1
|
Bridson JH, Masterton H, Knight B, Paris CF, Abbel R, Northcott GL, Gaw S. Quantification of additives in beached plastic debris from Aotearoa New Zealand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175251. [PMID: 39098406 DOI: 10.1016/j.scitotenv.2024.175251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Plastics have become an essential part of modern society. Their properties can be easily manipulated by incorporating additives to impart desirable attributes, such as colour, flexibility, or stability. However, many additives are classified as hazardous substances. To better understand the risk of plastic pollution within marine ecosystems, the type and concentration of additives in plastic debris needs to be established. We report the quantification of thirty-one common plastic additives (including plasticisers, antioxidants, and UV stabilisers) in beached plastic debris collected across Aotearoa New Zealand. Additives were isolated from the plastic debris by solvent extraction and quantified using high-resolution liquid chromatography-mass spectrometry. Twenty-five of the target additives were detected across 200 items of debris, with plasticisers detected at the highest frequency (99 % detection frequency). Additives were detected in all samples, with a median of four additives per debris item. A significantly higher number of additives were detected per debris item for polyvinyl chloride (median = 7) than polyethylene or polypropylene (median = 4). The additives bis(2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate, and antioxidant 702 were detected at the highest concentrations (up to 196,930 μg/g). The sum concentration of additives per debris item (up to 320,325 μg/g) was significantly higher in polyvinyl chloride plastics (median 94,716 μg/g) compared to other plastic types, primarily due to the presence of phthalate plasticisers. Non-target analysis was consistent with the targeted analysis, indicating a higher number and concentration of additives in polyvinyl chloride debris items compared to all other polymer types. Feature identification indicated the presence of more additives than previously detected in the targeted analysis, including plasticisers (phthalate and non-phthalate), processing aids, and nucleating agents. This study highlights phthalates and polyvinyl chloride as key targets for consideration in ecotoxicology and risk assessments, and the development of policies to reduce the impacts of plastic pollution.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Ben Knight
- Sustainable Coastlines, Wynyard Quarter, Auckland 1010, New Zealand
| | | | - Robert Abbel
- Scion, Titokorangi Drive, Rotorua 3046, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
2
|
Michaels BS, Ayers T, Brooks-McLaughlin J, McLaughlin RJ, Sandoval-Warren K, Schlenker C, Ronaldson L, Ardagh S. Potential for Glove Risk Amplification via Direct Physical, Chemical, and Microbiological Contamination. J Food Prot 2024; 87:100283. [PMID: 38679200 DOI: 10.1016/j.jfp.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This review focuses on the potential direct physical, chemical, and microbiological contamination from disposable gloves when utilized in food environments, inclusive of the risks posed to food products as well as worker safety. Unrecognized problems endemic to glove manufacturing were magnified during the COVID-19 pandemic due to high demand, increased focus on PPE performance, availability, supply chain instability, and labor shortages. Multiple evidence-based reports of contamination, toxicity, illness, deaths, and related regulatory action linked to contaminated gloves in food and healthcare have highlighted problems indicative of systemic glove industry shortcomings. The glove manufacturing process was diagramed with sources and pathways of contamination identified, indicating weak points with documented occurrences detailed. Numerous unsafe ingredients can introduce chemical contaminants, potentially posing risks to food and to glove users. Microbial hazards present significant challenges to overall glove safety as contaminants appear to be introduced via polluted water sources or flawed glove manufacturing processes, resulting in increased risks within food and healthcare environments. Frank and opportunistic pathogens along with food spoilage organisms can be introduced to foods and wearers. When the sources and pathways of glove-borne contamination were explored, it was found that physical failures play a pivotal role in the release of sweat build-up, liquefaction of chemical residues, and incubation of microbial contaminants from hands and gloves. Thus, with glove physical integrity issues, including punctures in new, unused gloves that can develop into significant rips and tears, not only can direct physical food contamination occur but also chemical and microbiological contamination can find their way into food. Enhanced regulatory requirements for Acceptable Quality Limits of food-grade gloves, and the establishment of appropriate bioburden standards would enhance safety in food applications. Based on the information provided, together with a false sense of security associated with glove use, the unconditional belief in glove chemical and microbiological purity may be unfounded.
Collapse
Affiliation(s)
- Barry S Michaels
- B. Michaels Group Inc., 487 West River Road, Palatka, FL 32177, USA.
| | - Troy Ayers
- Eurofins Microbiology Laboratories Inc., Des Moines, IA 50321, USA
| | | | | | | | | | - Lynda Ronaldson
- Eagle Protect PBC, South Lake Tahoe, CA 96150, USA; Eagle Protect Ltd. Christchurch 8011, New Zealand
| | - Steve Ardagh
- Eagle Protect PBC, South Lake Tahoe, CA 96150, USA; Eagle Protect Ltd. Christchurch 8011, New Zealand
| |
Collapse
|
3
|
Wang Z, An C, Lee K, Chen X, Zhang B, Yin J, Feng Q. Physicochemical change and microparticle release from disposable gloves in the aqueous environment impacted by accelerated weathering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154986. [PMID: 35395312 DOI: 10.1016/j.scitotenv.2022.154986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 05/24/2023]
Abstract
The explosive growth of disposable gloves usage in cities around the world has posed a considerable risk to municipal solid management and disposal during the COVID-19 pandemic. The lack of the environmental awareness leads to glove waste being discarded randomly and ending up in the soil and/or the ocean ecosystem. To explore the physicochemical changes and environmental behaviors of disposable glove wastes in the aqueous environment, three kinds of glove (latex, nitrile and vinyl) were investigated. The results showed that the physicochemical characteristics of disposable gloves made of different materials were altered to different degrees by UV weathering. Nitrile gloves were more stable than latex and vinyl gloves after being exposed to weathering conditions. Although the chemical structures were not clearly demonstrated through FTIR after weathering, the SEM results showed significant microscopic changes on the surfaces of the gloves. Analysis of the leachate results showed that UV weathered gloves released leachable substances, including microparticles, organic matter, and heavy metals. Latex gloves were more likely to release microparticles and other substances into the water after UV weathering. The release of microparticles from gloves can also be impacted by sand abrasion. The appropriate strategy needs to be developed to mitigate the environmental impact caused by the discarded gloves.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, K1A 0E6, Canada
| | - Xiujuan Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada
| | - Jianan Yin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
4
|
Jędruchniewicz K, Ok YS, Oleszczuk P. COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125938. [PMID: 34010776 PMCID: PMC8076738 DOI: 10.1016/j.jhazmat.2021.125938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
The appearance of the virus SARS-CoV-2 at the end of 2019 and its spreading all over the world has caused global panic and increase of personal protection equipment usage to protect people against infection. Increased usage of disposable protective gloves, their discarding to random spots and getting to landfills may result in significant environmental pollution. The knowledge concerning possible influence of gloves and potential of gloves debris on the environment (water, soil, etc.), wildlife and humans is crucial to predict future consequences of disposable gloves usage caused by the pandemic. This review focuses on the possibility of chemical release (heavy metals and organic pollutants) from gloves and gloves materials, their adsorptive properties in terms of contaminants accumulation and effects of gloves degradation under environmental conditions.
Collapse
Affiliation(s)
- Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
5
|
Li WL, Zhang ZF, Sparham C, Li YF. Validation of sampling techniques and SPE-UPLC/MS/MS for home and personal care chemicals in the Songhua Catchment, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136038. [PMID: 31865080 DOI: 10.1016/j.scitotenv.2019.136038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
A method for the simultaneous determination of 18 home and personal care chemicals (HPCCs) in river water and wastewater was developed using solid-phase extraction and ultra-high-performance liquid chromatography with tandem mass spectrometry (SPE and UPLC/MS/MS). A series of tests were designed to find the potential background interference and loss of HPCCs during the sample preservation and pretreatment process. Our results suggested that a considerable amount of some target compounds were lost with increasing days of storage even at 4 °C. Accordingly, the samples were stored acidified and refrigerated, including during transportation, to reduce the losses. Experiments on filtration of water samples suggested that recoveries of many HPCCs were significantly affected by the filtration. It is therefore recommended to avoid filtration of water samples where possible. The internal standard corrected recoveries for the HPCCs ranged from 64.2 to 107.0%, except for benzisothiazolone which did not have an appropriate internal standard, in river water which was considered to be the most difficult matrix. The method detection limits for river water, influent and effluent samples were in the ranges of 0.17 to 42 ng/L, 13 to 5100 ng/L, and 0.50 to 200 ng/L, respectively. The validated method was applied for the determination of HPCCs in sewage water collected from a full-scale wastewater treatment plant (WWTP) in a typical urban city in Northeast China and from river water upstream and downstream of the WWTP. Linear alkylbenzene sulphonate, caffeine, methyl paraben, benzalkonium chloride, triclocarban, and triclosan were the major compounds detected in the river water and wastewater samples. Sampling variability for the WWTP (intra-day and inter-day) and cross-river was also determined with the purpose of designing future monitoring requirements. Small variations in these samples confirmed that composite samples and a single sampling event would be representative for future use.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chris Sparham
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|