1
|
Albert-Lyons R, Desrochers SS, Fengler C, Nautiyal KM. Fractionating impulsivity and reward-related phenotypes in adolescent mice. Behav Brain Res 2025; 480:115396. [PMID: 39681176 DOI: 10.1016/j.bbr.2024.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Adolescence is a developmental period characterized by changes in the brain and behavior, including heightened reward seeking, increased impulsivity, and elevated risk-taking behavior. It is also a sensitive period for the development of a number of behavioral and psychiatric disorders associated with pathological phenotypes of reward processing and impulsivity. Landmark human studies are charting the development of impulsivity and other reward-related phenotypes to identify the facets and timecourse of the adolescent phenotype. Collecting similar data from mice is important to enable molecular, cellular, and circuit-level interrogation of adolescent maturation of reward, motivation, and impulsive behavior. These complex phenotypes have traditionally been difficult to assay in adolescent mice. Here, using a combination of approaches including homecage testing, we tested a number of facets of reward seeking, impulsivity, motivation, and incentive salience attribution during adolescent development. We found that adolescent mice show increased reward seeking, impulsive action, and motivation. Interestingly, we found no effect of adolescence on impulsive choice, sign-tracking, reward-learning, or conditioned reinforcement. Overall, our studies set the stage for approaches to study multi-faceted phenotypes related to impulsivity and other reward-related behaviors in adolescent mice to examine the developmental trajectories of brain and behavior.
Collapse
Affiliation(s)
- Ruth Albert-Lyons
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Stephanie S Desrochers
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Catherine Fengler
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Katherine M Nautiyal
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA.
| |
Collapse
|
2
|
Making sense of strengths and weaknesses observed in adolescent lab rodents. Curr Opin Psychol 2022; 45:101297. [DOI: 10.1016/j.copsyc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
|
3
|
Sign Tracking in an Enriched Environment: A Potential Ecologically Relevant Animal Model of Adaptive Behavior Change. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:703-721. [PMID: 33846950 PMCID: PMC8041392 DOI: 10.3758/s13415-021-00897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
When an object conditioned stimulus (CS) is paired with a food unconditioned stimulus (US), anticipatory goal-directed action directed at the US location (goal tracking) is accompanied by behavior directed at the object CS (sign tracking). Sign-tracking behavior appears to be compulsive and habit-like and predicts increased vulnerability to the addictive potential of drugs in animal models. A large body of the literature also suggests that environmental enrichment protects against the development of addiction-prone phenotypes. Thus, we investigated whether compulsive-like sign tracking develops in environmentally enriched rats trained directly in their enriched home environment. We demonstrate that adolescent enriched-housed male Sprague-Dawley rats readily sign track a 5% ethanol bottle CS in their home environment and at a rate higher than adolescent standard-housed rats. We also show that enriched adolescent rats sign track less than enriched adult-trained rats and that acute isolation stress affects sign- and goal-tracking performance of adolescents and adults differently. Sign tracking increased more in the adult than the adolescent rats. Whereas the younger rats showed a decrease in goal tacking after the final stressor manipulation, the adults showed increased goal tracking. Our results are consistent with recent studies, which suggest that although sign tracking performance is compulsive-like, it is not as inflexible and habit-like as previously assumed. Testing in an enriched home environment with object CSs having greater affordance than "neutral" lever CSs may provide greater ecological relevance for investigating the development and expression of adaptive and compulsive-like behaviors in translational research.
Collapse
|
4
|
Marshall AT, Munson CN, Maidment NT, Ostlund SB. Reward-predictive cues elicit excessive reward seeking in adolescent rats. Dev Cogn Neurosci 2020; 45:100838. [PMID: 32846387 PMCID: PMC7451619 DOI: 10.1016/j.dcn.2020.100838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
Impulsive behavior during adolescence may stem from developmental imbalances between motivational and cognitive-control systems, producing greater urges to pursue reward and weakened capacities to inhibit such actions. Here, we developed a Pavlovian-instrumental transfer (PIT) protocol to assay rats' ability to suppress cue-motivated reward seeking based on changes in reward expectancy. Traditionally, PIT studies focus on how reward-predictive cues motivate instrumental reward-seeking behavior (lever pressing). However, cues signaling imminent reward delivery also elicit countervailing focal-search responses (food-port entry). We first examined how reward expectancy (cue-reward probability) influences expression of these competing behaviors. Adult male rats increased rates of lever pressing when presented with cues signaling lower probabilities of reward but focused their activity at the food cup on trials with cues that signaled higher probabilities of reward. We then compared adolescent and adult male rats in their responsivity to cues signaling different reward probabilities. In contrast to adults, adolescent rats did not flexibly adjust patterns of responding based on the expected likelihood of reward delivery but increased their rate of lever pressing for both weak and strong cues. These findings indicate that control over cue-motivated behavior is fundamentally dysregulated during adolescence, providing a model for studying neurobiological mechanisms of adolescent impulsivity.
Collapse
Affiliation(s)
- Andrew T Marshall
- Department of Anesthesiology and Perioperative Care, Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, CA, United States.
| | - Christy N Munson
- Department of Anesthesiology and Perioperative Care, Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, CA, United States
| | - Nigel T Maidment
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
5
|
Raab HA, Hartley CA. Adolescents exhibit reduced Pavlovian biases on instrumental learning. Sci Rep 2020; 10:15770. [PMID: 32978451 PMCID: PMC7519144 DOI: 10.1038/s41598-020-72628-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple learning systems allow individuals to flexibly respond to opportunities and challenges present in the environment. An evolutionarily conserved "Pavlovian" learning mechanism couples valence and action, promoting a tendency to approach cues associated with reward and to inhibit action in the face of anticipated punishment. Although this default response system may be adaptive, these hard-wired reactions can hinder the ability to learn flexible "instrumental" actions in pursuit of a goal. Such constraints on behavioral flexibility have been studied extensively in adults. However, the extent to which these valence-specific response tendencies bias instrumental learning across development remains poorly characterized. Here, we show that while Pavlovian response biases constrain flexible action learning in children and adults, these biases are attenuated in adolescents. This adolescent-specific reduction in Pavlovian bias may promote unbiased exploration of approach and avoidance responses, facilitating the discovery of rewarding behavior in the many novel contexts that adolescents encounter.
Collapse
Affiliation(s)
- Hillary A Raab
- Department of Psychology, New York University, New York, NY, USA
| | - Catherine A Hartley
- Department of Psychology, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Pickens CL, Cook A, Gaeddert B. Dose-dependent effects of alcohol injections on omission-contingency learning have an inverted-U pattern. Behav Brain Res 2020; 392:112736. [PMID: 32497681 DOI: 10.1016/j.bbr.2020.112736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Previous examinations of the long-term effects of alcohol exposure on omission-contingency learning have produced mixed results across different age or sex groups, with evidence for faster learning or no effect. However, none of these experiments made comparisons using the same exposure-dose across the age/sex groups. Here, we exposed rats to 6 weeks of alcohol injections (3 days/week, 1.75 or 3.5 g/kg/24-h, i.p. broken up into 2 injections/day) in adolescent/early adult males or females (PND27-66) or adult males (PND62-101). We then tested the rats in autoshaping and omission-contingency tasks. In contrast to our hypotheses, the low 1.75-g/kg/24-h dose led to slower omission learning and the higher 3.5-g/kg/24-h dose had no effect. There were no age- or sex-differences in omission learning. Additionally, during autoshaping training, rats exposed in adolescence/early adulthood had a faster shift to sign-tracking in their sign-tracking/goal-tracking ratios than rats exposed in adulthood, with no consistent effect of alcohol exposure or sex-differences. Our results suggest complex effects of alcohol on the neural substrates of omission-contingency learning at different doses, which will require future investigation.
Collapse
Affiliation(s)
- Charles L Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| | - Anna Cook
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Brooke Gaeddert
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
7
|
Colaizzi JM, Flagel SB, Joyner MA, Gearhardt AN, Stewart JL, Paulus MP. Mapping sign-tracking and goal-tracking onto human behaviors. Neurosci Biobehav Rev 2020; 111:84-94. [PMID: 31972203 PMCID: PMC8087151 DOI: 10.1016/j.neubiorev.2020.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
As evidenced through classic Pavlovian learning mechanisms, environmental cues can become incentivized and influence behavior. These stimulus-outcome associations are relevant in everyday life but may be particularly important for the development of impulse control disorders including addiction. Rodent studies have elucidated specific learning profiles termed 'sign-tracking' and 'goal-tracking' which map onto individual differences in impulsivity and other behaviors associated with impulse control disorders' etiology, course, and relapse. Whereas goal-trackers are biased toward the outcome, sign-trackers fixate on features that are associated with but not necessary for achieving an outcome; a pattern of behavior that often leads to escalation of reward-seeking that can be maladaptive. The vast majority of the sign- and goal-tracking research has been conducted using rodent models and very few have bridged this concept into the domain of human behavior. In this review, we discuss the attributes of sign- and goal-tracking profiles, how these are manifested neurobiologically, and how these distinct learning styles could be an important tool for clinical interventions in human addiction.
Collapse
Affiliation(s)
- Janna M Colaizzi
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK, USA.
| | - Shelly B Flagel
- University of Michigan Molecular and Behavioral Neuroscience Institute, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Michelle A Joyner
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Ashley N Gearhardt
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI, 48109, USA
| | | | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK, USA
| |
Collapse
|
8
|
Amaya KA, Stott JJ, Smith KS. Sign-tracking behavior is sensitive to outcome devaluation in a devaluation context-dependent manner: implications for analyzing habitual behavior. ACTA ACUST UNITED AC 2020; 27:136-149. [PMID: 32179656 PMCID: PMC7079568 DOI: 10.1101/lm.051144.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/31/2019] [Indexed: 01/23/2023]
Abstract
Motivationally attractive cues can draw in behavior in a phenomenon termed incentive salience. Incentive cue attraction is an important model for animal models of drug seeking and relapse. One question of interest is the extent to which the pursuit of motivationally attractive cues is related to the value of the paired outcome or can become unrelated and habitual. We studied this question using a sign-tracking (ST) paradigm in rats, in which a lever stimulus preceding food reward comes to elicit conditioned lever-interaction behavior. We asked whether reinforcer devaluation by means of conditioned taste aversion, a classic test of habitual behavior, can modify ST to incentive cues, and whether this depends upon the manner in which reinforcer devaluation takes place. In contrast to several recent reports, we conclude that ST is indeed sensitive to reinforcer devaluation. However, this effect depends critically upon the congruence between the context in which taste aversion is learned and the context in which it is tested. When the taste aversion successfully transfers to the testing context, outcome value strongly influences ST behavior, both when the outcome is withheld (in extinction) and when animals can learn from outcome feedback (reacquisition). When taste aversion does not transfer to the testing context, ST remains high. In total, the extent to which ST persists after outcome devaluation is closely related to the extent to which that outcome is truly devalued in the task context. We believe this effect of context on devaluation can reconcile contradictory findings about the flexibility/inflexibility of ST. We discuss this literature and relate our findings to the study of habits generally.
Collapse
Affiliation(s)
- Kenneth A Amaya
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Jeffrey J Stott
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Kyle S Smith
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
9
|
Rode AN, Moghaddam B, Morrison SE. Increased Goal Tracking in Adolescent Rats Is Goal-Directed and Not Habit-Like. Front Behav Neurosci 2020; 13:291. [PMID: 31992975 PMCID: PMC6971099 DOI: 10.3389/fnbeh.2019.00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
When a cue is paired with reward in a different location, some animals will approach the site of reward during the cue, a behavior called goal tracking, while other animals will approach and interact with the cue itself: a behavior called sign tracking. Sign tracking is thought to reflect a tendency to transfer incentive salience from the reward to the cue. Adolescence is a time of heightened sensitivity to rewards, including environmental cues that have been associated with rewards, which may account for increased impulsivity and vulnerability to drug abuse. Surprisingly, however, studies have shown that adolescents are actually less likely to interact with the cue (i.e., sign track) than adult animals. We reasoned that adolescents might show decreased sign tracking, accompanied by increased apparent goal tracking, because they tend to attribute incentive salience to a more reward-proximal "cue": the food magazine. On the other hand, adolescence is also a time of enhanced exploratory behavior, novelty-seeking, and behavioral flexibility. Therefore, adolescents might truly express more goal-directed reward-seeking and less inflexible habit-like approach to a reward-associated cue. Using a reward devaluation procedure to distinguish between these two hypotheses, we found that adolescents indeed exhibit more goal tracking, and less sign tracking, than a comparable group of adults. Moreover, adolescents' goal tracking behavior is highly sensitive to reward devaluation and therefore goal-directed and not habit-like.
Collapse
Affiliation(s)
| | | | - Sara E. Morrison
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Ahrens AM, Ahmed OJ. Neural circuits linking sleep and addiction: Animal models to understand why select individuals are more vulnerable to substance use disorders after sleep deprivation. Neurosci Biobehav Rev 2019; 108:435-444. [PMID: 31756346 DOI: 10.1016/j.neubiorev.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Individuals differ widely in their drug-craving behaviors. One reason for these differences involves sleep. Sleep disturbances lead to an increased risk of substance use disorders and relapse in only some individuals. While animal studies have examined the impact of sleep on reward circuitry, few have addressed the role of individual differences in the effects of altered sleep. There does, however, exist a rodent model of individual differences in reward-seeking behavior: the sign/goal-tracker model of Pavlovian conditioned approach. In this model, only some rats show the key behavioral traits associated with addiction, including impulsivity and poor attentional control, making this an ideal model system to examine individually distinct sleep-reward interactions. Here, we describe how the limbic neural circuits responsible for individual differences in incentive motivation overlap with those involved in sleep-wake regulation, and how this model can elucidate the common underlying mechanisms. Consideration of individual differences in preclinical models would improve our understanding of how sleep interacts with motivational systems, and why sleep deprivation contributes to addiction in only select individuals.
Collapse
Affiliation(s)
| | - Omar J Ahmed
- Dept. of Psychology, United States; Neuroscience Graduate Program, United States; Michigan Center for Integrative Research in Critical Care, United States; Kresge Hearing Research Institute, United States; Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|