1
|
Steel R, Timms M, Bamford N, Spence R, Sillence M. The detection of ACTH and insulin in equine plasma by solid-phase extraction and micro-flow LC/MSMS. Drug Test Anal 2025; 17:589-600. [PMID: 38978168 DOI: 10.1002/dta.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Previous liquid chromatography/mass spectrometry (LC/MS) methods for the detection of insulin and other similar peptide hormones in equine plasma relied on the use of antibody affinity extraction. As a result, these methods were not suitable for routine high-throughput analysis. A solid-phase extraction (SPE) method incorporating size exclusion as well as reversed-phase interactions allows the selective extraction of peptide hormones such as adrenocorticotropic hormone (ACTH), insulin and their synthetic analogues from equine plasma with approximately 80% extraction efficiencies. This extraction was combined with on-column derivatisation with acetic anhydride, followed by tryptic digestion and analysis by micro-LC/MSMS for high-sensitivity peptide hormone detection. The analysis of tryptic peptides provides greater sensitivity and more robust chromatography compared with the analysis of intact insulin and ACTH. For quantitative analysis, isotopically labelled internal standards of target peptides can be prepared in the laboratory through the use of deuterated acetic anhydride. The utility of the method was assessed for the analysis of ACTH and insulin in samples from horses suffering from pituitary pars intermedia dysfunction (PPID).
Collapse
Affiliation(s)
- Rohan Steel
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, Australia
| | - Mark Timms
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, Australia
| | - Nicholas Bamford
- Veterinary Biosciences, Melbourne University, Parkville, Australia
| | - Robert Spence
- Department of Biological and Environmental Sciences, Queensland University of Technology, Brisbane, Australia
| | - Martin Sillence
- Department of Biological and Environmental Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Ohnuma K, Hirano-Kodaira M, Bannai M, Shimizu Y, Yamada M, Kinoshita K, Ngai-Wa Leung G, Ishii H. A broad-spectrum peptide screening method using an optimized solid-phase extraction and liquid chromatography-high-field asymmetric ion mobility spectrometry-mass spectrometry for doping control in equine urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8250-8267. [PMID: 39503331 DOI: 10.1039/d4ay01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The abuse of prohibited peptide-based drugs with a broad spectrum of chemical characteristics poses a significant concern for the horseracing industry. Recently, there has been a notable increase in positive cases of small-peptide drugs reported in equine and canine sports. In addition to small peptides, large peptides (over 2 kDa) with structural diversity have also entered the market in increasing numbers as drugs for humans and livestock. However, the simultaneous analysis of both small- and large-peptide-based drugs is still challenging. In this study, a screening method was developed to cover 74 analytes, including peptides, their catabolites, and/or their mimetics, with molecular weights ranging from 0.3 kDa to greater than 5 kDa. The simultaneous extraction of both small and large peptides was achieved using a weak cation-exchange solid-phase extraction cartridge with a mixture of different pore sizes (suitable for large peptides), followed by analysis using liquid chromatography high-field asymmetric ion mobility spectrometry tandem mass spectrometry (LC-FAIMS-MS/MS). For method validation, the limits of detection (LoDs), reproducibility, recovery, matrix effect, selectivity, and carryover were evaluated. Remarkably, the LoDs of ∼80% of the analytes were less than or equal to 50 pg ml-1, with the lowest LoD (1 pg ml-1) being observed for selected peptides in horse urine. These results indicate a substantial advancement in achieving comprehensive coverage for both small and large peptides with high sensitivity for the purpose of doping control in horseracing and equestrian sports.
Collapse
Affiliation(s)
- Kohei Ohnuma
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | | | - Michiko Bannai
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Yoshibumi Shimizu
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Masayuki Yamada
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Kenji Kinoshita
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Gary Ngai-Wa Leung
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| | - Hideaki Ishii
- Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Japan.
| |
Collapse
|
3
|
Chang W, Yan S, Yan X, Wang Z, Gu B, Liu Y, Zhang Y, Yang S. The sensitive detection of low molecular mass peptide drugs in dried blood spots by solid-phase extraction and LC-HRMS. Anal Bioanal Chem 2024; 416:5655-5669. [PMID: 39180594 DOI: 10.1007/s00216-024-05480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Dried blood spot (DBS) technique has become a new popular topic in anti-doping field in recent years due to its advantages of sample stability and easy operation. It can be employed as a supplementary method to routine urine analysis. However, the small volume of DBS samples (usually 10-20 μL) significantly reduces the application value of this technique. Therefore, the development of sensitive detection methods for the analysis of prohibited substances in DBS is particularly important. In this study, based on the characteristics of low molecular mass peptide (LMMP) drugs, systematic optimization strategies were utilized for the first time to establish a sensitive detection method for LMMPs in DBS. Without using DMSO to enhance mass spectrometry ionization efficiency of peptides, the limits of detection (LOD) ranged between 0.05 and 3.74 ng/mL, significantly better than the previously reported method (0.5-20 ng/mL). This method was validated according to the guidelines of the World Anti-Doping Agency (WADA), and corresponding post-administration study was conducted, demonstrating that the method could be applied to routine analysis of LMMP drugs in DBS. Moreover, since DMSO is not involved, this method also has the potential to simultaneously detect both LMMP and small molecular drugs.
Collapse
Affiliation(s)
- Wei Chang
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China.
| | - Siyu Yan
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| | - Xiya Yan
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| | - Zhanliang Wang
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China
| | - Boya Gu
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China
| | - Yunxi Liu
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China
| | - Yufeng Zhang
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China
| | - Sheng Yang
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Colpaert T, Risseeuw M, Deventer K, Van Eenoo P. Investigating the detection of the novel doping‐relevant peptide kisspeptin‐10 in urine using liquid chromatography high‐resolution mass spectrometry. Biomed Chromatogr 2024; 38:e5946. [PMID: 38978171 DOI: 10.1002/bmc.5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024]
Abstract
Kisspeptin-10 is a peptide hormone capable of increasing circulating follicle-stimulating hormone, luteinizing hormone and testosterone levels in humans. Clinically, these effects suggest its use as a treatment for infertility. However, its testosterone-increasing effect indicates potential misuse in sports. As such, it is included in the 2024 World Anti-Doping Agency Prohibited List. This work describes the successful validation of an initial testing procedure (screening) and a confirmation procedure for kisspeptin-10 in urine using liquid chromatography-mass spectrometry. Additionally, kisspeptin-10 was incubated in human serum to mimic endogenous metabolism to improve method sensitivity, as previous research had demonstrated a rapid elimination time of only 30 min after injection (in rats). Four metabolites, corresponding to peptide fragments y9, y8, y7 and y5, were found and added to the ITP in full scan mode. A degradation product discovered during early experimentation was found to probably be caused by oxidation of the tryptophan residue into a kynurenine residue. Further research should elucidate the kinetic parameters of the reaction to improve product stability. Using the validated confirmation procedure, a black-market vial of kisspeptin-10 was analysed. The product contained no unexpected impurities, although it appeared to have undergone more degradation than the purchased reference standard.
Collapse
Affiliation(s)
- Thibo Colpaert
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory of Medicinal Chemistry, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Koen Deventer
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Flores L, Hargrave S, Clifford A, Alarcio G, Moeller BC. Detection of doping peptides and basic drugs in equine urine using liquid chromatography-mass spectrometry. Drug Test Anal 2024; 16:406-419. [PMID: 37548131 DOI: 10.1002/dta.3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
The abuse of prohibited agents including peptides and basic small-molecule drugs is an area of great concern in horseracing due to their high potential to act as doping agents. These compound classes include agents such as growth hormone-releasing peptides, peptide analgesics, beta-2-adrenergic receptor agonists, and quaternary ammonium drugs that can be challenging to detect and regulate because of their chemical properties and potential rapid elimination following administration. The use of highly sensitive and selective analytical techniques such as liquid chromatography-mass spectrometry (LC-MS) is necessary to provide coverage of these substances and their potential metabolites. This study describes the development and validation of methodology capable of the detection of over 50 different peptide-based doping agents, related secretagogues, quaternary ammonium drugs, and other challenging small molecules in equine urine following solid-phase extraction using a mixed mode weak cation exchange sorbent. Following sample extraction, the compounds were analyzed using LC-MS with chromatographic separation via a reverse phase gradient and detection via selective reaction monitoring following introduction to a triple-stage quadrupole mass spectrometer using positive mode electrospray ionization. Validation parameters including limits of detection and quantitation, accuracy, precision, linear range, recovery, stability, and matrix effects were determined. Briefly, the limits of detection for most compounds were in the sub-ng/mL ranges with adequate precision and accuracy sufficient for an initial testing procedure. Stability studies indicated that most compounds were sufficiently stable to allow for effective screening using conditions commonly utilized in drug testing laboratories.
Collapse
Affiliation(s)
- Luis Flores
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Sabine Hargrave
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Amel Clifford
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Gwendolyne Alarcio
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Benjamin C Moeller
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
From targeted methods to metabolomics based strategies to screen for growth promoters misuse in horseracing and livestock: A review. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Gómez-Guerrero N, González-López N, Zapata-Velásquez JD, Martínez-Ramírez JA, Rivera-Monroy ZJ, García-Castañeda JE. Synthetic Peptides in Doping Control: A Powerful Tool for an Analytical Challenge. ACS OMEGA 2022; 7:38193-38206. [PMID: 36340120 PMCID: PMC9631397 DOI: 10.1021/acsomega.2c05296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Peptides are very diverse molecules that can participate in a wide variety of biological processes. In this way, peptides are attractive for doping, since these molecules can activate or trigger biological processes that can improve the sports performance of athletes. Peptide molecules are found in the official World Anti-Doping Agency lists, mainly in sections S2, S4, and S5. In most cases, these molecules have a very short half-life in the body and/or are identical to natural molecules in the body, making it difficult to analyze them as performance-enhancing drugs. This article reviews the role of peptides in doping, with special emphasis on the peptides used as reference materials, the pretreatment of samples in biological matrices, the instrumentation, and the validation of analytical methodologies for the analysis of peptides used in doping. The growing need to characterize and quantify these molecules, especially in complex biological matrices, has generated the need to search for robust strategies that allow for obtaining sensitive and conclusive results. In this sense, strategies such as solid phase peptide synthesis (SPPS), seeking to obtain specific peptides, metabolites, or isotopically labeled analogs, is a key tool for adequate quantification of different peptide molecules in biological matrices. This, together with the use of optimal methodologies for sample pretreatment (e.g., SPE or protein precipitation), and for subsequent analysis by high-resolution techniques (mainly hyphenated LC-HRMS techniques), have become the preferred instrumentation to meet the analytical challenge involved in the analysis of peptides in complex matrices.
Collapse
Affiliation(s)
- Néstor
Alejandro Gómez-Guerrero
- Chemistry
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 451, 11321 Bogotá, Colombia
- Doping
Control Laboratory, Ministerio del Deporte,
Bogotá, Carrera
68 No 55-65, 111071 Bogotá, Colombia
| | - Nicolás
Mateo González-López
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Juan Diego Zapata-Velásquez
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Jorge Ariel Martínez-Ramírez
- Pharmacy
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 450, 11321 Bogotá, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85,
Building 451, 11321 Bogotá, Colombia
| | | |
Collapse
|
8
|
Multi-analyte screening of small peptides by alkaline pre-activated solid phase extraction coupled with liquid chromatography-high resolution mass spectrometry in doping controls. J Chromatogr A 2022; 1676:463272. [DOI: 10.1016/j.chroma.2022.463272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
9
|
Chang W, He G, Yan K, Wang Z, Zhang Y, Dong T, Liu Y, Zhang L, Hong L. Doping control analysis of small peptides in human urine using LC-HRMS with parallel reaction monitoring mode: screening and confirmation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5838-5850. [PMID: 34847571 DOI: 10.1039/d1ay01677f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study described a reliable analytical method, which combines solid-phase extraction (SPE) with liquid chromatography-high resolution mass spectrometry (LC-HRMS) employing the parallel reaction monitoring (PRM) mode, for screening 41 small peptides and 3 non-peptide growth hormone secretagogues in human urine. Additionally 36 small peptides and 3 non-peptide growth hormone secretagogues were also confirmed in the same way. For the whole screening procedure, the PRM mode was applied to the HRMS detection of small peptides, which reduces the background noise from matrix compounds to a large extent and thus improves the selectivity and reliability of the peptide analytes. Meanwhile, competent chromatographic separation was achieved within a total runtime of 14 minutes, indicating an improvement in the detection efficiency. Moreover, the PRM mode could also be applied to the confirmation procedure due to its strong identification power with a low risk of generating false positives or negatives and good selectivity. Validation was performed according to the relevant World Anti-Doping Agency (WADA) criteria, including selectivity and reliability, limit of detection (LOD), limit of identification (LOI), recovery, extraction stability and carryover. The LODs of the peptide analytes ranged between 0.20 ng mL-1 and 0.92 ng mL-1 in urine, while their LOIs ranged between 0.20 ng mL-1 and 2.00 ng mL-1, which met the corresponding Minimum Required Performance Levels (MRPLs) as defined by WADA. The developed method furnished the rapid and sensitive detection of small peptides in urine for more than 5000 samples with no false-positive or false-negative, indicating that it is an eligible method for doping control analysis.
Collapse
Affiliation(s)
- Wei Chang
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Genye He
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Kuan Yan
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Zhanliang Wang
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Yufeng Zhang
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Tianyu Dong
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Yunxi Liu
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Lisi Zhang
- National Anti-Doping Laboratory, No. 1 Anding Road, ChaoYang District, 100029 Beijing, People's Republic of China.
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, No. 135 Xingang Xi Road, HaiZhu District, 510275 Guangzhou, People's Republic of China.
| |
Collapse
|
10
|
Esposito CL, Ac AG, Laszlo E, Duy SV, Michaud C, Sauvé S, Ong H, Marleau S, Banquy X, Brambilla D. A quantitative UHPLC-MS/MS method for the growth hormone-releasing peptide-6 determination in complex biological matrices and transdermal formulations. Talanta 2021; 233:122555. [PMID: 34215058 DOI: 10.1016/j.talanta.2021.122555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
Growth hormone-releasing peptide-6 (GHRP-6) is part of a group of small synthetic peptides with potent GH-releasing activity that have gained attention in the last two decades by virtue of their cyto- and cardioprotective effects. Despite numerous preclinical studies highlighting the potential cardiovascular benefits of GHRP-6, confirmation of clinical efficacy is still awaited. Recent advances in transdermal drug delivery systems have been made to address challenges related to the poor skin permeation rate of peptides by using pain-free microneedle (MN) devices. Accordingly, highly sensitive and validated analytical methods are required for the potential clinical translation of MN-based peptides. The ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) methods developed in this study aimed to quantify GHRP-6 in biological matrices (plasma, skin) and dissolving polymeric MNs. UHPLC/MS-MS method detection limits of 0.1, 1.1, 0.9 and 1.5 ng/mL were achieved in neat solution, plasma, MN polymer solution, and skin matrices, respectively. Method validation also involved assessment of precision, accuracy, limits of quantification, linearity of matched calibration curves (R2 > 0.990), extraction recovery, matrix effect, stability studies, selectivity, and carry-over effect. Additionally, quality control samples were analyzed at three concentration levels to determine recovery (85-109%) and accuracy/bias (3.2-14.7%). Intra- and inter-day precision were within the range of acceptance (RSDs of 3.0-13.9% and 0.4-14.5%, respectively). The validity and applicability of such methods were successfully demonstrated for transdermal GHRP-6 delivery using GHRP-6-loaded MN patches applied to pig skin.
Collapse
Affiliation(s)
- Cloé L Esposito
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Araceli Garcia Ac
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Elise Laszlo
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Catherine Michaud
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Huy Ong
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Lange T, Thomas A, Görgens C, Bidlingmaier M, Schilbach K, Fichant E, Delahaut P, Thevis M. Comprehensive insights into the formation of metabolites of the ghrelin mimetics capromorelin, macimorelin and tabimorelin as potential markers for doping control purposes. Biomed Chromatogr 2021; 35:e5075. [PMID: 33458843 DOI: 10.1002/bmc.5075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Analytical methods to determine the potential misuse of the ghrelin mimetics capromorelin (CP-424,391), macimorelin (macrilen, EP-01572) and tabimorelin (NN703) in sports were developed. Therefore, different extraction strategies, i.e. solid-phase extraction, protein precipitation, as well as a "dilute-and-inject" approach, from urine and EDTA-plasma were assessed and comprehensive in vitro/in vivo experiments were conducted, enabling the identification of reliable target analytes by means of high resolution mass spectrometry. The drugs' biotransformation led to the preliminary identification of 51 metabolites of capromorelin, 12 metabolites of macimorelin and 13 metabolites of tabimorelin. Seven major metabolites detected in rat urine samples collected post-administration of 0.5-1.0 mg of a single oral dose underwent in-depth characterization, facilitating their implementation into future confirmatory test methods. In particular, two macimorelin metabolites exhibiting considerable abundances in post-administration rat urine samples were detected, which might contribute to an improved sensitivity, specificity, and detection window in case of human sports drug testing programs. Further, the intact drugs were implemented into World Anti-Doping Agency-compliant initial testing (limits of detection 0.02-0.60 ng/ml) and confirmation procedures (limits of identification 0.18-0.89 ng/ml) for human urine and blood matrices. The obtained results allow extension of the test spectrum of doping agents in multitarget screening assays for growth hormone-releasing factors from human urine.
Collapse
Affiliation(s)
- Tobias Lange
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Christian Görgens
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, Munich, 80336, Germany
| | - Katharina Schilbach
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, Munich, 80336, Germany
| | - Eric Fichant
- Département Santé, CER Groupe, Rue du Point du Jour 8, Marloie, 6900, Belgium
| | - Philippe Delahaut
- Département Santé, CER Groupe, Rue du Point du Jour 8, Marloie, 6900, Belgium
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany.,European Monitoring Center for Emerging Doping Agents, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| |
Collapse
|
12
|
Moreira F, Carmo H, Guedes de Pinho P, Bastos MDL. Doping detection in animals: A review of analytical methodologies published from 1990 to 2019. Drug Test Anal 2021; 13:474-504. [PMID: 33440053 DOI: 10.1002/dta.2999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
Despite the impressive innate physical abilities of horses, camels, greyhounds, or pigeons, doping agents might be administered to these animals to improve their performance. To control these illegal practices, anti-doping analytical methodologies have been developed. This review compiles the analytical methods that have been published for the detection of prohibited substances administered to animals involved in sports over 30 years. Relevant papers meeting the search criteria that discussed analytical methods aiming to detect and/or quantify doping substances in animal biological matrices published from 1990 to 2019 were considered. A total of 317 studies were included, of which 298 were related to horses, demonstrating significant advances toward the development of doping detection methods for equine sports. However, analytical methods for the detection of doping agents in sports involving other species are lacking. Due to enhanced accuracy and specificity, chromatographic analysis coupled to mass spectrometry detection is preferred over immunoassays. Regarding biological matrices, blood and urine remain the first choice, although alternative biological matrices, such as hair and feces, have been considered. With the increasing number and type of drugs used as doping agents, the analytes addressed in the published papers are diverse. It is very important to continue to detect and quantify these drugs, recognizing those that are most frequently used, in order to punish the abusers, protect animals' health, and ensure a healthier and genuine competition.
Collapse
Affiliation(s)
- Fernando Moreira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Medicina Legal e Ciências Forenses, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Área Técnico-Científica de Farmácia, Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Judák P, Esposito S, Coppieters G, Van Eenoo P, Deventer K. Doping control analysis of small peptides: A decade of progress. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122551. [PMID: 33848801 DOI: 10.1016/j.jchromb.2021.122551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Small peptides are handled in the field of sports drug testing analysis as a separate group doping substances. It is a diverse group, which includes but is not limited to growth hormone releasing-factors and gonadotropin-releasing hormone analogues. Significant progress has been achieved during the past decade in the doping control analysis of these peptides. In this article, achievements in the application of liquid chromatography-mass spectrometry-based methodologies are reviewed. To meet the augmenting demands for analyzing an increasing number of samples for the presence of an increasing number of prohibited small peptides, testing methods have been drastically simplified, whilst their performance level remained constant. High-resolution mass spectrometers have been installed in routine laboratories and became the preferred detection technique. The discovery and implementation of metabolites/catabolites in testing methods led to extended detection windows of some peptides, thus, contributed to more efficient testing in the anti-doping community.
Collapse
Affiliation(s)
- Péter Judák
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium.
| | - Simone Esposito
- ADME/DMPK Department, Drug Discovery Division, IRBM S.p.A, Pomezia, Rome, Italy
| | - Gilles Coppieters
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| | - Koen Deventer
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Zwijnaarde, Belgium
| |
Collapse
|
14
|
Kwok KY, Choi TLS, Kwok WH, Lau MY, Leung EMK, Leung GNW, Wong JKY, Wan TSM, Adrian FF, Prabhu A, Ho ENM. Detection of bioactive peptides including gonadotrophin-releasing factors (GnRHs) in horse urine using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC/HRMS). Drug Test Anal 2020; 12:1274-1286. [PMID: 32558326 DOI: 10.1002/dta.2880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
The use of bioactive peptides as a doping agent in both human and animal sports has become increasingly popular in recent years. As such, methods to control the misuse of bioactive peptides in equine sports have received attention. This paper describes a sensitive accurate mass method for the detection of 40 bioactive peptides and two non-peptide growth hormone secretagogues (< 2 kDa) at low pg/mL levels in horse urine using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC/HRMS). A simple mixed-mode cation exchange solid-phase extraction (SPE) cartridge was employed for the extraction of 42 targets and/or their in vitro metabolites from horse urine. The final extract was analyzed using UHPLC/HRMS in positive electrospray ionization (ESI) mode under both full scan and data independent acquisition (DIA, for MS2 ). The estimated limits of detection (LoD) for most of the targets could reach down to 10 pg/mL in horse urine. This method was validated for qualitative detection purposes. The validation data, including method specificity, method sensitivity, extraction recovery, method precision, and matrix effect were reported. A thorough in vitro study was also performed on four gonadotrophin-releasing factors (GnRHs), namely leuprorelin, buserelin, goserelin, and nafarelin, using the S9 fraction isolated from horse liver. The identified in vitro metabolites have been incorporated into the method for controlling the misuse of GnRHs. The applicability of this method was demonstrated by the identification of leuprorelin and one of its metabolites, Leu M4, in urine obtained after intramuscular administration of leuprorelin to a thoroughbred gelding (castrated horse).
Collapse
Affiliation(s)
- Karen Y Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Timmy L S Choi
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Ming Yip Lau
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Elvis M K Leung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Gary N W Leung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Farrington F Adrian
- Department of Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Anil Prabhu
- Department of Veterinary Regulation, Welfare and Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T, Hong Kong, China
| |
Collapse
|
15
|
Chiaradia E, Miller I. In slow pace towards the proteome of equine body fluids. J Proteomics 2020; 225:103880. [PMID: 32569818 DOI: 10.1016/j.jprot.2020.103880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Equine medicine represents a relevant field of veterinary science and the horse industry generates a significant economic impact. Horses can be involved in different sport disciplines, meat production, work and recreational purposes. Horses are also important for human health as they can be used as animal models for studying human diseases and in equine-assisted therapy. This review summarizes the data related to body fluids such as plasma/serum, urine, cerebrospinal fluid, synovial fluid, saliva, bronchoalveolar lavage fluid and peritoneal fluid obtained using proteomic analysis. Horse body fluid proteome analysis under various physiological and pathological conditions is a useful method for identifying new biomarkers for horse diseases which are still difficult to diagnose, but with serious consequences on equine health and welfare. The findings reported here reveal that further proteomic studies on equine body fluids collected from diseased animals are required. SIGNIFICANCE: Body fluids are sources of potential protein biomarkers for diagnosis and therapeutic target identification. Indeed, they contain proteins that play a crucial role in cell functions and whose presence or relative abundance are indicative of the health status of tissues/organs. The review reports the data on the equine body fluids obtained using proteomic analysis, including those which are commonly used to obtain a correct diagnosis and prognosis of horse diseases which still pose a significant challenge. For equine medicine, new biomarkers are needed to formulate early diagnosis and to distinguish among diseases with similar clinical signs.
Collapse
Affiliation(s)
- Elisabetta Chiaradia
- Laboratory of proteomics, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, via San Costanzo, 4, 06126 Perugia, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
16
|
Lange T, Thomas A, Walpurgis K, Thevis M. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Anal Bioanal Chem 2020; 412:3765-3777. [PMID: 32300840 PMCID: PMC7220872 DOI: 10.1007/s00216-020-02634-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
The added value of dried blood spot (DBS) samples complementing the information obtained from commonly routine doping control matrices is continuously increasing in sports drug testing. In this project, a robotic-assisted non-destructive hematocrit measurement from dried blood spots by near-infrared spectroscopy followed by a fully automated sample preparation including strong cation exchange solid-phase extraction and evaporation enabled the detection of 46 lower molecular mass (< 2 kDa) peptide and non-peptide drugs and drug candidates by means of LC-HRMS. The target analytes included, amongst others, agonists of the gonadotropin-releasing hormone receptor, the ghrelin receptor, the human growth hormone receptor, and the antidiuretic hormone receptor. Furthermore, several glycine derivatives of growth hormone–releasing peptides (GHRPs), arguably designed to undermine current anti-doping testing approaches, were implemented to the presented detection method. The initial testing assay was validated according to the World Anti-Doping Agency guidelines with estimated LODs between 0.5 and 20 ng/mL. As a proof of concept, authentic post-administration specimens containing GHRP-2 and GHRP-6 were successfully analyzed. Furthermore, DBS obtained from a sampling device operating with microneedles for blood collection from the upper arm were analyzed and the matrix was cross-validated for selected parameters. The introduction of the hematocrit measurement method can be of great value for doping analysis as it allows for quantitative DBS applications by managing the well-recognized “hematocrit effect.” Graphical abstract ![]()
Collapse
Affiliation(s)
- Tobias Lange
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| |
Collapse
|
17
|
Guan F, Fay S, Li X, You Y, Robinson MA. Identification of ex vivo catabolites of peptides with doping potential in equine plasma by HILIC-HRMS. Drug Test Anal 2020; 12:771-784. [PMID: 32100400 DOI: 10.1002/dta.2781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/05/2022]
Abstract
Bioactive peptides pose a great threat to sports integrity. The detection of these peptides is essential for enforcing their prohibition in sports. Identifying the catabolites of these peptides that are formed ex vivo in plasma may improve their detection. In the present study, the stability of 27 bioactive peptides with protection at both termini in equine plasma was examined under different incubation conditions, using HILIC coupled to HRMS. Of the 27 peptides, 13 were stable after incubation at 37°C for 72 hr, but the remaining 14 were less stable. Ex vivo catabolites of these 14 peptides were detected using their theoretical masses generated in silico, their appearance was monitored over the time course of incubation, and their identity was verified by their product ion spectra. Catabolites identified for chemotactic peptide, DALDA, dmtDALDA, deltorphins I and II, Hyp6 -dermorphin, Lys7 -dermorphin, and dermorphin analog are novel. A d-amino acid residue at position 2 or 1 of a peptide or next to its C-terminus protected the relevant terminal from degradation by exopeptidases, but such a residue at position 3 did not. A pGlu residue or N-methylation at the N-terminus of a peptide did not protect its N-terminal. Ethylamide at the C-terminus of a peptide provided the C-terminal protection from attacks by carboxypeptidases. The C-terminal Lys amide in DALDA, dmtDALDA, and Lys7 -dermorphin was susceptible to cleavage by plasma enzymes, which is the first report, to the authors' knowledge. The results from the present study provide insights into the stability of peptides in plasma.
Collapse
Affiliation(s)
- Fuyu Guan
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, Kennett Square, PA, USA.,Pennsylvania Equine Toxicology and Research Laboratory, West Chester, PA, USA
| | - Savannah Fay
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, Kennett Square, PA, USA.,Pennsylvania Equine Toxicology and Research Laboratory, West Chester, PA, USA
| | - Xiaoqing Li
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, Kennett Square, PA, USA.,Pennsylvania Equine Toxicology and Research Laboratory, West Chester, PA, USA
| | - Youwen You
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, Kennett Square, PA, USA.,Pennsylvania Equine Toxicology and Research Laboratory, West Chester, PA, USA
| | - Mary A Robinson
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, Kennett Square, PA, USA.,Pennsylvania Equine Toxicology and Research Laboratory, West Chester, PA, USA
| |
Collapse
|
18
|
Dispersive SPE, an alternative to traditional SPE for extraction of 43 doping peptides from equine urine prior to LC–MS screening. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00524-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Guan F, You Y, Li X, Robinson MA. A comprehensive approach to detecting multitudinous bioactive peptides in equine plasma and urine using hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry. Drug Test Anal 2019; 11:1308-1325. [PMID: 31250565 DOI: 10.1002/dta.2671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
Bioactive peptides possess pharmacological effects and can be illicitly used in sports. To deter such misuse, an untargeted method using high resolution mass spectrometry (HRMS) has been developed for comprehensive detection of multitudinous exogenous peptides in equine plasma and urine. Forty-four peptides were extracted using mixed-mode solid-phase extraction (SPE) from plasma and urine, separated with a hydrophilic interaction liquid chromatography (HILIC) column, and detected on an HRMS instrument. Ammonium formate as a mobile phase additive had effects on HILIC retention and charge state distribution of the peptides. The acetonitrile percentage in the reconstitution solution affected the solubility of peptide neat standards and peptides in plasma and urine extracts differently. The stability of the peptides in plasma at ambient temperature was assessed. The limit of detection (LOD) was 10-50 pg/mL for most of the peptides in plasma, and ≤ 500 pg/mL for the remaining. LOD was 100-400 pg/mL for the majority of the analytes in urine, and ≤ 4000 pg/mL for the others. The method was used successfully to analyze incurred plasma and urine samples from research horses administered dermorphin. Even in the absence of reference standards, dermorphin metabolites (aFGYPS-NH2 , YaFG, and YaF) were identified. These results demonstrate that data generated with this method can be retrospectively reviewed for peptides that are unknown at the time of sample analysis without requiring re-analysis of the sample. This method provides a powerful novel tool for detection of numerous bioactive peptides and their metabolites in equine plasma and urine for doping control.
Collapse
Affiliation(s)
- Fuyu Guan
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA, 19348, USA.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, PA, 19382, USA
| | - Youwen You
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA, 19348, USA.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, PA, 19382, USA
| | - Xiaoqing Li
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA, 19348, USA.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, PA, 19382, USA
| | - Mary A Robinson
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA, 19348, USA.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, PA, 19382, USA
| |
Collapse
|
20
|
Görgens C, Guddat S, Thomas A, Thevis M. Recent improvements in sports drug testing concerning the initial testing for peptidic drugs (< 2 kDa) - sample preparation, mass spectrometric detection, and data review. Drug Test Anal 2018; 10:1755-1760. [DOI: 10.1002/dta.2503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Christian Görgens
- Institute of Biochemistry - Center for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Sven Guddat
- Institute of Biochemistry - Center for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Andreas Thomas
- Institute of Biochemistry - Center for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Mario Thevis
- Institute of Biochemistry - Center for Preventive Doping Research; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne/Bonn Germany
| |
Collapse
|
21
|
Thomas A, Knoop A, Schänzer W, Thevis M. Characterization of
in vitro
generated metabolites of selected peptides <2 kDa prohibited in sports. Drug Test Anal 2017; 9:1799-1803. [DOI: 10.1002/dta.2306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/07/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Thomas
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| | - Andre Knoop
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| | - Wilhelm Schänzer
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping ResearchGerman Sport University Cologne Am Sportpark Müngersdorf 50933 Cologne Germany
| |
Collapse
|
22
|
Cox HD, Miller GD, Eichner D. Detection and in vitro metabolism of the confiscated peptides BPC 157 and MGF R23H. Drug Test Anal 2017; 9:1490-1498. [PMID: 28035768 DOI: 10.1002/dta.2152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/03/2025]
Abstract
A new peptide, body protecting compound (BPC), BPC 157, and a variant of mechano-growth factor (MGF), MGF R23H, were identified in confiscated vials. BPC 157 has the amino acid sequence, GEPPPGKPADDAGLV, and is currently under investigation for the promotion of healing and recovery in a variety of tissues. In vitro metabolism experiments in plasma demonstrate that MGF R23H has good stability and should be detectable in urine, while BPC 157 forms a stable metabolite that should be detectable in urine. A weak cation exchange solid phase extraction method was validated for detection of BPC 157 in urine. The method has a limit of detection of 0.1 ng/mL, precision of less than 20%, and good linearity, r2 0.998. BPC 157 was stable in urine for at least 4 days. The specificity of the method is improved by measurement of a potential BPC metabolite along with the parent peptide. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Holly D Cox
- Sports Medicine Research and Testing Laboratory, 560 Arapeen Dr., Suite 150A, Salt Lake City, UT, 84108, USA
| | - Geoff D Miller
- Sports Medicine Research and Testing Laboratory, 560 Arapeen Dr., Suite 150A, Salt Lake City, UT, 84108, USA
- Division of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, 560 Arapeen Dr., Suite 150A, Salt Lake City, UT, 84108, USA
- Division of Physical Medicine and Rehabilitation, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| |
Collapse
|
23
|
Zvereva I, Dudko G, Dikunets M. Determination of GnRH and its synthetic analogues' abuse in doping control: Small bioactive peptide UPLC-MS/MS method extension by addition of in vitro and in vivo metabolism data; evaluation of LH and steroid profile parameter fluctuations as suitable bi. Drug Test Anal 2017; 10:711-722. [DOI: 10.1002/dta.2256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
|
24
|
Judák P, Van Eenoo P, Deventer K. Adsorption effects of the doping relevant peptides Insulin Lispro, Synachten, TB-500 and GHRP 5. Anal Biochem 2017; 537:69-71. [PMID: 28887173 DOI: 10.1016/j.ab.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023]
Abstract
The tendency of peptides to adsorb to surfaces can raise a concern in variety of analytical fields where the qualitative/quantitative measurement of low concentration analytes (ng/mL-pg/mL) is required. To demonstrate the importance of using the optimal glassware/plasticware, four doping relevant model peptides (GHRP 5, TB-500, Insulin Lispro, Synachten) were chosen and their recovery from various surfaces were evaluated. Our experiments showed that choosing expensive consumables with low-bind characteristics is not beneficial in all cases. A careful selection of the consumables based on the evaluation of the physico/chemical features of the peptide is recommended.
Collapse
Affiliation(s)
- Péter Judák
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium.
| | - Peter Van Eenoo
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium
| | - Koen Deventer
- Ghent University, Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Technologiepark 30 B, B-9052 Zwijnaarde, Belgium
| |
Collapse
|
25
|
Comprehensive solid-phase extraction of multitudinous bioactive peptides from equine plasma and urine for doping detection. Anal Chim Acta 2017; 985:79-90. [DOI: 10.1016/j.aca.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/22/2022]
|
26
|
Judák P, Grainger J, Goebel C, Van Eenoo P, Deventer K. DMSO Assisted Electrospray Ionization for the Detection of Small Peptide Hormones in Urine by Dilute-and-Shoot-Liquid-Chromatography-High Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1657-1665. [PMID: 28425052 DOI: 10.1007/s13361-017-1670-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
The mobile phase additive (DMSO) has been described as a useful tool to enhance electrospray ionization (ESI) of peptides and proteins. So far, this technique has mainly been used in proteomic/peptide research, and its applicability in a routine clinical laboratory setting (i.e., doping control analysis) has not been described yet. This work provides a simple, easy to implement screening method for the detection of doping relevant small peptides (GHRPs, GnRHs, GHS, and vasopressin-analogues) with molecular weight less than 2 kDa applying DMSO in the mobile phase. The gain in sensitivity was sufficient to inject the urine samples after a 2-fold dilution step omitting a time consuming sample preparation. The employed analytical procedure was validated for the qualitative determination of 36 compounds, including 13 metabolites. The detection limits (LODs) ranged between 50 and 1000 pg/mL and were compliant with the 2 ng/mL minimum detection level required by the World Anti-Doping Agency (WADA) for all the target peptides. To demonstrate the feasibility of the work, urine samples obtained from patients who have been treated with desmopressin or leuprolide and urine samples that have been declared as adverse analytical findings were analyzed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Péter Judák
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Ghent University, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium.
| | - Janelle Grainger
- Australian Sports Drug Testing Laboratory, National Measurement Institute, 105 Delhi Road, North Ryde, New South Wales, 2113, Australia
| | - Catrin Goebel
- Australian Sports Drug Testing Laboratory, National Measurement Institute, 105 Delhi Road, North Ryde, New South Wales, 2113, Australia
| | - Peter Van Eenoo
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Ghent University, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium
| | - Koen Deventer
- Department of Clinical Chemistry, Microbiology and Immunology, Doping Control Laboratory, Ghent University, Technologiepark 30 B, B-9052, Zwijnaarde, Belgium
| |
Collapse
|
27
|
Fragkaki AG, Kioukia-Fougia N, Kiousi P, Kioussi M, Tsivou M. Challenges in detecting substances for equine anti-doping. Drug Test Anal 2017; 9:1291-1303. [DOI: 10.1002/dta.2162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Affiliation(s)
- A. G. Fragkaki
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| | - N. Kioukia-Fougia
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| | - P. Kiousi
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| | - M. Kioussi
- Laboratory of Pesticides Residues, Department of Pesticides Control and Phytopharmacy; Benaki Phytopathological Institute; 8 St. Delta str., 14561 Kifissia Athens Greece
- Laboratory of Analytical Chemistry, Department of Chemistry; University of Athens; 15771 Panepistimiopolis-Zographou Athens Greece
| | - M. Tsivou
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| |
Collapse
|
28
|
Comparison of various in vitro model systems of the metabolism of synthetic doping peptides: Proteolytic enzymes, human blood serum, liver and kidney microsomes and liver S9 fraction. J Proteomics 2016; 149:85-97. [DOI: 10.1016/j.jprot.2016.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 01/17/2023]
|
29
|
Thevis M, Kuuranne T, Walpurgis K, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2016; 8:7-29. [PMID: 26767774 DOI: 10.1002/dta.1928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories, Höyläämötie 14, 00380, Helsinki, Finland
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
30
|
Semenistaya E, Zvereva I, Krotov G, Rodchenkov G. Solid-phase extraction of small biologically active peptides on cartridges and microelution 96-well plates from human urine. Drug Test Anal 2015; 8:940-9. [DOI: 10.1002/dta.1890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Accepted: 09/02/2015] [Indexed: 11/12/2022]
Affiliation(s)
| | - Irina Zvereva
- Antidoping Center; Elizavetinsky per., 10/1 Moscow 105005 Russian Federation
| | - Grigory Krotov
- Antidoping Center; Elizavetinsky per., 10/1 Moscow 105005 Russian Federation
| | - Grigory Rodchenkov
- Antidoping Center; Elizavetinsky per., 10/1 Moscow 105005 Russian Federation
| |
Collapse
|
31
|
Current status and recent advantages in derivatization procedures in human doping control. Bioanalysis 2015; 7:2537-56. [DOI: 10.4155/bio.15.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Derivatization is one of the most important steps during sample preparation in doping control analysis. Its main purpose is the enhancement of chromatographic separation and mass spectrometric detection of analytes in the full range of laboratory doping control activities. Its application is shown to broaden the detectable range of compounds, even in LC–MS analysis, where derivatization is not a prerequisite. The impact of derivatization initiates from the stage of the metabolic studies of doping agents up to the discovery of doping markers, by inclusion of the screening and confirmation procedures of prohibited substances in athlete's urine samples. Derivatization renders an unlimited number of opportunities to advanced analyte detection.
Collapse
|
32
|
The detection of a synthetic Interleukin-1 receptor antagonist peptide in a seized product from a racing stable. Drug Test Anal 2015; 8:957-65. [DOI: 10.1002/dta.1869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/07/2022]
|
33
|
Semenistaya E, Zvereva I, Thomas A, Thevis M, Krotov G, Rodchenkov G. Determination of growth hormone releasing peptides metabolites in human urine after nasal administration of GHRP-1, GHRP-2, GHRP-6, Hexarelin, and Ipamorelin. Drug Test Anal 2015; 7:919-25. [DOI: 10.1002/dta.1787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 02/04/2023]
Affiliation(s)
| | - Irina Zvereva
- Anti-Doping Center; Elizavetinskiy per., 10/1 Moscow 105005 Russian Federation
| | - Andreas Thomas
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne; Germany
| | - Mario Thevis
- Institute of Biochemistry and Center for Preventive Doping Research; German Sport University Cologne; Germany
| | - Grigory Krotov
- Anti-Doping Center; Elizavetinskiy per., 10/1 Moscow 105005 Russian Federation
| | - Grigory Rodchenkov
- Anti-Doping Center; Elizavetinskiy per., 10/1 Moscow 105005 Russian Federation
| |
Collapse
|
34
|
Cox HD, Hughes CM, Eichner D. Detection of GHRP-2 and GHRP-6 in urine samples from athletes. Drug Test Anal 2015; 7:439-44. [DOI: 10.1002/dta.1791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Holly D. Cox
- Sports Medicine Research and Testing Laboratory; 560 Arapeen Dr, Suite 150 A Salt Lake City UT 84108 USA
| | - Cole M. Hughes
- Sports Medicine Research and Testing Laboratory; 560 Arapeen Dr, Suite 150 A Salt Lake City UT 84108 USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory; 560 Arapeen Dr, Suite 150 A Salt Lake City UT 84108 USA
| |
Collapse
|