;hGfapCre+;Gad1-GFP mutant mice. However, fewer GFP+ and GFP+/PV+ interneurons were observed in these mutants at adulthood, indicating that a decrease in cortical interneuron markers is occurring postnatally. Fgfr1 is expressed in cortical astrocytes in the postnatal brain. To test whether the astrocytes of mice lacking Fgfr1 are less capable of supporting interneurons, we co-cultured wild type Gad1-GFP+ interneuron precursors isolated from the medial GE (MGE) with astrocytes from Fgfr1f/f control or Fgfr1f/f;hGfapCre+ mice. Interneurons grown on Fgfr1 deficient astrocytes had small soma size and fewer neurites per cell, but no differences in cell survival. Decreased soma size of Gad67 immunopositive interneurons was also observed in the cortex of adult Fgfr1f/f;NesCre+ mice. Our data indicate that astrocytes from Fgfr1 mutants are impaired in supporting the maturation of cortical GABAergic neurons in the postnatal period. This model may elucidate potential mechanisms of impaired PV interneuron maturation relevant to neuropsychiatric disorders that develop in childhood and adolescence.
Collapse
Affiliation(s)
- Karen Müller Smith
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | | | - Pooja M. Phull
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Kathy May Tran
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Lisha Choubey
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University, New Haven, Connecticut, United States of America
- Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
7
|
PONTÉN E, VIBERG H, GORDH T, ERIKSSON P, FREDRIKSSON A. Clonidine abolishes the adverse effects on apoptosis and behaviour after neonatal ketamine exposure in mice. Acta Anaesthesiol Scand 2012; 56:1058-65. [PMID: 22694670 DOI: 10.1111/j.1399-6576.2012.02722.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND An increasing amount of both experimental and epidemiological data indicates that neonatal anaesthesia causes disruption of normal brain development in rodents and primates, as manifested by acute increased apoptosis and long-lasting altered behaviour and learning. It is necessary to seek strategies that avoid the possible adverse effects after anaesthesia. Our purpose is to show that increased apoptosis and behavioural alterations after ketamine exposure during this period may be prevented by clonidine, a compound already used by paediatric anaesthetists for sedation. METHODS To investigate the protective properties of clonidine pre-treatment, five groups of 10-day-old mice were injected with either ketamine 50 mg/kg, clonidine 40 μg/kg, ketamine 50 mg/kg 30 min after 10 μg/kg clonidine, ketamine 50 mg/kg 30 min after 40 μg/kg clonidine or saline (control). Apoptosis was measured 24 h after treatment using Flouro-Jade staining. Spontaneous activity in a novel environment was tested at an age of 55 days. RESULTS Pre-treatment with 40 μg/kg clonidine, but not 10 μg/kg clonidine, 30 min before ketamine exposure abolished ketamine-induced apoptosis and the behavioural changes observed in the young adult mice. The mice exposed to clonidine alone showed no differences from the saline-treated (control) mice. CONCLUSION The administration of clonidine eliminated the adverse effects of ketamine in this mouse model, suggesting a possible strategy for protection. Alone, clonidine did not cause any adverse effects in these tests.
Collapse
Affiliation(s)
- E. PONTÉN
- Department of Surgical Sciences, Anaesthesiology and Intensive Care; Uppsala University; Uppsala; Sweden
| | - H. VIBERG
- Department of Environmental Toxicology; Uppsala University; Uppsala; Sweden
| | - T. GORDH
- Department of Surgical Sciences, Anaesthesiology and Intensive Care; Uppsala University; Uppsala; Sweden
| | - P. ERIKSSON
- Department of Environmental Toxicology; Uppsala University; Uppsala; Sweden
| | - A. FREDRIKSSON
- Department of Neuroscience, Psychiatry; Uppsala University; Uppsala; Sweden
| |
Collapse
|
8
|
Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, Carnes A, Kim J, Shing E, Haddad T, Phillips A. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience 2012; 210:384-92. [PMID: 22406413 DOI: 10.1016/j.neuroscience.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
Studies using animal models have shown that general anesthetics such as ketamine trigger widespread and robust apoptosis in the infant rodent brain. Recent clinical evidence suggests that the use of general anesthetics on young children (at ages equivalent to those used in rodent studies) can promote learning deficits as they mature. Thus, there is a growing need to develop strategies to prevent this injury. In this study, we describe a number of independent approaches to address therapeutic intervention. Postnatal day 7 (P7) rats were injected with vehicle (sterile PBS) or the NMDAR antagonist ketamine (20 mg/kg). After 8 h, we prepared brains for immunohistochemical detection of the pro-apoptotic enzyme activated caspase-3 (AC3). Focusing on the somatosensory cortex, AC3-positive cells were then counted in a non-biased stereological manner. We found AC3 levels were markedly increased in ketamine-treated animals. In one study, microarray analysis of the somatosensory cortex from ketamine-treated P7 pups revealed that expression of activity dependent neuroprotective protein (ADNP) was enhanced. Thus, we injected P7 animals with the ADNP peptide fragment NAPVSIPQ (NAP) 15 min before ketamine administration and found we could dose-dependently reverse the injury. In separate studies, pretreatment of P6 animals with 20 mg/kg vitamin D(3) or a nontoxic dose of ketamine (5 mg/kg) also prevented ketamine-induced apoptosis at P7. In contrast, pretreatment of P7 animals with aspirin (30 mg/kg) 15 min before ketamine administration actually increased AC3 counts in some regions. These data show that a number of unique approaches can be taken to address anesthesia-induced neurotoxicity in the infant brain, thus providing MDs with a variety of alternative strategies that enhance therapeutic flexibility.
Collapse
Affiliation(s)
- C P Turner
- Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Postnatal exposure to MK801 induces selective changes in GAD67 or parvalbumin. Exp Brain Res 2009; 201:479-88. [DOI: 10.1007/s00221-009-2059-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023]
|
10
|
Turner CP, Debenedetto D, Ware E, Walburg C, Lee A, Stowe R, Swanson J, Lambert A, Lyle M, Desai P, Johnson R, Liu C. MK801-induced activated caspase-3 exhibits selective co-localization with GAD67. Neurosci Lett 2009; 462:152-6. [PMID: 19596402 PMCID: PMC2752749 DOI: 10.1016/j.neulet.2009.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 06/26/2009] [Accepted: 07/05/2009] [Indexed: 02/07/2023]
Abstract
Blockade of the N-methyl-d-aspartate receptor (NMDAR) in postnatal day 7 (P7) rats can promote rapid and robust induction of the pro-apoptotic marker activated caspase-3 (AC3) and loss of the GABAergic marker GAD67 at P56. Thus, we hypothesized that NMDAR blockade-induced AC3 occurs in GAD67 positive cells at P7. To test this idea, we injected P7 rat pups with vehicle or MK801 and after 8h (peak of AC3 induction) we examined brain sections for both AC3 and GAD67. Compared to vehicle, MK801 profoundly induced AC3 in all brain regions examined but co-expression of GAD67 in the same cells was not observed. However, in brain regions where punctate (synaptic) GAD67 was abundant (for example, layer IV of the somatosensory cortex), AC3 was robust. These data suggest that whereas somatic expression of AC3 and GAD67 may be non-overlapping, areas that exhibit punctate GAD67 (and are high in synaptic turnover) may be more vulnerable to MK801 exposure.
Collapse
Affiliation(s)
- Christopher P Turner
- Neurobiology and Anatomy, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157-1010, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Turner CP, Debenedetto D, Liu C. NMDAR blockade-induced neonatal brain injury: Reversal by the calcium channel agonist BayK 8644. Neurosci Lett 2009; 450:292-5. [PMID: 19070650 PMCID: PMC2699449 DOI: 10.1016/j.neulet.2008.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/22/2008] [Accepted: 12/03/2008] [Indexed: 01/12/2023]
Abstract
We have previously shown that P7 rat pups injected with the N-methyl-d-aspartate receptor (NMDAR) blocker MK801 displayed robust apoptotic injury within hours after injection. Further studies from our lab suggest that loss of calcium cannot be compensated for when vulnerable neurons lack calcium buffering capabilities. Thus, to elevate calcium in these neurons prior to MK801 exposure, we injected P7 rats with the calcium channel agonist BayK 8644. Whereas BayK 8644 did not induce apoptosis by itself, it was found to block MK801-induced injury in a dose-dependent manner. Reversal of MK801 toxicity was complete in the caudate-putamen, partial in the somatosensory cortex but was not observed in the retrosplenial cortex. These results suggest that postnatal brain injury resulting from agents that block the NMDAR, which include commonly used anesthetics as well as drugs of abuse, may be prevented in vulnerable neurons by compensatory increases in calcium prior to exposure to these antagonists.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/chemically induced
- Brain Damage, Chronic/pathology
- Brain Damage, Chronic/physiopathology
- Calcium Channel Agonists/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Disease Models, Animal
- Dizocilpine Maleate/toxicity
- Excitatory Amino Acid Antagonists/toxicity
- Neostriatum/drug effects
- Neostriatum/pathology
- Neostriatum/physiopathology
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Rats
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Somatosensory Cortex/drug effects
- Somatosensory Cortex/pathology
- Somatosensory Cortex/physiopathology
Collapse
|
13
|
Lema Tomé CM, Miller R, Bauer C, Smith C, Blackstone K, Leigh A, Busch J, Turner CP. Decline in age-dependent, MK801-induced injury coincides with developmental switch in parvalbumin expression: somatosensory and motor cortex. Dev Psychobiol 2008; 50:665-79. [PMID: 18688810 PMCID: PMC2679950 DOI: 10.1002/dev.20325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MK801-induced activation of caspase-3 is developmentally regulated, peaking at postnatal day (P) 7 and decreasing with increasing postnatal age thereafter. Further, at P7, cells displaying activation of caspase-3 lack expression of calcium binding proteins (CaBPs). To further explore this relationship, we investigated postnatal expression of calbindin (CB), calretinin (CR) and parvalbumin (PV) in two brain regions susceptible to MK801-induced injury, the somatosensory cortex (S1) and layer II/III of motor cortex (M1/M2). Expression of CB and especially PV was low to absent prior to P7 but substantially increased from P7 through to P21 and adulthood. In contrast, CR expression was more variable at early developmental ages, stabilized to lower levels after P7 and showed a marked decline by P21. The results suggest that not only does calcium buffering capacity increase developmentally but also acquisition of enhanced buffering may be one mechanism by which neurons survive agent-induced alterations in calcium homeostasis.
Collapse
Affiliation(s)
- Carla M Lema Tomé
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ringler SL, Aye J, Byrne E, Anderson M, Turner CP. Effects of disrupting calcium homeostasis on neuronal maturation: early inhibition and later recovery. Cell Mol Neurobiol 2008; 28:389-409. [PMID: 18196452 PMCID: PMC2714481 DOI: 10.1007/s10571-007-9255-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
It has become increasingly clear that agents that disrupt calcium homeostasis may also be toxic to developing neurons. Using isolated primary neurons, we sought to understand the neurotoxicity of agents such as MK801 (which blocks ligand-gated calcium entry), BAPTA (which chelates intracellular calcium), and thapsigargin (TG; which inhibits the endoplasmic reticulum Ca(2+)-ATPase pump). Thus, E18 rat cortical neurons were grown for 1 day in vitro (DIV) and then exposed to vehicle (0.1% DMSO), MK801 (0.01-20 microM), BAPTA (0.1-20 microM), or TG (0.001-1 microM) for 24 h. We found that all three agents could profoundly influence early neuronal maturation (growth cone expansion, neurite length, neurite complexity), with the order of potency being MK801 < BAPTA < TG. We next asked if cultures exposed to these agents were able to re-establish their developmental program once the agent was removed. When we examined network maturity at 4 and 7 DIV, the order of recovery was MK801 > BAPTA > TG. Thus, mechanistically distinct ways of disrupting calcium homeostasis differentially influenced both short-term and long-term neuronal maturation. These observations suggest that agents that act by altering intracellular calcium and are used in obstetrics or neonatology may be quite harmful to the still-developing human brain.
Collapse
Affiliation(s)
- Sarah L. Ringler
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Jamie Aye
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Erica Byrne
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Megan Anderson
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Christopher P. Turner
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| |
Collapse
|