1
|
Chen Y, Shen M, Gu Y, Xu X, Bian L, Yang F, Chen S, Ji L, Liu J, Zhu J, Zhang Z, Fu Q, Cai Y, Chen H, Xu K, Sun M, Zheng X, Shen J, Zhou H, Zhang M, Haskins K, Yu L, Yang T, Shi Y. Pivotal epitopes for islet antigen-specific CD8 + T cell detection improve classification of suspected type 1 diabetes with the HLA-A*0201 allele. Immunol Res 2025; 73:65. [PMID: 40133500 DOI: 10.1007/s12026-025-09616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
A proportion of patients with new-onset diabetes share similar symptoms with type 1 diabetes (T1D) patients but they are negative for islet antigen-specific autoantibodies. This study was to develop an islet antigen-specific CD8+ T-cell assay to provide autoimmune evidence regarding these "suspected" T1D patients. HLA-A*0201 individuals with autoAbs+ T1D, autoAbs- suspected T1D, and type 2 diabetes, along with HLA-A*0201 healthy controls were recruited. Using interferon-γ enzyme-linked immunospot assays, the percentages of participants in each group with various islet antigen-specific CD8+ T cells were determined. Sixteen out of the 28 islet antigen-specific epitopes tested were T1D specific, meaning that there was a significantly (P < 0.05) greater epitope positivity rate in the autoAbs+ T1D cohort than in the healthy controls. Using a cutoff value of two positive epitopes, the 16-epitope panel led to a sensitivity of 75.0% and a specificity of 94.4% regarding the autoAbs+ T1D patients. Even when using an optimized five-epitope panel, the results were highly accurate. Notably, in the application phase of the study, 77.8% of a new cohort of autoAbs- suspected T1D patients exhibited positivity when using the five-epitope optimized panel. This highly accurate method, especially for pediatric patients, will improve clinical diagnosis and etiological classification of autoimmune T1D.
Collapse
Affiliation(s)
- Yang Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Shen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yong Gu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xinyu Xu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lingling Bian
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, Yancheng City No. 1 People's Hospital, Yancheng, 224005, Jiangsu, China
| | - Fan Yang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, The Affiliated Wuxi No.2 People'S Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Shuang Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Li Ji
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Emergency Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Liu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Pediatrics, Huai'an First People's Hospital, Huai'an, 223300, Jiangsu, China
| | - Jing Zhu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Zheng Zhang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yun Cai
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Heng Chen
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kuanfeng Xu
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Sun
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuqin Zheng
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jie Shen
- HLA Laboratory, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongwen Zhou
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Mei Zhang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, 1775 North Ursula Street, Aurora, CO, 80045, USA
| | - Tao Yang
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yun Shi
- Department of Endocrinology & Metabolism, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Jia X, Yu L. Understanding Islet Autoantibodies in Prediction of Type 1 Diabetes. J Endocr Soc 2023; 8:bvad160. [PMID: 38169963 PMCID: PMC10758755 DOI: 10.1210/jendso/bvad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/05/2024] Open
Abstract
As screening studies and preventive interventions for type 1 diabetes (T1D) advance rapidly, the utility of islet autoantibodies (IAbs) in T1D prediction comes with challenges for early and accurate disease progression prediction. Refining features of IAbs can provide more accurate risk assessment. The advances in islet autoantibodies assay techniques help to screen out islet autoantibodies with high efficiency and high disease specificity. Exploring new islet autoantibodies to neoepitopes/neoantigens remains a hot research field for improving prediction and disease pathogenesis. We will review the recent research progresses of islet autoantibodies to better understand the utility of islet autoantibodies in prediction of T1D.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Arif S, Domingo-Vila C, Pollock E, Christakou E, Williams E, Tree TIM. Monitoring islet specific immune responses in type 1 diabetes clinical immunotherapy trials. Front Immunol 2023; 14:1183909. [PMID: 37283770 PMCID: PMC10240960 DOI: 10.3389/fimmu.2023.1183909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
The number of immunotherapeutic clinical trials in type 1 diabetes currently being conducted is expanding, and thus there is a need for robust immune-monitoring assays which are capable of detecting and characterizing islet specific immune responses in peripheral blood. Islet- specific T cells can serve as biomarkers and as such can guide drug selection, dosing regimens and immunological efficacy. Furthermore, these biomarkers can be utilized in patient stratification which can then benchmark suitability for participation in future clinical trials. This review focusses on the commonly used immune-monitoring techniques including multimer and antigen induced marker assays and the potential to combine these with single cell transcriptional profiling which may provide a greater understanding of the mechanisms underlying immuno-intervention. Although challenges remain around some key areas such as the need for harmonizing assays, technological advances mean that multiparametric information derived from a single sample can be used in coordinated efforts to harmonize biomarker discovery and validation. Moreover, the technologies discussed here have the potential to provide a unique insight on the effect of therapies on key players in the pathogenesis of T1D that cannot be obtained using antigen agnostic approaches.
Collapse
|
4
|
Roep BO. The need and benefit of immune monitoring to define patient and disease heterogeneity, mechanisms of therapeutic action and efficacy of intervention therapy for precision medicine in type 1 diabetes. Front Immunol 2023; 14:1112858. [PMID: 36733487 PMCID: PMC9887285 DOI: 10.3389/fimmu.2023.1112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The current standard of care for type 1 diabetes patients is limited to treatment of the symptoms of the disease, insulin insufficiency and its complications, not its cause. Given the autoimmune nature of type 1 diabetes, immunology is critical to understand the mechanism of disease progression, patient and disease heterogeneity and therapeutic action. Immune monitoring offers the key to all this essential knowledge and is therefore indispensable, despite the challenges and costs associated. In this perspective, I attempt to make this case by providing evidence from the past to create a perspective for future trials and patient selection.
Collapse
|
5
|
Speake C, Bahnson HT, Wesley JD, Perdue N, Friedrich D, Pham MN, Lanxon-Cookson E, Kwok WW, Sehested Hansen B, von Herrath M, Greenbaum CJ. Systematic Assessment of Immune Marker Variation in Type 1 Diabetes: A Prospective Longitudinal Study. Front Immunol 2019; 10:2023. [PMID: 31572352 PMCID: PMC6753618 DOI: 10.3389/fimmu.2019.02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/09/2019] [Indexed: 01/06/2023] Open
Abstract
Immune analytes have been widely tested in efforts to understand the heterogeneity of disease progression, risk, and therapeutic responses in type 1 diabetes (T1D). The future clinical utility of such analytes as biomarkers depends on their technical and biological variability, as well as their correlation with clinical outcomes. To assess the variability of a panel of 91 immune analytes, we conducted a prospective study of adults with T1D (<3 years from diagnosis), at 9–10 visits over 1 year. Autoantibodies and frequencies of T-cell, natural killer cell, and myeloid subsets were evaluated; autoreactive T-cell frequencies and function were also measured. We calculated an intraclass correlation coefficient (ICC) for each marker, which is a relative measure of between- and within-subject variability. Of the 91 analytes tested, we identified 35 with high between- and low within-subject variability, indicating their potential ability to be used to stratify subjects. We also provide extensive data regarding technical variability for 64 of the 91 analytes. To pilot the concept that ICC can be used to identify analytes that reflect biological outcomes, the association between each immune analyte and C-peptide was also evaluated using partial least squares modeling. CD8 effector memory T-cell (CD8 EM) frequency exhibited a high ICC and a positive correlation with C-peptide, which was also seen in an independent dataset of recent-onset T1D subjects. More work is needed to better understand the mechanisms underlying this relationship. Here we find that there are a limited number of technically reproducible immune analytes that also have a high ICC. We propose the use of ICC to define within- and between-subject variability and measurement of technical variability for future biomarker identification studies. Employing such a method is critical for selection of analytes to be tested in the context of future clinical trials aiming to understand heterogeneity in disease progression and response to therapy.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Henry T Bahnson
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Johnna D Wesley
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | - Nikole Perdue
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | - David Friedrich
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | - Minh N Pham
- Novo Nordisk Research Center Inc., Seattle, WA, United States
| | | | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | | | | | - Carla J Greenbaum
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
6
|
Ahmed S, Cerosaletti K, James E, Long SA, Mannering S, Speake C, Nakayama M, Tree T, Roep BO, Herold KC, Brusko TM. Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes 2019; 68:1366-1379. [PMID: 31221801 PMCID: PMC6609980 DOI: 10.2337/db19-0119] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/20/2019] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) results from the progressive destruction of pancreatic β-cells in a process mediated primarily by T lymphocytes. The T1D research community has made dramatic progress in understanding the genetic basis of the disease as well as in the development of standardized autoantibody assays that inform both disease risk and progression. Despite these advances, there remains a paucity of robust and accepted biomarkers that can effectively inform on the activity of T cells during the natural history of the disease or in response to treatment. In this article, we discuss biomarker development and validation efforts for evaluation of T-cell responses in patients with and at risk for T1D as well as emerging technologies. It is expected that with systematic planning and execution of a well-conceived biomarker development pipeline, T-cell-related biomarkers would rapidly accelerate disease progression monitoring efforts and the evaluation of intervention therapies in T1D.
Collapse
Affiliation(s)
- Simi Ahmed
- Immunotherapies Program, Research, JDRF, New York, NY
| | | | - Eddie James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - S Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Maki Nakayama
- Departments of Pediatrics and Integrated Immunology, Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Timothy Tree
- Department of Immunobiology, King's College London, London, U.K
| | - Bart O Roep
- Department of Diabetes Immunobiology, City of Hope Diabetes & Metabolism Research Institute, Duarte, CA
| | - Kevan C Herold
- Departments of Immunobiology and Medicine, Yale School of Medicine, New Haven, CT
| | - Todd M Brusko
- Department of Pathology, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
7
|
James EA, Abreu JRF, McGinty JW, Odegard JM, Fillié YE, Hocter CN, Culina S, Ladell K, Price DA, Alkanani A, Rihanek M, Fitzgerald-Miller L, Skowera A, Speake C, Gottlieb P, Davidson HW, Wong FS, Roep B, Mallone R. Combinatorial detection of autoreactive CD8 + T cells with HLA-A2 multimers: a multi-centre study by the Immunology of Diabetes Society T Cell Workshop. Diabetologia 2018; 61:658-670. [PMID: 29196783 DOI: 10.1007/s00125-017-4508-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Validated biomarkers are needed to monitor the effects of immune intervention in individuals with type 1 diabetes. Despite their importance, few options exist for monitoring antigen-specific T cells. Previous reports described a combinatorial approach that enables the simultaneous detection and quantification of multiple islet-specific CD8+ T cell populations. Here, we set out to evaluate the performance of a combinatorial HLA-A2 multimer assay in a multi-centre setting. METHODS The combinatorial HLA-A2 multimer assay was applied in five participating centres using centralised reagents and blinded replicate samples. In preliminary experiments, samples from healthy donors were analysed using recall antigen multimers. In subsequent experiments, samples from healthy donors and individuals with type 1 diabetes were analysed using beta cell antigen and recall antigen multimers. RESULTS The combinatorial assay was successfully implemented in each participating centre, with CVs between replicate samples that indicated good reproducibility for viral epitopes (mean %CV = 33.8). For beta cell epitopes, the assay was very effective in a single-centre setting (mean %CV = 18.4), but showed sixfold greater variability across multi-centre replicates (mean %CV = 119). In general, beta cell antigen-specific CD8+ T cells were detected more commonly in individuals with type 1 diabetes than in healthy donors. Furthermore, CD8+ T cells recognising HLA-A2-restricted insulin and glutamate decarboxylase epitopes were found to occur at higher frequencies in individuals with type 1 diabetes than in healthy donors. CONCLUSIONS/INTERPRETATION Our results suggest that, although combinatorial multimer assays are challenging, they can be implemented in multiple laboratories, providing relevant T cell frequency measurements. Assay reproducibility was notably higher in the single-centre setting, suggesting that biomarker analysis of clinical trial samples would be most successful when assays are performed in a single laboratory. Technical improvements, including further standardisation of cytometry platforms, will likely be necessary to reduce assay variability in the multi-centre setting.
Collapse
Affiliation(s)
- Eddie A James
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA.
| | - Joana R F Abreu
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - John W McGinty
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Jared M Odegard
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Yvonne E Fillié
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - Claire N Hocter
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Aimon Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lisa Fitzgerald-Miller
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Cate Speake
- Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Peter Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Bart Roep
- Department of Diabetes Immunology, City of Hope, Duarte, CA, USA
| | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
9
|
Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis JS, Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 2016; 1:e88242. [PMID: 27942583 DOI: 10.1172/jci.insight.88242] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), "irrelevant" nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects (n = 18) and control donors (n = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4+ conventional T cells (Tconv), CD4+ Treg, CD8+ T cells, and B cells. By conducting high-throughput immunosequencing of the TCR β chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH) on these samples, we sought to analyze the molecular signature of the lymphocyte populations within these tissues and of T1D. Ultimately, we observed a highly tissue-restricted CD4+ repertoire, while up to 24% of CD8+ clones were shared among tissues. We surveyed our data set for previously described proinsulin- and glutamic acid decarboxylase 65-reactive (GAD65-reactive) receptors, and interestingly, we observed a TRB with homology to a known GAD65-reactive TCR (clone GAD4.13) present in 7 T1D donors (38.9%), representing >25% of all productive TRB within Tconv isolated from the pLN of 1 T1D subject. These data demonstrate diverse receptor signatures at the nucleotide level and enriched autoreactive clones at the amino acid level, supporting the utility of coupling immunosequencing data with knowledge of characterized autoreactive receptors.
Collapse
Affiliation(s)
- Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Erik Yusko
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Stephanie J Rothweiler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Lin Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Marissa Vignali
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Ryan O Emerson
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Dave Ko
- Department of Information Sciences, City of Hope National Medical Center, Duarte, California, USA
| | | | - Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alberto Pugliese
- Diabetes Research Institute and Departments of Medicine, Microbiology, and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Harlan S Robins
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
10
|
Herold KC, Majzoub JA, Melmed S, Pendergrass M, Schlumberger M. Endocrinology research-reflecting on the past decade and looking to the next. Nat Rev Endocrinol 2015; 11:672-80. [PMID: 26460340 DOI: 10.1038/nrendo.2015.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inaugural issue of this journal, published in November 2005, included articles on thyroid cancer, type 2 diabetes mellitus, the metabolic syndrome, pituitary adenomas and obesity. 10 years later, we are still publishing articles on these topics (and many others). Although a great deal of progress has been made in our understanding of the pathogenesis, diagnosis and treatment of diseases of the endocrine system over the past 10 years, many challenges still remain. For this Viewpoint, we have asked five of our Advisory Board Members to comment on the progress and challenges from the past 10 years. They were also asked to offer their thoughts on where money should be spent going forward, and their predictions for what advances might be achieved in the next 10 years.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Department of Internal Medicine, Yale University, 300 George Street, #353E, New Haven, CT 06520, USA
| | - Joseph A Majzoub
- Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, Room 2015, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Merri Pendergrass
- University of Arizona College of Medicine, Department of Medicine, Division of Endocrinology, 3950 South Country Club Road, Tucson, AZ 85714, USA
| | - Martin Schlumberger
- Institut Gustave Roussy and University Paris-Sud, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| |
Collapse
|
11
|
Skowera A, Ladell K, McLaren JE, Dolton G, Matthews KK, Gostick E, Kronenberg-Versteeg D, Eichmann M, Knight RR, Heck S, Powrie J, Bingley PJ, Dayan CM, Miles JJ, Sewell AK, Price DA, Peakman M. β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 2015; 64:916-925. [PMID: 25249579 PMCID: PMC4557541 DOI: 10.2337/db14-0332] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high-definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent-onset type 1 diabetes and healthy control subjects. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy control subjects, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Ania Skowera
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Kristin Ladell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James E. McLaren
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Garry Dolton
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katherine K. Matthews
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Emma Gostick
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | - Martin Eichmann
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Robin R. Knight
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| | - Susanne Heck
- National Institute for Health Research Biomedical Research Centre at Guy’s & St Thomas’ National Health Service Foundation Trust and King’s College London, London, UK
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy’s & St Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Colin M. Dayan
- Institute of Molecular & Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - John J. Miles
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew K. Sewell
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David A. Price
- Institute of Infection & Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King’s College London School of Medicine, London, UK
| |
Collapse
|
12
|
Sachdeva N, Paul M, Badal D, Kumar R, Jacob N, Dayal D, Bhansali A, Arora SK, Bhadada SK. Preproinsulin specific CD8+ T cells in subjects with latent autoimmune diabetes show lower frequency and different pathophysiological characteristics than those with type 1 diabetes. Clin Immunol 2015; 157:78-90. [DOI: 10.1016/j.clim.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/02/2014] [Accepted: 01/10/2015] [Indexed: 01/08/2023]
|
13
|
Knight RR, Dolton G, Kronenberg-Versteeg D, Eichmann M, Zhao M, Huang GC, Beck K, Cole DK, Sewell AK, Skowera A, Peakman M. A distinct immunogenic region of glutamic acid decarboxylase 65 is naturally processed and presented by human islet cells to cytotoxic CD8 T cells. Clin Exp Immunol 2015; 179:100-7. [PMID: 25112375 PMCID: PMC4260902 DOI: 10.1111/cei.12436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells specific for islet autoantigens are major effectors of β cell damage in type 1 diabetes, and measurement of their number and functional characteristics in blood represent potentially important disease biomarkers. CD8 T cell reactivity against glutamic acid decarboxylase 65 (GAD65) in HLA-A*0201 subjects has been reported to focus on an immunogenic region 114-123 (VMNILLQYVV), with studies demonstrating both 114-123 and 114-122 epitopes being targeted. However, the fine specificity of this response is unclear and the key question as to which epitope(s) β cells naturally process and present and, therefore, the pathogenic potential of CD8 T cells with different specificities within this region has not been addressed. We generated human leucocyte antigen (HLA)-A*0201-restricted CD8 T cell clones recognizing either 114-122 alone or both 114-122 and 114-123. Both clone types show potent and comparable effector functions (cytokine and chemokine secretion) and killing of indicator target cells externally pulsed with cognate peptide. However, only clones recognizing 114-123 kill target cells transfected with HLA-A*0201 and GAD2 and HLA-A*0201(+) human islet cells. We conclude that the endogenous pathway of antigen processing by HLA-A*0201-expressing cells generates GAD65114-123 as the predominant epitope in this region. These studies highlight the importance of understanding β cell epitope presentation in the design of immune monitoring for potentially pathogenic CD8 T cells.
Collapse
Affiliation(s)
- R R Knight
- Department of Immunobiology, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alexander T, Bondanza A, Muraro PA, Greco R, Saccardi R, Daikeler T, Kazmi M, Hawkey C, Simoes BP, Leblanc K, Fibbe WE, Moore J, Snarski E, Martin T, Hiepe F, Velardi A, Toubert A, Snowden JA, Farge D. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transplant 2014; 50:173-80. [PMID: 25387090 PMCID: PMC4317973 DOI: 10.1038/bmt.2014.251] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022]
Abstract
Over the past 15 years, SCT has emerged as a promising treatment option for patients with severe autoimmune diseases (ADs). Mechanistic studies recently provided the proof-of-concept that restoration of immunological tolerance can be achieved by haematopoietic SCT in chronic autoimmunity through eradication of the pathologic, immunologic memory and profound reconfiguration of the immune system, that is, immune ‘resetting'. Nevertheless, a number of areas remain unresolved and warrant further investigation to refine our understanding of the underlying mechanisms of action and to optimize clinical SCT protocols. Due to the low number of patients transplanted in each centre, it is essential to adequately collect and analyse biological samples in a larger cohort of patients under standardized conditions. The European society for blood and marrow transplantation Autoimmune Diseases and Immunobiology Working Parties have, therefore, undertaken a joint initiative to develop and implement guidelines for ‘good laboratory practice' in relation to procurement, processing, storage and analysis of biological specimens for immune reconstitution studies in AD patients before, during and after SCT. The aim of this document is to provide practical recommendations for biobanking of samples and laboratory immune monitoring in patients with ADs undergoing SCT, both for routine supportive care purposes and investigational studies.
Collapse
Affiliation(s)
- T Alexander
- Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - A Bondanza
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - P A Muraro
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - R Greco
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - R Saccardi
- Cord Blood Bank, Haematology department, Careggi University Hospital, Florence, Italy
| | - T Daikeler
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - M Kazmi
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - C Hawkey
- Nottingham Digestive Diseases Centre, Nottingham, UK
| | - B P Simoes
- Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - K Leblanc
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - W E Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - J Moore
- Department of Haematology, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - E Snarski
- Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - T Martin
- Strasbourg University Hospital, Strasbourg, France
| | - F Hiepe
- Department of Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| | - A Velardi
- Department of Medicine, Division of Haematology, University of Perugia, Perugia, Italy
| | - A Toubert
- Inserm U1160, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France
| | - J A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, UK
| | - D Farge
- Saint Louis Hospital, Unité de Médecine interne et Pathologie Vasculaire, Assistance Publique des Hôpitaux de Paris, Paris 7 University, INSERM U1160, Paris, France
| |
Collapse
|
15
|
Anderson RP, Jabri B. Vaccine against autoimmune disease: antigen-specific immunotherapy. Curr Opin Immunol 2013; 25:410-7. [PMID: 23478068 DOI: 10.1016/j.coi.2013.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 02/08/2013] [Indexed: 02/08/2023]
Abstract
Recent interest in testing whether the success of antigen-specific immunotherapy (ASIT) for autoimmune diseases in mice can be translated to humans has highlighted the need for better tools to study and understand human autoimmunity. Clinical development of ASIT for allergy has been instructive, but limited understanding of CD4 T cell epitope/determinant hierarchies hampers the rational design and monitoring of ASIT. Definitive identification of pathogenic T cell epitopes as is now known in celiac disease and recent initiatives to optimize immune monitoring will facilitate rational design, monitoring and mechanistic understanding of ASIT for human autoimmune diseases.
Collapse
|
16
|
Singh SK, Tummers B, Schumacher TN, Gomez R, Franken KLMC, Verdegaal EM, Laske K, Gouttefangeas C, Ottensmeier C, Welters MJP, Britten CM, van der Burg SH. The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study. Cancer Immunol Immunother 2013; 62:489-501. [PMID: 22986454 PMCID: PMC3589624 DOI: 10.1007/s00262-012-1351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/02/2012] [Indexed: 11/05/2022]
Abstract
The validation of assays that quantify antigen-specific T cell responses is critically dependent on cell samples that contain clearly defined measurable numbers of antigen-specific T cells. An important requirement is that such cell samples are handled and analyzed in a comparable fashion to peripheral blood mononuclear cells (PBMC). We performed a proof-of-principle study to show that retrovirally TCR-transduced T cells spiked at defined numbers in autologous PBMC can be used as standard samples for HLA/peptide multimer staining. NY-ESO-1157-165-specific, TCR-transduced CD8+ T cell batches were successfully generated from PBMC of several HLA-A*0201 healthy donors, purified by magnetic cell sorting on the basis of HLA tetramer (TM) staining and expanded with specific antigen in vitro. When subsequently spiked into autologous PBMC, the detection of these CD3+CD8+TM+ T cells was highly accurate with a mean accuracy of 91.6 %. The standard cells can be preserved for a substantial period of time in liquid nitrogen. Furthermore, TM staining of fresh and cryopreserved standard samples diluted at decreasing concentrations into autologous cryopreserved unspiked PBMC revealed that the spiked CD3+CD8+TM+ T cells could be accurately detected at all dilutions in a linear fashion with a goodness-of-fit of over 0.99 at a frequency of at least 0.02 % among the CD3+CD8+ T cell population. Notably, the CD3+CD8+TM+ cells of the standard samples were located exactly within the gates used to analyze patient samples and displayed a similar scatter pattern. The performance of the cryopreserved standard samples in the hands of 5 external investigators was good with an inter-laboratory variation of 32.9 % and the doubtless identification of one outlier.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ton N. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Raquel Gomez
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Els M. Verdegaal
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Karoline Laske
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | | | | | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Cedrik M. Britten
- Department of the Translational Oncology, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
17
|
Abstract
It is widely accepted that Type 1 diabetes is a complex disease. Genetic predisposition and environmental factors favour the triggering of autoimmune responses against pancreatic β-cells, eventually leading to β-cell destruction. Over 40 susceptibility loci have been identified, many now mapped to known genes, largely supporting a dominant role for an immune-mediated pathogenesis. This role is also supported by the identification of several islet autoantigens and antigen-specific responses in patients with recent onset diabetes and subjects with pre-diabetes. Increasing evidence suggests certain viruses as a common environmental factor, together with diet and the gut microbiome. Inflammation and insulin resistance are emerging as additional cofactors, which might be interrelated with environmental factors. The heterogeneity of disease progression and clinical manifestations is likely a reflection of this multifactorial pathogenesis. So far, clinical trials have been mostly ineffective in delaying progression to overt diabetes in relatives at increased risk, or in reducing further loss of insulin secretion in patients with new-onset diabetes. This limited success may reflect, in part, our incomplete understanding of key pathogenic mechanisms, the lack of truly robust biomarkers of both disease activity and β-cell destruction, and the inability to assess the relative contributions of various pathogenic mechanisms at various time points during the course of the natural history of Type 1 diabetes. Emerging data and a re-evaluation of histopathological, immunological and metabolic findings suggest the hypothesis that unknown mechanisms of β-cell dysfunction may be present at diagnosis, and may contribute to the development of hyperglycaemia and clinical symptoms.
Collapse
Affiliation(s)
- A Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
18
|
Culina S, Mallone R. Pathogenic and regulatory T cells in type 1 diabetes: losing self-control, restoring it, and how to take the temperature. Curr Diab Rep 2011; 11:426-33. [PMID: 21732231 DOI: 10.1007/s11892-011-0209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The central role of T cells in type 1 diabetes pathogenesis is well established, but these cells continue to pose numerous challenges in understanding their dynamics and in following their modifications. Important progress has been recently made in pinpointing some novel antigens targeted by pathogenic T cells and the epitope sequences recognized. Studies on the interplay between effector T cells, their regulatory counterparts, and cells of the innate immune system have unraveled novel pathways and may inspire new therapeutic approaches. At the same time, the appreciation of the plasticity of regulatory T cells has raised important caveats on their use for cell-based therapies. Continuous development of T-cell assays exploring both pathogenic and regulatory players will be critical to "take the temperature" of undergoing disease progression and reversal.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 75674, Paris, Cedex 14, France.
| | | |
Collapse
|