1
|
Garzinsky AM, Harth J, Leipp F, Walpurgis K, Reihlen P, Thomas A, Thevis M. Effect of oral fluid in urine samples on the analysis of selected erythropoietin receptor agonists and detection of saliva-specific markers for doping control purposes. J Pharm Biomed Anal 2025; 259:116769. [PMID: 40014892 DOI: 10.1016/j.jpba.2025.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Due to their performance-enhancing effect, erythropoiesis-stimulating agents (ESAs) are banned at all times by the World Anti-Doping Agency (WADA) in competitive sports. Doping control analyses for such compounds are routinely performed using gel electrophoretic and immunoblotting techniques, and degradation of the analytes can severely impair detection, results evaluation and interpretation. As oral fluid (OF) contains significant amounts of proteases, the question of whether its addition to a doping control urine sample may impede anti-doping analysis needs to be addressed. Intentional tampering attempts are likewise prohibited by WADA and require a detection strategy. It was observed that the addition of OF can indeed lead to impairments of ESA analyses, though the fraction of unidentifiable ESA signals varies depending on several factors, such as the individual composition of the OF, the sex of the OF donor, the time of sampling, the OF volume and the incubation conditions. Overall, 20 % of all generally valid analyses were classified as unidentifiable, 12 % as impaired, and 69 % as identifiable, highlighting the relevance for strategies that allow for the identification of OF in urine. While human salivary α-amylase was found insufficiently reliable as a marker, peptides of salivary proline rich proteins (saPRP) were shown to be both specific for OF and traceable with adequate sensitivity using a newly developed LC-HRMS/MS method. The approach was comprehensively characterized shown to be fit-for-purpose for routine doping controls where tampering attempts with OF are suspected.
Collapse
Affiliation(s)
- Ann-Marie Garzinsky
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany
| | - Judith Harth
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany
| | - Florine Leipp
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany
| | - Philipp Reihlen
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Germany; European Monitoring Center for Emerging Doping Agents, Cologne, Bonn, Germany.
| |
Collapse
|
2
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2025; 17:663-684. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
3
|
Dahlgren AR, Knych HK, Arthur RM, Durbin-Johnson BP, Finno CJ. Transcriptomic Markers of Recombinant Human Erythropoietin Micro-Dosing in Thoroughbred Horses. Genes (Basel) 2021; 12:1874. [PMID: 34946824 PMCID: PMC8702184 DOI: 10.3390/genes12121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Recombinant human erythropoietin (rHuEPO) is a well-known performance enhancing drug in human athletes, and there is anecdotal evidence of it being used in horse racing for the same purpose. rHuEPO, like endogenous EPO, increases arterial oxygen content and thus aerobic power. Micro-doping, or injecting smaller doses over a longer period of time, has become an important concern in both human and equine athletics since it is more difficult to detect. Horses offer an additional challenge of a contractile spleen, thus large changes in the red blood cell mass occur naturally. To address the challenge of detecting rHuEPO doping in horse racing, we determined the transcriptomic effects of rHuEPO micro-dosing over seven weeks in exercised Thoroughbreds. RNA-sequencing of peripheral blood mononuclear cells isolated at several time points throughout the study identified three transcripts (C13H16orf54, PUM2 and CHTOP) that were significantly (PFDR < 0.05) different between the treatment groups across two or three time point comparisons. PUM2 and CHTOP play a role in erythropoiesis while not much is known about C13H16orf54, but it is primarily expressed in whole blood. However, gene expression differences were not large enough to detect via RT-qPCR, thereby precluding their utility as biomarkers of micro-doping.
Collapse
Affiliation(s)
- Anna R. Dahlgren
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.R.D.); (R.M.A.)
| | - Heather K. Knych
- K.L. Maddy Equine Analytical Pharmacology Lab and Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Rick M. Arthur
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.R.D.); (R.M.A.)
| | | | - Carrie J. Finno
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.R.D.); (R.M.A.)
| |
Collapse
|
4
|
Moreira F, Carmo H, Guedes de Pinho P, Bastos MDL. Doping detection in animals: A review of analytical methodologies published from 1990 to 2019. Drug Test Anal 2021; 13:474-504. [PMID: 33440053 DOI: 10.1002/dta.2999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
Despite the impressive innate physical abilities of horses, camels, greyhounds, or pigeons, doping agents might be administered to these animals to improve their performance. To control these illegal practices, anti-doping analytical methodologies have been developed. This review compiles the analytical methods that have been published for the detection of prohibited substances administered to animals involved in sports over 30 years. Relevant papers meeting the search criteria that discussed analytical methods aiming to detect and/or quantify doping substances in animal biological matrices published from 1990 to 2019 were considered. A total of 317 studies were included, of which 298 were related to horses, demonstrating significant advances toward the development of doping detection methods for equine sports. However, analytical methods for the detection of doping agents in sports involving other species are lacking. Due to enhanced accuracy and specificity, chromatographic analysis coupled to mass spectrometry detection is preferred over immunoassays. Regarding biological matrices, blood and urine remain the first choice, although alternative biological matrices, such as hair and feces, have been considered. With the increasing number and type of drugs used as doping agents, the analytes addressed in the published papers are diverse. It is very important to continue to detect and quantify these drugs, recognizing those that are most frequently used, in order to punish the abusers, protect animals' health, and ensure a healthier and genuine competition.
Collapse
Affiliation(s)
- Fernando Moreira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Medicina Legal e Ciências Forenses, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Área Técnico-Científica de Farmácia, Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Chiaradia E, Miller I. In slow pace towards the proteome of equine body fluids. J Proteomics 2020; 225:103880. [PMID: 32569818 DOI: 10.1016/j.jprot.2020.103880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Equine medicine represents a relevant field of veterinary science and the horse industry generates a significant economic impact. Horses can be involved in different sport disciplines, meat production, work and recreational purposes. Horses are also important for human health as they can be used as animal models for studying human diseases and in equine-assisted therapy. This review summarizes the data related to body fluids such as plasma/serum, urine, cerebrospinal fluid, synovial fluid, saliva, bronchoalveolar lavage fluid and peritoneal fluid obtained using proteomic analysis. Horse body fluid proteome analysis under various physiological and pathological conditions is a useful method for identifying new biomarkers for horse diseases which are still difficult to diagnose, but with serious consequences on equine health and welfare. The findings reported here reveal that further proteomic studies on equine body fluids collected from diseased animals are required. SIGNIFICANCE: Body fluids are sources of potential protein biomarkers for diagnosis and therapeutic target identification. Indeed, they contain proteins that play a crucial role in cell functions and whose presence or relative abundance are indicative of the health status of tissues/organs. The review reports the data on the equine body fluids obtained using proteomic analysis, including those which are commonly used to obtain a correct diagnosis and prognosis of horse diseases which still pose a significant challenge. For equine medicine, new biomarkers are needed to formulate early diagnosis and to distinguish among diseases with similar clinical signs.
Collapse
Affiliation(s)
- Elisabetta Chiaradia
- Laboratory of proteomics, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, via San Costanzo, 4, 06126 Perugia, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|