1
|
Gray B, Lubbock K, Love C, Ryder E, Hudson S, Scarth J. Analytical advances in horseracing medication and doping control from 2018 to 2023. Drug Test Anal 2025; 17:663-684. [PMID: 39010718 DOI: 10.1002/dta.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
Collapse
|
2
|
Ondern Komathu P, Padusha SAM, Saraswathy L, Nalakath J, Hebel C, Palathinkal AB, Naduvilakkandy R. Detection of LGD-4033 Metabolites in Camel Urine, Plasma, and Hair Following Oral Administration for Doping Control. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9989. [PMID: 39822140 DOI: 10.1002/rcm.9989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
RATIONALE LGD-4033, a selective androgen receptor modulator (SARM), is recognized for promoting muscle growth and enhancing athletic performance. Its potent anabolic effects have led to its prohibition in both human and animal sports. Although initial in vitro studies have offered insights into its metabolism, an in-depth in vivo analysis is necessary to fully understand its metabolic pathways. This research aims to thoroughly investigate the metabolic profile of LGD-4033 in camels to establish reliable analytical markers, thereby addressing an important gap in the doping detection in camel racing. METHODS Urine, plasma, and hair samples were collected from three healthy camels following a single oral administration of 100 mg LGD-4033 mixed with food. These biological samples were then analyzed using ultrahigh-performance liquid chromatography coupled with high-resolution Q Exactive Orbitrap mass spectrometry (UHPLC-HRMS). RESULTS Fourteen metabolites were identified across all sample types. The main Phase I metabolite, M6 (dihydroxylation), appears to be a primary target analyte for urine-based doping analysis. Both dihydroxy and trihydroxy metabolites were notably abundant in urine, accompanied by glucuronic and sulfonic acid conjugates; however, sulfonic acid conjugates were absent in vitro studies. Further research on hair samples, especially at higher LGD-4033 dosages, is recommended. CONCLUSIONS The findings from this study will improve the rapid identification of LGD-4033 and related compounds, supporting effective doping control in camel racing. These results enhance understanding of LGD-4033 metabolism in camels and advance the development of reliable methods for detecting SARMs in this field.
Collapse
Affiliation(s)
- Praseen Ondern Komathu
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India
| | - Syed Ali M Padusha
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India
| | - Laya Saraswathy
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Jahfar Nalakath
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | - Christiana Hebel
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | |
Collapse
|
3
|
Slíž K, Mikuš P. Advances in SARMs anti-doping analysis. Drug Test Anal 2025; 17:272-298. [PMID: 38706416 DOI: 10.1002/dta.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Selective androgen receptor modulators (SARMs) are performance-enhancing drugs (PEDs) that stimulate anabolism, increase muscle mass and strength and promote recovery from exercise. The use of SARMs in sports is considered doping and is strictly prohibited by the World Anti-Doping Agency (WADA) and the International Federation of Horseracing Authorities (IFHA). To monitor the abuse of SARMs in sports, it is essential to develop advanced, selective and sensitive analytical methods that provide reliable results. This review evaluates the advances in this area, with a focus on the identification of target analytes related to SARMs, such as SARMs, their metabolites or markers. The aim is to identify targets that could extend the detection windows of SARMs, provide scientific support for results management and/or offer an indirect biomarker-based approach to doping control. This review also aims to evaluate the current liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods developed for the monitoring of SARMs in different biological matrices, including traditional matrices such as urine and serum/plasma samples, as well as alternative matrices such as dried blood spots, hair and nail samples.
Collapse
Affiliation(s)
- Kristián Slíž
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Toxicologic and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Toxicologic and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Vazhat RA, Farook NAM, Nalakath J, Komathu PO. Exploring methandienone metabolites generated via homogenized camel liver: Advancements for anti-doping applications through High Resolution-Liquid Chromatography Mass Spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9902. [PMID: 39226915 DOI: 10.1002/rcm.9902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
RATIONALE Anabolic steroids, also known as anabolic-androgenic steroids (AAS), encompass steroidal androgens such as testosterone, as well as synthetic counterparts with similar structures and effects. The misuse of AAS has increased over the years, leading to ethical and welfare concerns in sports. The World Anti-Doping Agency (WADA) and the International Federation for Equestrian Sports (FEI) have banned AAS in relevant sports. Methandienone is one of the most identified anabolic androgenic steroids in sports drug testing, Therefore, reliable detection methods are crucial for effective doping control and maintaining the integrity of the sports. METHODS This study explores the use of homogenized camel liver for detecting methandienone metabolites in camels. The biotransformation pathways of methandienone in homogenized camel liver tissues are analyzed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) to identify and characterize the phase I and phase II metabolites. Chromatographic separation was achieved using a Thermo-Hypersil C18 column. RESULTS The study has identified 11 methandienone metabolites (M1-M11), this includes 10 phase I and one phase II metabolite. A glucuronic acid conjugate of methandienone was observed in this study, but no sulfonic acid conjugations were found. The metabolites and their possible chemical structures, along with their fragmentation patterns are confirmed using MSMS (MS2) experiments in data-independent acquisition (DIA) mode. CONCLUSIONS These findings serve as a vital tool for the rapid detection of methandienone, combating its illicit use in camel racing. Comprehensive screenings covering both the parent drug and its metabolites are recommended to improve detection accuracy and ensure regulatory compliance in sports doping. Future research should explore methandienone's metabolite profile in administered camel samples.
Collapse
Affiliation(s)
- Ramees Abdulla Vazhat
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, 597, United Arab Emirates
- Postgraduate and Research Department of Chemistry, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, 614701, India
| | - N A Mohamed Farook
- Postgraduate and Research Department of Chemistry, Khadir Mohideen College, Affiliated to Bharathidasan University, Adirampattinam, 614701, India
| | - Jahfar Nalakath
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, 597, United Arab Emirates
| | - Praseen Ondern Komathu
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, 597, United Arab Emirates
| |
Collapse
|
5
|
Philip M, Kal AKK, Subhahar MB, Karatt TK, Graiban FM, Ajeebsanu MM, Joseph M, Jose SV. Equine metabolic investigation of the phosphodiesterase-4 inhibitor ibudilast as a potential performance enhancer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9916. [PMID: 39307998 DOI: 10.1002/rcm.9916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
RATIONALE Phosphodiesterase 4 (PDE4) inhibitors are a newer class of drugs that induce bronchodilation and have anti-inflammatory effects, making them susceptible to misuse as performance enhancers in competitive sports. METHODS This study explores the metabolic conversion of PDE4 inhibitor ibudilast in thoroughbred horses after oral administration and in vitro using equine liver microsomes and Cunninghamella elegans. A liquid chromatography-high resolution mass spectrometry method was used to postulate the plausible structures of the detected metabolites. RESULTS A total of 20 in vivo metabolites were identified under experimental conditions, including 12 Phase I and 8 Phase II conjugated metabolites. Phase I metabolites were predominantly formed through hydroxylation (mono-, di-, and tri-hydroxylation). Demethylated metabolites were also identified during this investigation. Additionally, the research detected Phase II metabolites conjugated with glucuronic and sulfonic acids. CONCLUSIONS The data presented here can assist in detecting the PDE4 inhibitor ibudilast and uncover its illicit use in competitive sports.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Fatma Mohammed Graiban
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | - Marina Joseph
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Shantymol V Jose
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Philip M, Karakka Kal AK, Subhahar MB, Karatt TK, Graiban FM, Ajeebsanu MM, Joseph M, Jose SV. Investigation Into the Equine Metabolism of Phosphodiesterase-4 Inhibitor Roflumilast for Potential Doping Control. Drug Test Anal 2024. [PMID: 39551487 DOI: 10.1002/dta.3822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
The phosphodiesterase 4 (PDE4) inhibitors constitute a relatively modern class of medications that are known for inducing bronchodilation and exhibiting anti-inflammatory properties within the body. Due to these properties, there is concern regarding their potential misuse as performance-enhancing substances in competitive sports. This study delves into the metabolic conversion of roflumilast in thoroughbred horses following oral administration and in vitro experimentation using equine liver microsomes and Cunninghamella elegans. High-performance liquid chromatography coupled with a Q Exactive Orbitrap mass spectrometer (HPLC-HRMS) was employed for analysis. The investigation identified 10 metabolites of roflumilast, including six phase I and four phase II metabolites from in vivo studies, and 11 metabolites from in vitro studies, consisting of eight phase I and three phase II metabolites. The identified biotransformation products encompassed processes such as hydroxylation, chlorine substitution, methylation, N-oxide formation, and even the dissociation of methylenecyclopropane and difluoromethane. Furthermore, the study identified three glucuronic acid and one sulfonic acid conjugated phase II metabolites of the investigated drug candidate. The aforementioned findings contribute to the detection and comprehension of the unauthorized utilization of roflumilast in equestrian sports.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | - Marina Joseph
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, UAE
| | - Shantymol V Jose
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, UAE
| |
Collapse
|
7
|
Muhammed Ajeebsanu M, Subhahar MB, Karakka Kal AK, Philip M, Perwad Z, Karatt TK, Graiban FM, Joseph M, Jose SV. Comprehensive metabolic investigation of dopamine reuptake inhibitor HDMP-28 in equine liver microsomes and Cunninghamella elegans for doping control. Drug Test Anal 2024; 16:1182-1194. [PMID: 38225724 DOI: 10.1002/dta.3642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 01/17/2024]
Abstract
A dopamine reuptake inhibitor is a type of medication or substance that works by blocking the reuptake of dopamine in the brain. Dopamine reuptake inhibitors offer multiple effects, including increased alertness, improved mood, and therapeutic potential for conditions like depression, ADHD, and Parkinson's disease. HDMP-28, or methylnaphthidate, is a potent synthetic stimulant from the phenyltropane class. It surpasses methylphenidate in both dopamine reuptake inhibition and half-life. As a dopamine reuptake inhibitor, it boosts dopamine levels by hindering reuptake into nerve cells, resulting in heightened stimulation and increased energy. In order to comprehensively address both the tangible and potential repercussions of the unauthorized utilization of the aforementioned substance in sports, it is imperative to establish analytical methodologies for the identification of the parent drug and its primary metabolites. Additionally, a comprehensive analysis of the metabolic characteristics of HDMP-28 in both human and animal subjects has yet to be published. This study explores the metabolic conversion of HDMP-28 mediated by equine liver microsomes and Cunninghamella elegans. An extraction and detection method was developed, optimized, and validated for doping assessment in equine urine and plasma. Liquid chromatography-high-resolution mass spectrometry was employed to determine metabolite structures. The study identified 31 (22 phase I and 9 phase II) metabolites of HDMP-28, including hydroxylated, hydrogenated, and hydrolyzed analogs. Glucuronic acid-conjugated metabolites were also detected. This manuscript describes metabolites based on the in vitro studies, which might not be the same in vivo. These findings aid in the detection and understanding of the illicit use of HDMP-28 in equestrian sports.
Collapse
Affiliation(s)
| | | | | | - Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | - Fatma Mohammed Graiban
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Marina Joseph
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Shantymol V Jose
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
8
|
Subhahar MB, Karakka Kal AK, Philip M, Muhammed Ajeebsanu M, Karatt TK, Perwad Z. Doping control approach: Identification of equine in vitro metabolites of voxelotor (GBT440), a hemoglobin S polymerization inhibitor. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9671. [PMID: 38124165 DOI: 10.1002/rcm.9671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE Sickle cell disease, a debilitating genetic disorder affecting numerous newborns globally, has historically received limited attention in pharmaceutical research. However, recent years have witnessed a notable shift, with the Food and Drug Administration approving three innovative disease-modifying medications. Voxelotor, also known as GBT440, is a promising compound that effectively prevents sickling, providing a safe approach to alleviate chronic hemolytic anemia in sickle cell disease. It is a novel, orally bioavailable small molecule that inhibits hemoglobin S polymerization by enhancing oxygen affinity to hemoglobin. The investigation demonstrated that voxelotor led to an unintended elevation of hemoglobin levels in healthy individuals by increasing serum erythropoietin levels. METHODS Voxelotor and its metabolites in an in vitro setting utilizing equine liver microsomes were discussed. Plausible structures of the identified metabolites were inferred through the application of liquid chromatography in conjunction with high-resolution mass spectrometry. RESULTS Under the experimental conditions, a total of 31 metabolites were detected, including 16 phase I metabolites, two phase II metabolites, and 13 conjugates of phase I metabolites. The principal phase I metabolites were generated through processes such as hydroxylation, reduction, and dissociation. The presence of glucuronide and sulfate conjugates of the parent drug were also observed, along with hydroxylated, reduced, and dissociated analogs. CONCLUSIONS The data acquired will accelerate the identification of voxelotor and related compounds, aiding in the detection of their illicit use in competitive sports. It is crucial to emphasize that the metabolites detailed in this manuscript were identified through in vitro experiments and their detection in an in vivo study may not be guaranteed.
Collapse
Affiliation(s)
| | | | - Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
9
|
Ondern Komathu P, Padusha MKSA, Laya S, Nalakath J, Palathinkal AB, Nelliyott I. Investigation of in vitro generated metabolites of LGD-4033, a selective androgen receptor modulator, in homogenized camel liver for anti-doping applications. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9633. [PMID: 37817338 DOI: 10.1002/rcm.9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023]
Abstract
RATIONALE The use of selective androgen receptor modulators (SARM) in sports is prohibited by the World Anti-Doping Agency (WADA) due to their potential as performance-enhancing drugs, offering an unfair advantage. LGD-4033 is a SARM known for its similarities to anabolic steroids and can be easily purchased online, leading to increased availability and misuse. Adverse analytical findings have revealed the presence of SARMs in dietary supplements. Although LGD-4033 misuse has been reported in human sports over the years, concerns also arise regarding its illicit use in animal sports, including camel racing. Although various studies have investigated the metabolism of LGD-4033 in humans, horse, and other species, there is limited research specifically dedicated to racing camels. METHODS This study focuses on the in vitro metabolism of LGD-4033 in homogenized camel liver using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to identify and characterize the metabolites. RESULTS The findings indicated the presence of 12 phase I metabolites and 1 phase II metabolite. Hydroxylation was responsible for the formation of the main phase I metabolites that were identified. A glucuronic acid conjugate of the parent drug was observed in this study, but no sulfonic acid conjugate was found. The possible chemical structures of these metabolites, along with their fragmentation patterns, were identified using MS. CONCLUSIONS These findings provide valuable insights into the metabolism of LGD-4033 in camels and aid in the development of effective doping control methods for the detection of SARMs in camel racing.
Collapse
Affiliation(s)
- Praseen Ondern Komathu
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India
| | - Mohamed Khan Syed Ali Padusha
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India
| | - Saraswathy Laya
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jahfar Nalakath
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ansar Babu Palathinkal
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ibrahimwaseem Nelliyott
- Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Karatt TK, Muhammed Ajeebsanu M, Karakka Kal AK, Subhahar MB, Sathiq MA, Laya S. Electrospray ionization mass spectrometry adduct formation by mobile phase additives: A case study using nitrile functional groups containing selective androgen receptor modulators. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9530. [PMID: 37125537 DOI: 10.1002/rcm.9530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE The formation of mass adducts is common during electrospray ionization mass spectrometry (ESI-MS). However, the mechanism that leads to adduct formation is poorly understood and difficult to control. Multiplication of mass adducts at once will adversely impact the sensitivity of mass analysis and cause misinterpretation of the level of detection. Prior studies on selective androgen receptor modulators (SARMs) revealed an immense mass adduct formation in both positive and negative ESI modes. METHODS In this study, additives in the mobile phases are investigated as a potential means of controlling mass adduct formation in various SARMs. RESULTS The first evidence of chloride adduct formation when SARMs are detected via ESI-MS has been reported in this research. A series of mobile phase combinations were tested to achieve the optimal condition for HPLC-MS. A comparison was also made between adduct formation on various grades of water used for preparing the mobile phase. A validation study using equine urine and plasma was also conducted to assess the suitability of the developed method. CONCLUSION The results of this study will allow for a more accurate identification of SARMs, which will make it easier to investigate their illicit use in horse racing.
Collapse
Affiliation(s)
- Tajudheen Kunhamu Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India
| | | | | | | | - Mohamedkhani Anwar Sathiq
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India
| | - Saraswathy Laya
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|