1
|
So YM, Kong FKW, Kwok WH, Kwok KY, Wan TSM, Ho ENM. Detection of nonsteroidal and steroidal selective androgen receptor modulators in equine hair after oral administrations. Drug Test Anal 2025; 17:655-662. [PMID: 39001560 DOI: 10.1002/dta.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 04/23/2025]
Abstract
This paper describes the detections of nonsteroidal and steroidal selective androgen receptor modulators (SARMs), namely, RAD140 and YK-11, in mane hair collected from horses having been orally administered with the respective drugs. SARMs are potent anabolic agents with a high potential of misuse in horseracing and equestrian sports, and the misuses of RAD140 and YK-11 in human sports have been reported. To better control the misuse of RAD140 and YK-11 in horses, two separate oral administration studies of RAD140 (0.3 mg/kg daily for 3 days) and YK-11 (0.2 mg/kg daily for 3 days) were previously conducted to investigate their metabolism and to identify target analyte(s) with the longest detection time in urine and plasma for doping control. In this work, segmental analyses of post-administration hair samples have revealed that (i) RAD140 and YK-11 could be detected in horse mane after oral administration and (ii) internal incorporation of RAD140 into hair via bloodstream and external incorporation through sweat or sebum were both observed, whereas YK-11 was primarily incorporated into hair via sweat or sebum.
Collapse
Affiliation(s)
- Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T, Hong Kong, China
| | - Fred Ka-Wai Kong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T, Hong Kong, China
| | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T, Hong Kong, China
| | - Karen Ying Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T, Hong Kong, China
| | - Terence See Ming Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T, Hong Kong, China
| | - Emmie Ngai-Man Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T, Hong Kong, China
| |
Collapse
|
2
|
Checkouri A, Gheddar L, Arbouche N, Raul J, Kintz P. Simultaneous detection of three hypoxia-inducible factor stabilizers-molidustat, roxadustat, and vadadustat-in multiple keratinized matrices and its application in a doping context. Drug Test Anal 2025; 17:647-654. [PMID: 38992954 PMCID: PMC12012410 DOI: 10.1002/dta.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
In a doping case, a top athlete challenged an anti-doping rule violation, involving molidustat. Molidustat is a stabilizing agent of the hypoxia-inducible factor (HIF) recently developed. It is currently undergoing clinical trials for anemia associated with chronic kidney disease. HIF stabilizers are banned at all times by the World Anti-Doping Agency (class S2). Because of their pharmacological proprieties, these new drugs can enhance athletic performance. The athlete's defense wanted to analyze multiple keratinized matrices as they allow long-term investigations. Requests concerning HIF stabilizers are constantly growing. We have therefore developed a liquid chromatography coupled with tandem mass spectrometry method to identify and quantify three molecules of this class: molidustat, vadadustat, and roxadustat. Thirty milligrams of keratinized matrices were incubated in 1 mL of pH 8.4 diammonium hydrogen phosphate buffer for 16 h at 40°C with 1 ng of testosterone-D3, used as internal standard. After extraction with ethyl acetate/diethyl ether (80/20), the organic phase was evaporated, and the dry residue was reconstituted in 30 μL of initial phase. The method was linear from 5 to 1000 pg/mg for the three analytes. Limits of quantification were 2, 0.5, and 5 pg/mg for molidustat, roxadustat, and vadadustat, respectively. The analysis of the athlete's head hair (collected 1 month after the urine test) showed a concentration of molidustat of 135 pg/mg, and his beard hair and his fingernails clippings contained 55 and 40 pg/mg, respectively.
Collapse
Affiliation(s)
- Anne Checkouri
- Laboratory of ToxicologyInstitut de Médecine LégaleStrasbourgFrance
| | - Laurie Gheddar
- Laboratory of ToxicologyInstitut de Médecine LégaleStrasbourgFrance
| | - Nadia Arbouche
- Laboratory of ToxicologyInstitut de Médecine LégaleStrasbourgFrance
| | | | - Pascal Kintz
- Laboratory of ToxicologyInstitut de Médecine LégaleStrasbourgFrance
- X‐Pertise ConsultingMittelhausbergenFrance
| |
Collapse
|
3
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2025; 17:663-684. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
4
|
Gray B, Bailly-Chouriberry L, Kwok WH, Yamada S, Yamada M, Moeller B. Association of Official Racing Chemists guidelines for drug testing in animal hair for doping control. Drug Test Anal 2025; 17:198-204. [PMID: 38636555 DOI: 10.1002/dta.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
The Association of Official Racing Chemists (AORC) guidelines for drug testing in animal hair provide animal sport doping control laboratories with a framework for the implementation of a robust and legally defensible program for the analysis, both screening and confirmatory, of animal hair samples. The guidelines were compiled by the AORC Hair Analysis Committee, which is comprised of experts from animal sport doping control laboratories around the world, before being ratified by the AORC membership. They provide guidance on all stages of animal hair analysis, from sample collection, through sample pre-treatment and extraction and onto instrumental analysis.
Collapse
Affiliation(s)
- Bob Gray
- Sport and Specialised Analytical Services, LGC Ltd, Fordham, UK
| | | | - Wai Him Kwok
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin, Hong Kong, China
| | - Sean Yamada
- Racing Analytical Services Ltd, Melbourne, Australia
| | | | - Benjamin Moeller
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
5
|
Cutler C, Viljanto M, Taylor P, Hincks P, Habershon-Butcher J, Gray B, Scarth J. Detection of FG-4592 and metabolites in equine plasma, urine and hair following oral administration. Drug Test Anal 2024; 16:1167-1181. [PMID: 38217093 DOI: 10.1002/dta.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 01/15/2024]
Abstract
FG-4592 is a hypoxia-inducible factor inhibitor that has been approved for therapeutic use in some countries. This class of compounds can increase the oxygen carrying capacity of the blood and thus have the potential to be used as performance enhancing agents in sports. The purpose of this study was to investigate the detection of FG-4592 and metabolites in equine plasma and mane hair following a multiple dose oral administration to two Thoroughbred racehorses, to identify the best analytical targets for doping control laboratories. Urine samples were also analysed, and the results compared to previously published urine data. Liquid chromatography-high resolution mass spectrometry was used for metabolite identification in urine and plasma. Liquid chromatography-tandem mass spectrometry was used for full sample analysis of urine, plasma and hair samples and generation of urine and plasma profiles. FG-4592 and a mono-hydroxylated metabolite were detected in plasma. FG-4592 was detected with the greatest abundance and gave the longest duration of detection, up to 312 h post-administration, and would be the recommended target in routine doping samples. FG-4592 was detected in all mane hair samples collected post-administration, up to 166 days following the final dose, showing extended detection can be achieved with this matrix. To the best of the authors' knowledge, this is the first report of FG-4592 and metabolites in equine plasma and hair samples. Urine results were consistent with the previously published data, with FG-4592 offering the best target for detection and longest detection periods.
Collapse
|
6
|
Viljanto M, Love C, White D, Habershon-Butcher J, Hincks P, Gray B, Scarth J. Detection of methandienone and its metabolites in equine urine, plasma and hair following a multidose oral administration. Drug Test Anal 2024; 16:1203-1218. [PMID: 38234065 DOI: 10.1002/dta.3633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Methandienone is an anabolic-androgenic steroid that is prohibited in equine sports due to its potential performance enhancing properties. Metabolism and detection of methandienone in equine urine have been investigated comprehensively in literature; however, there is a limited knowledge about its metabolites in equine plasma and no information about its detection in equine hair. Following a multi-dose oral administration of methandienone to two Thoroughbred horses, 17-epimethandienone, methyltestosterone, two mono-hydroxylated, two di-hydroxylated and three 17α-methylandrostanetriol metabolites were detected in plasma. The majority of these were present as free analytes, whilst the mono-hydroxylated metabolites and one isomer of 17α-methylandrostanetriol were partially conjugated. Estimated peak concentrations of methandienone were 6,000 and 11,100 pg/ml; meanwhile, they were 25.4 and 40.5 pg/ml for methyltestosterone. The most abundant analyte in the post-administration plasma samples of both horses was the mono-hydroxylated metabolite; however, the parent compound provided the longest detection (up to 96 h). Screening analysis of hair enabled the detection of methandienone in mane hair samples only, for up to 3 months. Its mono- and di-hydroxylated metabolites were detected with greater peak responses for up to 6 months post-administration in both mane and tail samples, showing that these metabolites could be better analytical targets for hair analysis when administered orally. A follow-up methodology with an extensive wash procedure confirmed the presence of methandienone and its metabolites in a number of post-administration hair samples. Final wash samples were also analysed to assess the degree of internal incorporation (via bloodstream) against possible external deposition (via sweat/sebum).
Collapse
|
7
|
Ishii H, Shigematsu R, Takemoto S, Ishikawa Y, Mizobe F, Nomura M, Arima D, Kunii H, Yuasa R, Yamanaka T, Tanabe S, Nagata SI, Yamada M, Leung GNW. Quantification of osilodrostat in horse urine using LC/ESI-HRMS to establish an elimination profile for doping control. Bioanalysis 2024; 16:947-958. [PMID: 39235065 PMCID: PMC11486175 DOI: 10.1080/17576180.2024.2385848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: The use of osilodrostat, developed as a medication for Cushing's disease but categorized as an anabolic agent, is banned in horses by both the International Federation of Horseracing Authorities and the Fédération Equestre Internationale. For doping control purposes, elimination profiles of hydrolyzed osilodrostat in horse urine were established and the detectability of free forms of osilodrostat and its major metabolite, mono-hydroxylated osilodrostat (M1c), was investigated.Materials & methods: Post-administration urine samples obtained from a gelding and three mares were analyzed to establish the elimination profiles of osilodrostat using a validated method involving efficient enzymatic hydrolysis followed by LC/ESI-HRMS analysis.Results: Applying the validated quantification method with an LLOQ of 0.05 ng/ml, hydrolyzed osilodrostat could be quantified in post-administration urine samples from 48 to 72 h post-administration; by contrast, both hydrolyzed osilodrostat and M1c were detected up to 2 weeks. In addition, confirmatory analysis identified the presence of hydrolyzed osilodrostat for up to 72 h post-administration.Conclusion: For doping control purposes, we recommend monitoring both hydrolyzed M1c and osilodrostat because of the greater detectability of M1c and the availability of a reference material of osilodrostat, which is essential for confirmatory analysis.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryo Shigematsu
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Shunsuke Takemoto
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Yuhiro Ishikawa
- Anti-Doping Section, Equine Department, Japan Racing Association, 1-1-1 Nishishimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Fumiaki Mizobe
- Anti-Doping Section, Equine Department, Japan Racing Association, 1-1-1 Nishishimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Motoi Nomura
- Anti-Doping Section, Equine Department, Japan Racing Association, 1-1-1 Nishishimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Daisuke Arima
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne Shiroi city, Chiba, Japan, 270-1431, Japan
| | - Hirokazu Kunii
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne Shiroi city, Chiba, Japan, 270-1431, Japan
| | - Reiko Yuasa
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne Shiroi city, Chiba, Japan, 270-1431, Japan
| | - Takashi Yamanaka
- Research Planning & Coordination Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Sohei Tanabe
- Research Planning & Coordination Division, Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Shun-ichi Nagata
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
8
|
Ishii H, Ishikawa Y, Mizobe F, Nomura M, Yamanaka T, Tanabe S, Nagata SI, Yamada M, Leung GNW. Pharmacokinetic study of osilodrostat and identification of mono-hydroxylated metabolite in equine plasma for the purpose of doping control. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9695. [PMID: 38355879 DOI: 10.1002/rcm.9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Osilodrostat is an inhibitor of 11-beta-hydroxylase (CYP11B) and is used for the treatment of Cushing's disease but also categorized as an anabolic agent. The use of osilodrostat is prohibited in horseracing and equestrian sports. To the best of our knowledge, this is the first metabolic study of osilodrostat in equine plasma. METHODS Potential metabolites of osilodrostat were identified by differential analysis using data acquired from pre- and post-administration plasma samples after protein precipitation with liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI-HRMS). [Correction added on 27 January 2023, after first online publication: In the preceding sentence, "C-HRMS" was changed to "LC/ESI-HRMS" in this version.] For quantification of osilodrostat, a strong cation exchange solid-phase extraction was employed, and the extracts were analyzed using LC/ESI-triple quadrupole tandem mass spectrometry (LC/ESI-QqQ-MS/MS) to establish its elimination profile. Such extracts were further analyzed using LC/ESI-HRMS to investigate the detectability of osilodrostat and its identified mono-hydroxylated metabolite over a 2-week sampling period. RESULTS Mono-hydroxylated osilodrostat was identified based on the differential analysis and mass spectrometric interpretations, and it was found to be the most abundant metabolite in plasma. Elimination profile of osilodrostat in plasma was successfully established over the 24-h post-administration period. Both osilodrostat and its mono-hydroxylated metabolite were detected up to the last sampling point at 2 weeks using HRMS, and osilodrostat could be confirmed up to 8-day post-administration with its reference material using HRMS as well. CONCLUSIONS For doping control, screening of both the parent drug osilodrostat and its mono-hydroxylated metabolite in equine plasma would be recommended due to their extended detection windows of up to 2 weeks. Given the availability of reference material for potential confirmation in forensic samples, osilodrostat is considered the most appropriate monitoring target.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Yuhiro Ishikawa
- Anti-Doping Section, Equine Department, Japan Racing Association, Tokyo, Japan
| | - Fumiaki Mizobe
- Anti-Doping Section, Equine Department, Japan Racing Association, Tokyo, Japan
| | - Motoi Nomura
- Anti-Doping Section, Equine Department, Japan Racing Association, Tokyo, Japan
| | - Takashi Yamanaka
- Clinical Veterinary Medicine Division, Equine Research Institute, Shimotsuke, Japan
| | - Sohei Tanabe
- Clinical Veterinary Medicine Division, Equine Research Institute, Shimotsuke, Japan
| | - Shun-Ichi Nagata
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | | |
Collapse
|
9
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Yamada M, Leung GNW. First evidence of the incorporation of daprodustat and other hypoxia-inducible factor stabilizers into equine hair by passive transfer based on segmental quantitative analysis. J Pharm Biomed Anal 2023; 235:115600. [PMID: 37516063 DOI: 10.1016/j.jpba.2023.115600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Daprodustat is a hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) inhibitor and is used as an erythropoiesis stimulant for the treatment of anemia in humans. In general, administering daprodustat to horses will result in a lifetime ban from both equestrian sports and horseracing by the International Federation of Horseracing Authorities and the Fédération Équestre Internationale, respectively. To control the misuse/abuse of daprodustat, we conducted nasoesophageal administration of daprodustat (100 mg/day for 3 days) to three thoroughbred mares and the post-administration hair samples collected from the three horses over 6 months were analyzed to demonstrate the potential longer-term detection of daprodustat and its metabolites in hair compared with the detection times of daprodustat of 1 and 2 weeks in plasma and urine respectively. The results of the quantitative 2-cm segmental analysis showed that daprodustat was primarily localized in the proximal region (0-2 cm) at 0.375-0.463 pg/mg at 1 month post-administration. These drug bands were gradually spread out along the hair shaft at a rate consistent with the reported growth rate of horse mane hair (approximately 2.5 cm/month) over the following 6 months. In addition, to attain deeper insight into the mechanism of drug incorporation into hair, a total of 11 relevant parameters, including the actual PK parameters and simulated physicochemical and biopharmaceutical parameters for three HIF stabilizers (i.e., daprodustat, vadadustat, and IOX4), were investigated after normalization of the z-scores of all these parameters. Multiple regression analysis indicated that the major factors contributing to the incorporation of the three drugs into hair were their maximum plasma concentrations and lipophilicities, strongly suggesting that the three HIF stabilizers permeated from the bloodstream into the hair bulb via passive transfer with concentration gradients. This work is the first reported evidence showing the incorporation of HIF stabilizers into hair via passive transfer. In addition, cross-species comparison of drug incorporations into hair between daprodustat in horse and roxadustat in human was made in order to have a better understanding of the interactive interpretations about the analysis results obtained from different species. The above findings are not only useful and beneficial for the purpose of doping control but also provide a better understanding of the mechanism of drug incorporation into horse hair.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba 270-1431, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi 320-0856, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
| |
Collapse
|
10
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Yamada M, Leung GNW. Segmental analysis and long-term monitoring of vadadustat in equine hair for the purpose of doping control. J Anal Toxicol 2023; 47:623-631. [PMID: 37632695 DOI: 10.1093/jat/bkad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Vadadustat is a newly launched hypoxia-inducible factor stabilizer with anti-anemia and erythropoietic effects; however, its use in horses is expressly forbidden in both racing and equestrian competitions. Following our previous report on the pharmacokinetic study of vadadustat in horse plasma and urine, a long-term longitudinal analysis of vadadustat in horse hair after nasoesophageal administration (3 g/day for 3 days) to three thoroughbred mares is described in this study. Our main objective is to further extend the detection period of vadadustat for the purpose of doping control. Three bunches of mane hair from each horse were collected at 0 (pre), 1, 2, 3 and 6 month(s) post-administration. These hair samples were each cut into 2-cm segments and pulverized after decontamination of hair samples. The analyte in the powdered hair samples was extracted with liquid-liquid extraction followed by further purification by solid-phase extraction with strong anion exchange columns. The amount of vadadustat incorporated into the hair was quantified with a newly developed and validated method using liquid chromatography-high-resolution mass spectrometry. Our results show that vadadustat was confirmed in all post-administration hair samples, but its metabolites were not present. Thus, the detection window for vadadustat could be successfully extended up to 6 months post-administration. Interestingly, the 2-cm segmental analysis revealed that the tip of the drug band in the hair shifted along with the hair shafts in correspondence with the average hair growth rate (∼2.5 cm/month) but gradually diffused more widely from 2 cm at 1 month post-administration to up to 14 cm at 6 months post-administration. However, the loss in the total amount of vadadustat in hair over time was observed to most likely be due to the degradation of vadadustat. These findings will be useful for the control of abuse and/or misuse of vadadustat and the interpretation of positive doping cases.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba 270-1431, Japan
| | - Kenji Miyata
- Equine Veterinary Clinic, JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi 320-0856, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi 320-0851, Japan
| |
Collapse
|
11
|
Viljanto M, Cutler C, Taylor P, Habershon-Butcher J, Gray B. Detection of the growth hormone secretagogue MK-0677 in equine hair following oral administration. Drug Test Anal 2023; 15:361-367. [PMID: 36354265 DOI: 10.1002/dta.3406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
MK-0677 (ibutamoren) is an orally active non-peptide growth hormone secretagogue that binds to the ghrelin receptor stimulating the secretion of endogenous growth hormone. It is one of the most prevalent performance-enhancing compounds currently available online and is potentially subject to abuse both in human and equine sports. The aim of the current study was to investigate whether it could be detected in equine hair following oral administration of MK-0677 mesylate to a Thoroughbred racehorse. MK-0677 and its O-dealkylated metabolite were extracted using an existing method for prohibited substances in equine hair and analysed by liquid chromatography tandem mass spectrometry. This enabled the detection of MK-0677 in all hair samples collected, up to 209 days in mane and 358 days in tail. A follow-up methodology with an extensive wash procedure was carried out for selected hair samples, which unambiguously verified the presence of MK-0677. Wash criteria to differentiate between internal incorporation (via bloodstream) and external deposition (via sweat and sebum) was also assessed and indicated internal incorporation for the samples collected at later time points (≥52 days) and a combination of internal incorporation and external deposition for hair samples collected at the earlier time point (2 days).
Collapse
Affiliation(s)
| | | | | | | | - Bob Gray
- LGC, Fordham, Cambridgeshire, UK
| |
Collapse
|