1
|
Bedogni F, Hevner RF. Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci 2021; 14:686034. [PMID: 34321999 PMCID: PMC8313239 DOI: 10.3389/fnmol.2021.686034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cortex projection neurons (PNs) are generated from intermediate progenitors (IPs), which are in turn derived from radial glial progenitors (RGPs). To investigate developmental processes in IPs, we profiled IP transcriptomes in embryonic mouse neocortex, using transgenic Tbr2-GFP mice, cell sorting, and microarrays. These data were used in combination with in situ hybridization to ascertain gene sets specific for IPs, RGPs, PNs, interneurons, and other neural and non-neural cell types. RGP-selective transcripts (n = 419) included molecules for Notch receptor signaling, proliferation, neural stem cell identity, apical junctions, necroptosis, hippo pathway, and NF-κB pathway. RGPs also expressed specific genes for critical interactions with meningeal and vascular cells. In contrast, IP-selective genes (n = 136) encoded molecules for activated Delta ligand presentation, epithelial-mesenchymal transition, core planar cell polarity (PCP), axon genesis, and intrinsic excitability. Interestingly, IPs expressed several “dependence receptors” (Unc5d, Dcc, Ntrk3, and Epha4) that induce apoptosis in the absence of ligand, suggesting a competitive mechanism for IPs and new PNs to detect key environmental cues or die. Overall, our results imply a novel role for IPs in the patterning of neuronal polarization, axon differentiation, and intrinsic excitability prior to mitosis. Significantly, IPs highly express Wnt-PCP, netrin, and semaphorin pathway molecules known to regulate axon polarization in other systems. In sum, IPs not only amplify neurogenesis quantitatively, but also molecularly “prime” new PNs for axogenesis, guidance, and excitability.
Collapse
Affiliation(s)
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
3
|
Katsarou A, Moshé SL, Galanopoulou AS. INTERNEURONOPATHIES AND THEIR ROLE IN EARLY LIFE EPILEPSIES AND NEURODEVELOPMENTAL DISORDERS. Epilepsia Open 2017; 2:284-306. [PMID: 29062978 PMCID: PMC5650248 DOI: 10.1002/epi4.12062] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The advances in genetics have identified genes that control the development, maturation and integration of GABAergic interneurons and implicated them in the pathogenesis of epileptic encephalopathies or neurodevelopmental disorders. For example, mutations of the Aristaless-Related homeobox X-linked gene (ARX) may result in defective GABAergic interneuronal migration in infants with epileptic encephalopathies like West syndrome (WS), Ohtahara syndrome or X-linked lissencephaly with abnormal genitalia (XLAG). The concept of "interneuronopathy", i.e. impaired development, migration or function of interneurons, has emerged as a possible etiopathogenic mechanism for epileptic encephalopathies. Treatments that enhance GABA levels, may help seizure control but do not necessarily show disease modifying effect. On the other hand, interneuronopathies can be seen in other conditions in which epilepsy may not be the primary manifestation, such as autism. In this review, we plan to outline briefly the current state of knowledge on the origin, development, and migration and integration of GABAergic interneurons, present neurodevelopmental conditions, with or without epilepsy, that have been associated with interneuronopathies and discuss the evidence linking certain types of interneuronal dysfunction with epilepsy and/or cognitive or behavioral deficits.
Collapse
Affiliation(s)
- Anna‐Maria Katsarou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
4
|
Ng HX, Lee EP, Cavanagh BL, Britto JM, Tan SS. A method for isolating cortical interneurons sharing the same birthdays for gene expression studies. Exp Neurol 2017; 295:36-45. [PMID: 28511841 DOI: 10.1016/j.expneurol.2017.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 11/19/2022]
Abstract
The two neuronal populations in the cortex, pyramidal neurons and interneurons, can be separated based on neurotransmitter identity, however, within this segregation a large degree of diversity exists. Investigations into the molecular diversity of neurons are impeded by the inability to isolate cell populations born at different times for gene expression analysis. Developing interneurons may be distinguished by the expression of Glutamic Acid Decarboxylase-67 (GAD67). Neuronal birthdating using nucleoside analogs is an effective means of identifying coetaneous interneurons. Using these two features, neurotransmitter identity and birthdating, we have developed a method to isolate migrating interneurons using fluorescent-activated cell sorting (FACS) for RNA extraction and gene expression analysis. We utilized 5-ethynyl-2'-deoxyuridine (EdU) to birthdate interneuron cohorts and the GAD67 knock-in GFP transgenic mice to identify interneurons. In combination, we achieved simultaneous detection of GFP and EdU signals during FACS sorting of coetaneous interneurons with minimum loss of RNA integrity. RNA quality was deemed to be satisfactory by quantitative polymerase chain reaction (qPCR) for the interneuron-specific transcript Gad67.
Collapse
Affiliation(s)
- Hui Xuan Ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia.
| | - Ean Phing Lee
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Joanne M Britto
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
LoVerso PR, Cui F. Cell type-specific transcriptome profiling in mammalian brains. Front Biosci (Landmark Ed) 2016; 21:973-85. [PMID: 27100485 DOI: 10.2741/4434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed.
Collapse
Affiliation(s)
- Peter R LoVerso
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623,
| |
Collapse
|
6
|
LoVerso PR, Wachter CM, Cui F. Cross-species Transcriptomic Comparison of In Vitro and In Vivo Mammalian Neural Cells. Bioinform Biol Insights 2015; 9:153-64. [PMID: 26640375 PMCID: PMC4662426 DOI: 10.4137/bbi.s33124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022] Open
Abstract
The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level.
Collapse
Affiliation(s)
- Peter R LoVerso
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Christopher M Wachter
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
7
|
McClure CD, Southall TD. Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner. ADVANCES IN GENETICS 2015; 91:103-151. [PMID: 26410031 PMCID: PMC4604662 DOI: 10.1016/bs.adgen.2015.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique and how their individual characteristics are attributed are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e., only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features.
Collapse
Affiliation(s)
- Colin D. McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Ono C, Yu Z, Kasahara Y, Kikuchi Y, Ishii N, Tomita H. Fluorescently activated cell sorting followed by microarray profiling of helper T cell subtypes from human peripheral blood. PLoS One 2014; 9:e111405. [PMID: 25379667 PMCID: PMC4224392 DOI: 10.1371/journal.pone.0111405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
Background Peripheral blood samples have been subjected to comprehensive gene expression profiling to identify biomarkers for a wide range of diseases. However, blood samples include red blood cells, white blood cells, and platelets. White blood cells comprise polymorphonuclear leukocytes, monocytes, and various types of lymphocytes. Blood is not distinguishable, irrespective of whether the expression profiles reflect alterations in (a) gene expression patterns in each cell type or (b) the proportion of cell types in blood. CD4+ Th cells are classified into two functionally distinct subclasses, namely Th1 and Th2 cells, on the basis of the unique characteristics of their secreted cytokines and their roles in the immune system. Th1 and Th2 cells play an important role not only in the pathogenesis of human inflammatory, allergic, and autoimmune diseases, but also in diseases that are not considered to be immune or inflammatory disorders. However, analyses of minor cellular components such as CD4+ cell subpopulations have not been performed, partly because of the limited number of these cells in collected samples. Methodology/Principal Findings We describe fluorescently activated cell sorting followed by microarray (FACS–array) technology as a useful experimental strategy for characterizing the expression profiles of specific immune cells in the circulation. We performed reproducible gene expression profiling of Th1 and Th2, respectively. Our data suggest that this procedure provides reliable information on the gene expression profiles of certain small immune cell populations. Moreover, our data suggest that GZMK, GZMH, EOMES, IGFBP3, and STOM may be novel markers for distinguishing Th1 cells from Th2 cells, whereas IL17RB and CNTNAP1 can be Th2-specific markers. Conclusions/Significance Our approach may help in identifying aberrations and novel therapeutic or diagnostic targets for diseases that affect Th1 or Th2 responses and elucidating the involvement of a subpopulation of immune cells in some diseases.
Collapse
Affiliation(s)
- Chiaki Ono
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Kasahara
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, Internal Research Institute of Disaster Science, Tohoku University, Sendai, Japan
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- * E-mail:
| |
Collapse
|
9
|
Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 2014; 9:1282-91. [PMID: 24810037 DOI: 10.1038/nprot.2014.085] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular diversity and architectural complexity create barriers to understanding the function of the mammalian CNS at a molecular level. To address this problem, we have recently developed a methodology that provides the ability to profile the entire translated mRNA complement of any genetically defined cell population. This methodology, which we termed translating ribosome affinity purification, or TRAP, combines cell type-specific transgene expression with affinity purification of translating ribosomes. TRAP can be used to study the cell type-specific mRNA profiles of any genetically defined cell type, and it has been used in organisms ranging from Drosophila melanogaster to mice and human cultured cells. Unlike other methodologies that rely on microdissection, cell panning or cell sorting, the TRAP methodology bypasses the need for tissue fixation or single-cell suspensions (and the potential artifacts that these treatments introduce) and reports on mRNAs in the entire cell body. This protocol provides a step-by-step guide to implement the TRAP methodology, which takes 2 d to complete once all materials are in hand.
Collapse
|
10
|
Analysis of transcription factor mRNAs in identified oxytocin and vasopressin magnocellular neurons isolated by laser capture microdissection. PLoS One 2013; 8:e69407. [PMID: 23894472 PMCID: PMC3722287 DOI: 10.1371/journal.pone.0069407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/09/2013] [Indexed: 01/02/2023] Open
Abstract
The oxytocin (Oxt) and vasopressin (Avp) magnocellular neurons (MCNs) in the hypothalamus are the only neuronal phenotypes that are present in the supraoptic nucleus (SON), and are characterized by their robust and selective expression of either the Oxt or Avp genes. In this paper, we take advantage of the differential expression of these neuropeptide genes to identify and isolate these two individual phenotypes from the rat SON by laser capture microdissection (LCM), and to analyze the differential expression of several of their transcription factor mRNAs by qRT-PCR. We identify these neuronal phenotypes by stereotaxically injecting recombinant Adeno-Associated Viral (rAAV) vectors which contain cell-type specific Oxt or Avp promoters that drive expression of EGFP selectively in either the Oxt or Avp MCNs into the SON. The fluorescent MCNs are then dissected by LCM using a novel Cap Road Map protocol described in this paper, and the purified MCNs are extracted for their RNAs. qRT-PCR of these RNAs show that some transcription factors (RORA and c-jun) are differentially expressed in the Oxt and Avp MCNs.
Collapse
|
11
|
Kelsom C, Lu W. Development and specification of GABAergic cortical interneurons. Cell Biosci 2013; 3:19. [PMID: 23618463 PMCID: PMC3668182 DOI: 10.1186/2045-3701-3-19] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022] Open
Abstract
GABAergic interneurons are inhibitory neurons of the nervous system that play a vital role in neural circuitry and activity. They are so named due to their release of the neurotransmitter gamma-aminobutyric acid (GABA), and occupy different areas of the brain. This review will focus primarily on GABAergic interneurons of the mammalian cerebral cortex from a developmental standpoint. There is a diverse amount of cortical interneuronal subtypes that may be categorized by a number of characteristics; this review will classify them largely by the protein markers they express. The developmental origins of GABAergic interneurons will be discussed, as well as factors that influence the complex migration routes that these interneurons must take in order to ultimately localize in the cerebral cortex where they will integrate with the neural circuitry set in place. This review will also place an emphasis on the transcriptional network of genes that play a role in the specification and maintenance of GABAergic interneuron fate. Gaining an understanding of the different aspects of cortical interneuron development and specification, especially in humans, has many useful clinical applications that may serve to treat various neurological disorders linked to alterations in interneuron populations.
Collapse
Affiliation(s)
- Corey Kelsom
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
12
|
van den Berghe V, Stappers E, Vandesande B, Dimidschstein J, Kroes R, Francis A, Conidi A, Lesage F, Dries R, Cazzola S, Berx G, Kessaris N, Vanderhaeghen P, van Ijcken W, Grosveld FG, Goossens S, Haigh JJ, Fishell G, Goffinet A, Aerts S, Huylebroeck D, Seuntjens E. Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron 2013; 77:70-82. [PMID: 23312517 DOI: 10.1016/j.neuron.2012.11.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2012] [Indexed: 12/23/2022]
Abstract
GABAergic interneurons mainly originate in the medial ganglionic eminence (MGE) of the embryonic ventral telencephalon (VT) and migrate tangentially to the cortex, guided by membrane-bound and secreted factors. We found that Sip1 (Zfhx1b, Zeb2), a transcription factor enriched in migrating cortical interneurons, is required for their proper differentiation and correct guidance. The majority of Sip1 knockout interneurons fail to migrate to the neocortex and stall in the VT. RNA sequencing reveals that Sip1 knockout interneurons do not acquire a fully mature cortical interneuron identity and contain increased levels of the repulsive receptor Unc5b. Focal electroporation of Unc5b-encoding vectors in the MGE of wild-type brain slices disturbs migration to the neocortex, whereas reducing Unc5b levels in Sip1 knockout slices and brains rescues the migration defect. Our results reveal that Sip1, through tuning of Unc5b levels, is essential for cortical interneuron guidance.
Collapse
Affiliation(s)
- Veronique van den Berghe
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cortical and striatal interneurons are both generated within the ventral telencephalon, but their migratory journey takes them to very different destinations. Two articles in this issue (van den Berge et al., 2013; McKinsey et al., 2013) add an important molecular component to our understanding of how, during development, interneurons reach the cerebral cortex.
Collapse
Affiliation(s)
- Giulio S Tomassy
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
14
|
MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 2013; 14:99-111. [PMID: 23389741 DOI: 10.1007/s10048-013-0356-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Abstract
MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types.
Collapse
|
15
|
Faux C, Rakic S, Andrews W, Britto JM. Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 2012; 20:168-89. [PMID: 22572780 DOI: 10.1159/000334489] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of cortical activity by GABAergic interneurons is required for normal brain function and is achieved through the immense level of heterogeneity within this neuronal population. Cortical interneurons share a common origin in the ventral telencephalon, yet during the maturation process diverse subtypes are generated that form the characteristic laminar arrangement observed in the adult brain. The long distance tangential and short-range radial migration into the cortical plate is regulated by a combination of intrinsic and extrinsic signalling mechanisms, and a great deal of progress has been made to understand these developmental events. In this review, we will summarize current findings regarding the molecular control of subtype specification and provide a detailed account of the migratory cues influencing interneuron migration and lamination. Furthermore, a dysfunctional GABAergic system is associated with a number of neurological and psychiatric conditions, and some of these may have a developmental aetiology with alterations in interneuron generation and migration. We will discuss the notion of additional sources of interneuron progenitors found in human and non-human primates and illustrate how the disruption of early developmental events can instigate a loss in GABAergic function.
Collapse
Affiliation(s)
- Clare Faux
- Centre for Neuroscience, University of Melbourne, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
16
|
Friocourt G, Parnavelas JG. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front Cell Neurosci 2011; 5:28. [PMID: 22355284 PMCID: PMC3280452 DOI: 10.3389/fncel.2011.00028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/08/2011] [Indexed: 11/13/2022] Open
Abstract
Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Slc 12a5, Ets2, Phlda1, Egr1, Igf1, Lmo3, Sema6, Lgi1, Alk, Tgfb3, and Napb) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.
Collapse
Affiliation(s)
- Gaëlle Friocourt
- Laboratory of Molecular Genetics and Histocompatibility Inserm U613, Brest, France
| | | |
Collapse
|
17
|
Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. J Neurosci 2011; 31:10903-18. [PMID: 21795542 DOI: 10.1523/jneurosci.2358-11.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12, when SG neurons first extend projections, up until postnatal day 15, after the onset of hearing. For comparison, we also analyzed the closely related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our dataset provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events.
Collapse
|
18
|
Fujimoto C, Ozeki H, Uchijima Y, Suzukawa K, Mitani A, Fukuhara S, Nishiyama K, Kurihara Y, Kondo K, Aburatani H, Kaga K, Yamasoba T, Kurihara H. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst. J Comp Neurol 2011; 518:4702-22. [PMID: 20963824 DOI: 10.1002/cne.22468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we established a novel enhanced green fluorescent protein (EGFP) reporter mouse line that enables the visualization of the placode-derived inner ear sensory cell lineage. EGFP was initially expressed in the otic placode and throughout its differentiation process into the inner ear sensory patches. At embryonic day 10.5 (E10.5), EGFP was expressed in the ventral and dorsomedial region of the otocyst. These regions could mainly give rise to the cochlea, including the organ of Corti, and the saccule, including the macula and the endolymphatic duct. The region could also give rise to cells that will develop as either prosensory cells or statoacoustic ganglion neuroblasts. By using this line and fluorescence-activated cell sorting (FACS)-array technology, we developed a new gene expression profile of the regional specificity of the otocyst. EGFP-positive regions include the Otx1-positive region, which could be clearly distinguished from EGFP-negative regions. The signal log ratio of microarray data showed high efficiency in predicting the genes expressed mainly in the ventral and/or dorsomedial otocyst and the data could be mined to uncover many novel genes involved in inner ear morphogenesis and cell fate regulation. Additionally, these data suggest that some novel genes enriched in EGFP-positive regions may be potentially involved in human congenital sensorineural hearing loss. This reporter line could play important roles in the use of animal models for detailed analysis of the differentiation process into the sensory patches and the identification of regional-specific gene networks and novel gene functions in the developing inner ear.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Okaty BW, Sugino K, Nelson SB. Cell type-specific transcriptomics in the brain. J Neurosci 2011; 31:6939-43. [PMID: 21562254 PMCID: PMC3142746 DOI: 10.1523/jneurosci.0626-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/06/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
- Benjamin W. Okaty
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - Ken Sugino
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - Sacha B. Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
20
|
Abstract
Cerebral cortical γ-aminobutyric acid (GABA)ergic interneurons originate from the basal forebrain and migrate into the cortex in 2 phases. First, interneurons cross the boundary between the developing striatum and the cortex to migrate tangentially through the cortical primordium. Second, interneurons migrate radially to their correct neocortical layer position. A previous study demonstrated that mice in which the cortical hem was genetically ablated displayed a massive reduction of Cajal-Retzius (C-R) cells in the neocortical marginal zone (MZ), thereby losing C-R cell-generated reelin in the MZ. Surprisingly, pyramidal cell migration and subsequent layering were almost normal. In contrast, we find that the timing of migration of cortical GABAergic interneurons is abnormal in hem-ablated mice. Migrating interneurons both advance precociously along their tangential path and switch prematurely from tangential to radial migration to invade the cortical plate (CP). We propose that the cortical hem is responsible for establishing cues that control the timing of interneuron migration. In particular, we suggest that loss of a repellant signal from the medial neocortex, which is greatly decreased in size in hem-ablated mice, allows the early advance of interneurons and that reduction of another secreted molecule from C-R cells, the chemokine SDF-1/CXCL12, permits early radial migration into the CP.
Collapse
|
21
|
Hammock EAD, Eagleson KL, Barlow S, Earls LR, Miller DM, Levitt P. Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain. Neural Dev 2010; 5:32. [PMID: 21122108 PMCID: PMC3006369 DOI: 10.1186/1749-8104-5-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 12/01/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. RESULTS Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. CONCLUSIONS Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development.
Collapse
Affiliation(s)
- Elizabeth AD Hammock
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kathie L Eagleson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan Barlow
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Siskin Hospital for Physical Rehabilitation, One Siskin Plaza, Chattanooga, TN 37403, USA
| | - Laurie R Earls
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David M Miller
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Pat Levitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol 2010; 11:407-18. [PMID: 20386946 DOI: 10.1007/s10162-010-0211-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/24/2010] [Indexed: 01/20/2023] Open
Abstract
Cluster of differentiation antigens (CD proteins) are classically used as immune cell markers. However, their expression within the inner ear is still largely undefined. In this study, we explored the possibility that specific CD proteins might be useful for defining inner ear cell populations. mRNA expression profiling of microdissected auditory and vestibular sensory epithelia revealed 107 CD genes as expressed in the early postnatal mouse inner ear. The expression of 68 CD genes was validated with real-time RT-PCR using RNA extracted from microdissected sensory epithelia of cochleae, utricles, saccules, and cristae of newborn mice. Specifically, CD44 was identified as preferentially expressed in the auditory sensory epithelium. Immunohistochemistry revealed that within the early postnatal organ of Corti, the expression of CD44 is restricted to outer pillar cells. In order to confirm and expand this finding, we characterized the expression of CD44 in two different strains of mice with loss- and gain-of-function mutations in Fgfr3 which encodes a receptor for FGF8 that is essential for pillar cell development. We found that the expression of CD44 is abolished from the immature pillar cells in homozygous Fgfr3 knockout mice. In contrast, both the outer pillar cells and the aberrant Deiters' cells in the Fgfr3 ( P244R/ ) (+) mice express CD44. The deafness phenotype segregating in DFNB51 families maps to a linkage interval that includes CD44. To study the potential role of CD44 in hearing, we characterized the auditory system of CD44 knockout mice and sequenced the entire open reading frame of CD44 of affected members of DFNB51 families. Our results suggest that CD44 does not underlie the deafness phenotype of the DFNB51 families. Finally, our study reveals multiple potential new cell type-specific markers in the mouse inner ear and identifies a new marker for outer pillar cells.
Collapse
|
23
|
Baston-Buest DM, Schanz A, Buest S, Fischer JC, Kruessel JS, Hess AP. The embryo's cystatin C and F expression functions as a protective mechanism against the maternal proteinase cathepsin S in mice. Reproduction 2010; 139:741-8. [DOI: 10.1530/rep-09-0381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A successful implantation of a mammalian embryo into the maternal endometrium depends on a highly synchronized fetal–maternal dialogue involving chemokines, growth factors, and matrix-modifying enzymes. A growing body of evidence suggests an important role for proteinases playing a role in matrix degeneration and enhancing the embryo's invasive capacity and influencing the mother's immunological status in favor of the conceptus. This study focused on the expression of cathepsin S (CTSS) and its inhibitors in the murine fetal–maternal interface as well as the detection of the cellular sources of either proteinase and inhibitors. Nested RT-PCR for detection of embryonic mRNAs, immunohistochemistry of maternal and fetal tissues in B6C3F1 mice, and FACS analysis for determination of immunocompetent cell population were applied. This study shows that the cysteine proteinase CTSS is upregulated in the stroma of the implantation site, and that pregnancy induces an influx of CTSS-positive uterine natural killer cells. Compared to maternal tissues, the CTSS inhibitors cystatin F and C, but not the proteinase itself, are expressed in blastocysts. In conclusion, CTSS underlies a hormonal regulation in the maternal tissue and therewith most likely supports the embryonic implantation. The invading embryo regulates the depth of its own invasion through the expression of the cathepsin inhibitors and furthermore, interleukin-6 to activate CTSS in maternal tissues. Additionally, the observed decrease in CD3+ cells leads to the hypothesis that cells of the cytotoxic T-cell group are down-regulated in the decidua to support the implantation and ensure the survival of the embryo.
Collapse
|
24
|
Naegele JR. Westward Ho! Pioneering Mouse Models for X-Linked Infantile Spasms Syndrome. Epilepsy Curr 2010; 10:24-7. [DOI: 10.1111/j.1535-7511.2009.01343.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeted Loss of Arx Results in a Developmental Epilepsy Mouse Model and Recapitulates the Human Phenotype in Heterozygous Females. Marsh E, Fulp C, Gomez E, Nasrallah I, Minarcik J, Sudi J, Christian SL, Mancini G, Labosky P, Dobyns W, Brooks-Kayal A, Golden JA. Brain 2009;132(Pt 6):1563–1576. Mutations in the X-linked aristaless-related homeobox gene (ARX) have been linked to structural brain anomalies as well as multiple neurocognitive deficits. The generation of Arx-deficient mice revealed several morphological anomalies, resembling those observed in patients and an interneuron migration defect but perinatal lethality precluded analyses of later phenotypes. Interestingly, many of the neurological phenotypes observed in patients with various ARX mutations can be attributed, in part, to interneuron dysfunction. To directly test this possibility, mice carrying a floxed –Arx allele were generated and crossed to Dlx5/6 CRE-IRES-GFP( Dlx5/6 CIG ) mice, conditionally deleting Arx from ganglionic eminence derived neurons including cortical interneurons. We now report that Arx- /y; Dlx5/6 CIG (male) mice exhibit a variety of seizure types beginning in early-life, including seizures that behaviourally and electroencephalographically resembles infantile spasms, and show evolution through development. Thus, this represents a new genetic model of a malignant form of paediatric epilepsy, with some characteristics resembling infantile spasms, caused by mutations in a known infantile spasms gene. Unexpectedly, approximately half of the female mice carrying a single mutant Arx allele ( Arx-/+; Dlx5/6 CIG) also developed seizures. We also found that a subset of human female carriers have seizures and neurocognitive deficits. In summary, we have identified a previously unrecognized patient population with neurological deficits attributed to ARX mutations that are recapitulated in our mouse model. Furthermore, we show that perturbation of interneuron subpopulations is an important mechanism underling the pathogenesis of developmental epilepsy in both hemizygous males and carrier females. Given the frequency of ARX mutations in patients with infantile spasms and related disorders, our data unveil a new model for further understanding the pathogenesis of these disorders. A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx(GCG)10+7, with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment. Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD Jr, Noebels JL. J Neurosci 2009;29(27):8752–8763. Infantile spasms syndrome (ISS) is a catastrophic pediatric epilepsy with motor spasms, persistent seizures, mental retardation, and in some cases, autism. One of its monogenic causes is an insertion mutation [c.304ins (GCG)7] on the X chromosome, expanding the first polyalanine tract of the interneuron-specific transcription factor Aristaless-related homeobox (ARX) from 16 to 23 alanine codons. Null mutation of the Arx gene impairs GABA and cholinergic interneuronal migration but results in a neonatal lethal phenotype. We developed the first viable genetic mouse model of ISS that spontaneously recapitulates salient phenotypic features of the human triplet repeat expansion mutation. Arx(GCG)10+7 (“ Arx plus 7”) pups display abnormal spasm-like myoclonus and other key EEG features, including multifocal spikes, electrodecremental episodes, and spontaneous seizures persisting into maturity. The neurobehavioral profile of Arx mutants was remarkable for lowered anxiety, impaired associative learning, and abnormal social interaction. Laminar decreases of Arx+ cortical interneurons and a selective reduction of calbindin-, but not parvalbumin- or calretinin-expressing interneurons in neo-cortical layers and hippocampus indicate that specific classes of synaptic inhibition are missing from the adult forebrain, providing a basis for the seizures and cognitive disorder. A significant reduction of calbindin-, NPY (neuropeptide Y)-expressing, and cholinergic interneurons in the mutant striatum suggest that dysinhibition within this network may contribute to the dyskinetic motor spasms. This mouse model narrows the range of critical pathogenic elements within brain inhibitory networks essential to recreate this complex neurodevelopmental syndrome.
Collapse
|
25
|
Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 2009; 63:466-81. [PMID: 19709629 DOI: 10.1016/j.neuron.2009.08.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6. In both Lhx6 and Sox6 null animals, the expression of PV and SST and the position of both basket and Martinotti neurons are abnormal. We find that Sox6 functions downstream of Lhx6. Electrophysiological analysis of Sox6 mutant cortical interneurons revealed that basket cells, even when mispositioned, retain characteristic but immature fast-spiking physiological features. Our data suggest that Sox6 is not required for the specification of MGE-derived cortical interneurons. It is, however, necessary for their normal positioning and maturation. As a consequence, the specific removal of Sox6 from this population results in a severe epileptic encephalopathy.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Smilow Neuroscience Program and the Department of Cell Biology, Smilow Research Building, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Poschmann G, Sitek B, Sipos B, Hamacher M, Vonend O, Meyer HE, Stühler K. Cell-based proteome analysis: the first stage in the pipeline for biomarker discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1309-16. [PMID: 19595794 DOI: 10.1016/j.bbapap.2009.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 06/10/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
Abstract
The early detection of a distinct disease is crucial for a successful treatment and depends on a sensitive as well as specific diagnosis. In last years tremendous attempts were undertaken to identify new biomarker applying proteomics, but no relevant candidate has been identified for clinical application. Although proteomics is enabling quantitative and qualitative analysis of proteins within complex mixtures it could not significantly contribute to this field. Therefore, different proteomics approaches have been established focusing on the direct analysis of cell populations involved in pathogenic processes to identify candidate biomarkers even for in vitro diagnosis. Here, we will outline approaches applying cell- and tissue based proteome analysis as the first decisive step in the pipeline for the discovery of new diagnostic biomarkers. We will show examples for analysing precursor lesions of the pancreatic ductal adenocarcinoma (PDAC), nephron glomeruli and fibrotic and non-fibrotic liver tissue. This article provides also an overview about currently available techniques in the field of cell enrichment and quantitative proteome analysis of lowest amounts of sample.
Collapse
Affiliation(s)
- Gereon Poschmann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, ZKF E.043, Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Okaty BW, Miller MN, Sugino K, Hempel CM, Nelson SB. Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci 2009; 29:7040-52. [PMID: 19474331 PMCID: PMC2749660 DOI: 10.1523/jneurosci.0105-09.2009] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/17/2009] [Accepted: 04/21/2009] [Indexed: 11/21/2022] Open
Abstract
Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are attributable to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. Although embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first 4 postnatal weeks and that these changes are correlated with primarily monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of two-pore K(+) leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells.
Collapse
Affiliation(s)
- Benjamin W. Okaty
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Mark N. Miller
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Ken Sugino
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Chris M. Hempel
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| | - Sacha B. Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
28
|
Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 89:1-35. [PMID: 19900613 DOI: 10.1016/s0074-7742(09)89001-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining distinct molecular properties of the two striatal medium spiny neurons (MSNs) has been a challenging task for basal ganglia (BG) neuroscientists. Identifying differential molecular components in each MSN subtype is crucial for BG researchers to understand functional properties of these two neurons. The two MSN populations are morphologically identical except in their projections through the direct verses indirect BG pathways and they are heterogeneously dispersed throughout the dorsal striatum (dStr) and nucleus accumbens (NAc). These characteristics have made it difficult for researchers to distinguish and isolate these two neuronal populations thereby hindering progress toward a more comprehensive understanding of their differential molecular properties. Researchers began to investigate molecular differences in the striatonigral and striatopallidal neurons using in situ hybridization (ISH) techniques and single cell reverse transcription-polymerase chain reaction (scRT-PCR). Currently the field is utilizing more advanced techniques for large-scale gene expression studies including fluorescence activated cell sorting (FACS) of MSNs, from which RNA is purified, from fluorescent reporter transgenic mice or use of transgenic mice in which ribosomes from each MSN are tagged and can be immunoprecipitated followed by RNA isolation, a technique termed translating ribosomal affinity purification (TRAP). Additionally, the availability of fluorescent reporter mice for each MSN subtype is allowing, scientists to perform more accurate histology studies evaluating differential protein expression and signaling changes in each cell subtype. Finally, researchers are able to evaluate the role of specific genes in vivo by utilizing cell type-specific mouse models including Cre driver lines that can be crossed with conditional overexpression or knockout systems. This is a very exciting time in the BG field because researchers are well equipped with the most progressive tools to comprehensively evaluate molecular components in the two MSNs and their consequence on BG functional output in the normal, diseased, and developing brain.
Collapse
|
29
|
Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 2008; 17:3740-60. [PMID: 18799476 PMCID: PMC2581427 DOI: 10.1093/hmg/ddn271] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.
Collapse
Affiliation(s)
- Carl T Fulp
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|