1
|
Aníbal-Martínez M, Puche-Aroca L, Pérez-Montoyo E, Pumo G, Madrigal MP, Rodríguez-Malmierca LM, Martini FJ, Rijli FM, López-Bendito G. A prenatal window for enhancing spatial resolution of cortical barrel maps. Nat Commun 2025; 16:1955. [PMID: 40050657 PMCID: PMC11885613 DOI: 10.1038/s41467-025-57052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Precise mapping of peripheral inputs onto cortical areas is essential for accurate sensory processing. In the mouse primary somatosensory cortex, mystacial whiskers correspond to large, well-defined barrels, while upper lip whiskers form smaller, less distinct barrels. These differences are traditionally attributed to variations in whisker input type and receptor density, but prenatal activity and transcriptional programs also impact somatosensory map development independently of sensory experience. Here, we demonstrate that prenatal ablation of mystacial whiskers leads to a remapping of cortical territories, enhancing the functional and anatomical definition of upper lip whisker barrels. This reorganization occurs without altering peripheral receptor types. Instead, thalamic neurons that receive upper lip inputs adopt a mystacial-like transcriptional profile. Our findings unveil a regulated prenatal mechanism in the thalamus that ensures sufficient cortical barrel size and spatial resolution for sensory processing, irrespective of peripheral receptor type or density, highlighting a critical developmental process in sensory mapping.
Collapse
Affiliation(s)
- Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Lorenzo Puche-Aroca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Gabriele Pumo
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - M Pilar Madrigal
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), San Juan de Alicante, Alicante, Spain
| | - Luis M Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
2
|
Shi J, Chen Q, Lai J, Zhu J, Zhang R, Mazid MA, Li D, Su H, Qin D. Impact of c-JUN deficiency on thalamus development in mice and human neural models. Cell Biosci 2024; 14:149. [PMID: 39707500 DOI: 10.1186/s13578-024-01303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND c-Jun is a key regulator of gene expression. Through the formation of homo- or heterodimers, c-JUN binds to DNA and regulates gene transcription. While c-Jun plays a crucial role in embryonic development, its impact on nervous system development in higher mammals, especially for some deep structures, for example, thalamus in diencephalon, remains unclear. METHODS To investigate the influence of c-JUN on early nervous system development, c-Jun knockout (KO) mice and c-JUN KO H1 embryonic stem cells (ESCs)-derived neural progenitor cells (NPCs), cerebral organoids (COs), and thalamus organoids (ThOs) models were used. We detected the dysplasia via histological examination and immunofluorescence staining, omics analysis, and loss/gain of function analysis. RESULTS At embryonic day 14.5, c-Jun knockout (KO) mice exhibited sparseness of fibers in the brain ventricular parenchyma and malformation of the thalamus in the diencephalon. The absence of c-JUN accelerated the induction of NPCs but impaired the extension of fibers in human neuronal cultures. COs lacking c-JUN displayed a robust PAX6+/NESTIN+ exterior layer but lacked a fibers-connected core. Moreover, the subcortex-like areas exhibited defective thalamus characteristics with transcription factor 7 like 2-positive cells. Notably, in guided ThOs, c-JUN KO led to inadequate thalamus patterning with sparse internal nerve fibers. Chromatin accessibility analysis confirmed a less accessible chromatin state in genes related to the thalamus. Overexpression of c-JUN rescued these defects. RNA-seq identified 18 significantly down-regulated genes including RSPO2, WNT8B, MXRA5, HSPG2 and PLAGL1 while 24 genes including MSX1, CYP1B1, LMX1B, NQO1 and COL2A1 were significantly up-regulated. CONCLUSION Our findings from in vivo and in vitro experiments indicate that c-JUN depletion impedes the extension of nerve fibers and renders the thalamus susceptible to dysplasia during early mouse embryonic development and human ThO patterning. Our work provides evidence for the first time that c-JUN is a key transcription regulator that play important roles in the thalamus/diencephalon development.
Collapse
Affiliation(s)
- Jiantao Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianheng Lai
- Guangdong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital,, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
3
|
Liu J, Wang Y, Liu X, Han J, Tian Y. Spatiotemporal changes in Netrin/Dscam1 signaling dictate axonal projection direction in Drosophila small ventral lateral clock neurons. eLife 2024; 13:RP96041. [PMID: 39052321 PMCID: PMC11272162 DOI: 10.7554/elife.96041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Yuedong Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Xian Liu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
- Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast UniversityNanjingChina
| |
Collapse
|
4
|
Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 2021; 109:2519-2534. [PMID: 34293296 DOI: 10.1016/j.neuron.2021.06.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022]
Abstract
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
5
|
Abstract
CSF1R-related leukoencephalopathy is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few studies have investigated the intrinsic brain alternations of patients with CSF1R-related leukoencephalopathy. We aim to evaluate the structural and functional changes in those patients. Seven patients with CSF1R-related leukoencephalopathy and 15 age-matched healthy controls (HCs) underwent multimodal magnetic resonance imaging (MRI), including high-resolution T1-weighted imaging, T2-weighted fluid attenuated inversion recovery imaging, diffusion-weighted imaging, diffusion kurtosis imaging (DKI) and resting-state functional MRI. First, to detect structural alterations, the gray matter volumes were compared using voxel-based morphometry analyses. Second, DKI parametric maps were used to evaluate the white matter (WM) connectivity changes. Finally, we constructed a seed-based resting-state functional connectivity matrix based on 90 regions of interest and examined the functional network changes of CSF1R-related leukoencephalopathy. Unlike the HCs, patients with CSF1R-related leukoencephalopathy predominantly had morphological atrophy in the bilateral thalamus and left hippocampus. In addition, the abnormal diffusivity was mainly distributed in the splenium of the corpus callosum, periventricular regions, centrum semiovale, subcortical U-fibers and midline cortex structures. Moreover, the patients had significantly reduced functional connectivity between the bilateral caudate nucleus and their contralateral hippocampus. Therefore, in addition to hyperintensity on the T2-weighted images, CSF1R-related leukoencephalopathy also showed abnormal structural and functional alterations, including subcortical atrophy and reduced functional connectivity, as well as altered diffuse parameters in the WM and subcortical regions. These findings expand our understanding of the potential pathophysiologic mechanism behind this hereditary disease.
Collapse
|
6
|
Liu K, Lv Z, Huang H, Yu S, Xiao L, Li X, Li G, Liu F. FGF3 from the Hypothalamus Regulates the Guidance of Thalamocortical Axons. Dev Neurosci 2021; 42:208-216. [PMID: 33684917 DOI: 10.1159/000513534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Thalamus is an important sensory relay station: afferent sensory information, except olfactory signals, is transmitted by thalamocortical axons (TCAs) to the cerebral cortex. The pathway choice of TCAs depends on diverse diffusible or substrate-bound guidance cues in the environment. Not only classical guidance cues (ephrins, slits, semaphorins, and netrins), morphogens, which exerts patterning effects during early embryonic development, can also help axons navigate to their targets at later development stages. Here, expression analyses reveal that morphogen Fibroblast growth factor (FGF)-3 is expressed in the chick ventral diencephalon, hypothalamus, during the pathfinding of TCAs. Then, using in vitro analyses in chick explants, we identify a concentration-dependent effect of FGF3 on thalamic axons: attractant 100 ng/mL FGF3 transforms to a repellent at high concentration 500 ng/mL. Moreover, inhibition of FGF3 guidance functions indicates that FGF3 signaling is necessary for the correct navigation of thalamic axons. Together, these studies demonstrate a direct effect for the member of FGF7 subfamily, FGF3, in the axonal pathfinding of TCAs.
Collapse
Affiliation(s)
- Kuan Liu
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Zhongsheng Lv
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Hong Huang
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Shuyang Yu
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Li Xiao
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Xiang Li
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Gang Li
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China
| | - Fang Liu
- School of Basic Medical Sciences, Medical college of Nanchang University, Nanchang, China,
| |
Collapse
|
7
|
García-Guillén IM, Alonso A, Puelles L, Marín F, Aroca P. Multiple Regionalized Genes and Their Putative Networks in the Interpeduncular Nucleus Suggest Complex Mechanisms of Neuron Development and Axon Guidance. Front Neuroanat 2021; 15:643320. [PMID: 33664652 PMCID: PMC7921722 DOI: 10.3389/fnana.2021.643320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
The interpeduncular nucleus (IPN) is a highly conserved limbic structure in the vertebrate brain, located in the isthmus and rhombomere 1. It is formed by various populations that migrate from different sites to the distinct domains within the IPN: the prodromal, rostral interpeduncular, and caudal interpeduncular nuclei. The aim here was to identify genes that are differentially expressed across these domains, characterizing their putative functional roles and interactions. To this end, we screened the 2,038 genes in the Allen Developing Mouse Brain Atlas database expressed at E18.5 and we identified 135 genes expressed within the IPN. The functional analysis of these genes highlighted an overrepresentation of gene families related to neuron development, cell morphogenesis and axon guidance. The interactome analysis within each IPN domain yielded specific networks that mainly involve members of the ephrin/Eph and Cadherin families, transcription factors and molecules related to synaptic neurotransmission. These results bring to light specific mechanisms that might participate in the formation, molecular regionalization, axon guidance and connectivity of the different IPN domains. This genoarchitectonic model of the IPN enables data on gene expression and interactions to be integrated and interpreted, providing a basis for the further study of the connectivity and function of this poorly understood nuclear complex under both normal and pathological conditions.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
8
|
Yao B, Neggers SFW, Kahn RS, Thakkar KN. Altered thalamocortical structural connectivity in persons with schizophrenia and healthy siblings. NEUROIMAGE-CLINICAL 2020; 28:102370. [PMID: 32798913 PMCID: PMC7451425 DOI: 10.1016/j.nicl.2020.102370] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Thalamo-prefrontal structural connectivity reduced in persons with schizophrenia. Similar reduction in thalamo-prefrontal connectivity in healthy siblings. Thalamo-motor structural connectivity increased in persons with schizophrenia. No alterations in thalamo-motor structural connectivity in healthy siblings.
Schizophrenia has long been framed as a disorder of altered brain connectivity, with dysfunction in thalamocortical circuity potentially playing a key role in the development of the illness phenotype, including psychotic symptomatology and cognitive impairments. There is emerging evidence for functional and structural hypoconnectivity between thalamus and prefrontal cortex in persons with schizophrenia spectrum disorders, as well as hyperconnectivity between thalamus and sensory and motor cortices. However, it is unclear whether thalamocortical dysconnectivity is a general marker of vulnerability to schizophrenia or a specific mechanism of schizophrenia pathophysiology. This study aimed to answer this question by using diffusion-weighted imaging to examine thalamocortical structural connectivity in 22 persons with schizophrenia or schizoaffective disorder (SZ), 20 siblings of individuals with a schizophrenia spectrum disorder (SIB), and 44 healthy controls (HC) of either sex. Probabilistic tractography was used to quantify structural connectivity between thalamus and six cortical regions of interest. Thalamocortical structural connectivity was compared among the three groups using cross-thalamic and voxel-wise approaches. Thalamo-prefrontal structural connectivity was reduced in both SZ and SIB relative to HC, while SZ and SIB did not differ from each other. Thalamo-motor structural connectivity was increased in SZ relative to SIB and HC, while SIB and HC did not differ from each other. Hemispheric differences also emerged in thalamic connectivity with motor, posterior parietal, and temporal cortices across all groups. The results support the hypothesis that altered thalamo-prefrontal structural connectivity is a general marker of vulnerability to schizophrenia, whereas altered connectivity between thalamus and motor cortex is related to illness expression or illness-related secondary factors.
Collapse
Affiliation(s)
- Beier Yao
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | | | - René S Kahn
- Department of Psychiatry, University Medical Center, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
9
|
Morona R, Bandín S, López JM, Moreno N, González A. Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. J Comp Neurol 2020; 528:2361-2403. [PMID: 32162311 DOI: 10.1002/cne.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
The early patterning of the thalamus during embryonic development defines rostral and caudal progenitor domains, which are conserved from fishes to mammals. However, the subsequent developmental mechanisms that lead to the adult thalamic configuration have only been investigated for mammals and other amniotes. In this study, we have analyzed in the anuran amphibian Xenopus laevis (an anamniote vertebrate), through larval and postmetamorphic development, the progressive regional expression of specific markers for the rostral (GABA, GAD67, Lhx1, and Nkx2.2) and caudal (Gbx2, VGlut2, Lhx2, Lhx9, and Sox2) domains. In addition, the regional distributions at different developmental stages of other markers such as calcium binding proteins and neuropeptides, helped the identification of thalamic nuclei. It was observed that the two embryonic domains were progressively specified and compartmentalized during premetamorphosis, and cell subpopulations characterized by particular gene expression combinations were located in periventricular, intermediate and superficial strata. During prometamorphosis, three dorsoventral tiers formed from the caudal domain and most pronuclei were defined, which were modified into the definitive nuclear configuration through the metamorphic climax. Mixed cell populations originated from the rostral and caudal domains constitute most of the final nuclei and allowed us to propose additional subdivisions in the adult thalamus, whose main afferent and efferent connections were assessed by tracing techniques under in vitro conditions. This study corroborates shared features of early gene expression patterns in the thalamus between Xenopus and mouse, however, the dynamic changes in gene expression observed at later stages in the amphibian support mechanisms different from those of mammals.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
10
|
FGF10 regulates thalamocortical axon guidance in the developing thalamus. Neurosci Lett 2020; 716:134685. [PMID: 31836569 DOI: 10.1016/j.neulet.2019.134685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
Thalamocortical axons (TCAs) transmit sensory information to the neocortex by responding to a variety of guidance cues in the environment. Similar to classical guidance cues (ephrins, slits, semaphorins and netrins), morphogens of FGFs can also help axons navigate to their targets. Here, expression analyses reveal that FGF10 is expressed in the chick prethalamus during the navigation of TCAs. Then, using ex vivo analyses in chick explants, we demonstrate a dose-dependent effect of FGF10 on thalamic axons: low concentration of FGF10 attracts thalamic axons, while high concentration FGF10 repels thalamic axons. Moreover, inhibition of FGF10 function indicates that FGF10 exerts a direct effect on thalamic axons. Together, these studies reveal a direct role for the member of FGF7 subfamily, FGF10, in the axonal navigation of TCAs.
Collapse
|
11
|
Mercurio S, Serra L, Motta A, Gesuita L, Sanchez-Arrones L, Inverardi F, Foglio B, Barone C, Kaimakis P, Martynoga B, Ottolenghi S, Studer M, Guillemot F, Frassoni C, Bovolenta P, Nicolis SK. Sox2 Acts in Thalamic Neurons to Control the Development of Retina-Thalamus-Cortex Connectivity. iScience 2019; 15:257-273. [PMID: 31082736 PMCID: PMC6517317 DOI: 10.1016/j.isci.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans. Sox2 is expressed in postmitotic neurons of the visual thalamic nucleus (dLGN) Sox2 ablation in the dLGN perturbs retino-thalamic and thalamo-cortical projections The visual cortex is not correctly patterned in Sox2 thalamic mutants Downregulation of EphrinA5 and SERT expression may mediate these defects
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Alessia Motta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Lorenzo Gesuita
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Luisa Sanchez-Arrones
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid and CIBER de Enfermedades Raras (CIBERER), ISCIII Madrid, Madrid, Spain
| | - Francesca Inverardi
- Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", c/o AMADEOLAB, via Amadeo 42, 20133 Milano, Italy
| | - Benedetta Foglio
- Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", c/o AMADEOLAB, via Amadeo 42, 20133 Milano, Italy
| | - Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | - Polynikis Kaimakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid and CIBER de Enfermedades Raras (CIBERER), ISCIII Madrid, Madrid, Spain
| | - Ben Martynoga
- The Francis Crick Institute, Midland Road, London NW 1AT, UK
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy
| | | | | | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, Fondazione I.R.C.C.S. Istituto Neurologico "Carlo Besta", c/o AMADEOLAB, via Amadeo 42, 20133 Milano, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid and CIBER de Enfermedades Raras (CIBERER), ISCIII Madrid, Madrid, Spain
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
12
|
Alzu’bi A, Homman-Ludiye J, Bourne JA, Clowry GJ. Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cereb Cortex 2019; 29:1706-1718. [PMID: 30668846 PMCID: PMC6418397 DOI: 10.1093/cercor/bhy327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
The current model, based on rodent data, proposes that thalamocortical afferents (TCA) innervate the subplate towards the end of cortical neurogenesis. This implies that the laminar identity of cortical neurons is specified by intrinsic instructions rather than information of thalamic origin. In order to determine whether this mechanism is conserved in the primates, we examined the growth of thalamocortical (TCA) and corticofugal afferents in early human and monkey fetal development. In the human, TCA, identified by secretagogin, calbindin, and ROBO1 immunoreactivity, were observed in the internal capsule of the ventral telencephalon as early as 7-7.5 PCW, crossing the pallial/subpallial boundary (PSB) by 8 PCW before the calretinin immunoreactive corticofugal fibers do. Furthermore, TCA were observed to be passing through the intermediate zone and innervating the presubplate of the dorsolateral cortex, and already by 10-12 PCW TCAs were occupying much of the cortex. Observations at equivalent stages in the marmoset confirmed that this pattern is conserved across primates. Therefore, our results demonstrate that in primates, TCAs innervate the cortical presubplate at earlier stages than previously demonstrated by acetylcholinesterase histochemistry, suggesting that pioneer thalamic afferents may contribute to early cortical circuitry that can participate in defining cortical neuron phenotypes.
Collapse
Affiliation(s)
- Ayman Alzu’bi
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Abstract
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Guthrie S, Chédotal A. Introduction to the special volume on axonal development and disorders. Dev Neurobiol 2017; 77:807-809. [PMID: 28470844 DOI: 10.1002/dneu.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah Guthrie
- School of Life Sciences, University of Sussex, Falmer, Sussex, BN1 9QG, United Kingdom
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ. Paris 06, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
| |
Collapse
|
15
|
Moreno-Juan V, Filipchuk A, Antón-Bolaños N, Mezzera C, Gezelius H, Andrés B, Rodríguez-Malmierca L, Susín R, Schaad O, Iwasato T, Schüle R, Rutlin M, Nelson S, Ducret S, Valdeolmillos M, Rijli FM, López-Bendito G. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun 2017; 8:14172. [PMID: 28155854 PMCID: PMC5296753 DOI: 10.1038/ncomms14172] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022] Open
Abstract
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. How sensory maps are formed in the brain is only partially understood. Here the authors describe spontaneous calcium waves that propagate across different sensory nuclei in the embryonic thalamus; disrupting the wave pattern triggers thalamic gene expression changes and eventually alters the size of cortical areas.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Belen Andrés
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Luis Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Rafael Susín
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Olivier Schaad
- NCCR frontiers in Genetics, University of Geneva, CH-1211 Geneva 4, Switzerland.,Department of Biochemistry, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics (NIG), Mishima 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert Ludwigs University, 79106 Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Freiburg, 79108 Freiburg, Germany
| | - Michael Rutlin
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.,Department of Biochemistry and Molecular Biophysics, HHMI, Columbia University Medical Center, New York, New York 10032, USA
| | - Sacha Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|