1
|
Kim J, Seo S, Jeong C, Bae E, Lee D, Kim J, Ko E, Choi H, Han SB. Serially coupled columns enhance rapid separation and predictive interaction understanding of 93 fentanyl analogs. Anal Chim Acta 2025; 1336:343479. [PMID: 39788656 DOI: 10.1016/j.aca.2024.343479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The simplicity of synthesis methods has facilitated the illegal manufacture of various fentanyl analogs, leading to numerous fatal overdoses worldwide, particularly in North America. Fentanyl analogs with similar structures are difficult to distinguish due to their fragmentation patterns, making separation using chromatography essential. Additionally, because fentanyl analogs are lethal even in trace amounts, they are easily smuggled, and commonly used fentanyl test strips often fail to detect them due to their low sensitivity. Therefore, the urgent need for analytical methods that can simultaneously identify multiple analogs and swiftly detect them at low concentrations. RESULTS In this study, liquid chromatography-tandem mass spectrometry was conducted to screen 93 types of fentanyl analogs among the illegal fentanyl substances. The phenyl-hexyl columns enhance fentanyl analog separation through strong π-π interactions. The serially coupled column system increased the separation efficiency and mitigated peak distortion, particularly those of polar fentanyl analogs. The selectivity varied significantly, depending on the interactions with the combined columns. The phenyl-hexyl column's superior ability to predict fentanyl analog interactions based on molecular structure was confirmed by retention factor analysis. The resolution of fentanyl isomers increased significantly when methanol was used instead of acetonitrile as an organic modifier in the mobile phase. The approach was validated by determining the limits of detection and quantification, specificity, detection capability, recovery, and relative ion intensity. SIGNIFICANCE The fentanyl analogs, including 23 sets of isomeric and isobaric compounds, were analyzed via separation using a phenyl-hexyl column serially coupled with a cyano column. The serially coupled column system increased the separation efficiency and mitigated peak distortion, particularly those of polar fentanyl analogs. The proposed strategy can be adopted in exploring methods of effectively separating mixtures with diverse properties, aiding the prevention of drug abuse and bolstering public health and safety efforts.
Collapse
Affiliation(s)
- Jiyu Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sumin Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chohee Jeong
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eunbin Bae
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Donghee Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Juhyeon Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eunjin Ko
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hamin Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Koomen D, May JC, Mansueto AJ, Graham TR, McLean JA. An Untargeted Lipidomics Workflow Incorporating High-Resolution Demultiplexing (HRdm) Drift Tube Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2448-2457. [PMID: 39276100 PMCID: PMC11450926 DOI: 10.1021/jasms.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Global discovery lipidomics can provide comprehensive chemical information toward understanding the intricacies of metabolic lipid disorders such as dyslipidemia; however, the isomeric complexity of lipid species remains an analytical challenge. Orthogonal separation strategies, such as ion mobility (IM), can be inserted into liquid chromatography-mass spectrometry (LC-MS) untargeted lipidomic workflows for additional isomer separation and high-confidence annotation, and the emergence of high-resolution ion mobility (HRIM) strategies provides marked improvements to the resolving power (Rp > 200) that can differentiate small structural differences characteristic of isomers. One such HRIM strategy, high-resolution demultiplexing (HRdm), utilizes multiplexed drift tube ion mobility spectrometry (DTIMS) with post-acquisition algorithmic deconvolution to access high IM resolutions while retaining the measurement precision inherent to the drift tube technique; however, HRdm has yet to be utilized in untargeted studies. In this manuscript, a proof-of-concept study using ATP10D dysfunctional murine models was investigated to demonstrate the utility of HRdm-incorporated untargeted lipidomic analysis pipelines. Total lipid features were found to increase by 2.5-fold with HRdm compared to demultiplexed DTIMS as a consequence of more isomeric lipids being resolved. An example lipid, PC 36:5, was found to be significantly higher in dysfunctional ATP10D mice with two resolved peaks observed by HRdm that were absent in both the functional ATP10D mice and the standard demultiplexed DTIMS acquisition mode. The benefits of utilizing HRdm for discerning isomeric lipids in untargeted workflows have the potential to enhance our analytical understanding of lipids related to disease complexity and biologically relevant studies.
Collapse
Affiliation(s)
- David
C. Koomen
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C. May
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexander J. Mansueto
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Todd R. Graham
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Center
for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Nytka M, Wan J, Tureček F, Lemr K. Cyclic Ion Mobility of Isomeric New Psychoactive Substances Employing Characteristic Arrival Time Distribution Profiles and Adduct Separation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1733-1742. [PMID: 38949154 PMCID: PMC11311522 DOI: 10.1021/jasms.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Analysis of new psychoactive substances (NPS), which is essential for toxicological and forensic reasons, can be made complicated by the presence of isomers. Ion mobility has been used as a standalone technique or coupled to mass spectrometry to detect and identify NPS. However, isomer separation has so far chiefly relied on chromatography. Here we report on the determination of isomeric ratios using cyclic ion mobility-mass spectrometry without any chromatographic separation. Isomers were distinguished by mobility separation of lithium adducts. Alternatively, we used arrival time distribution (ATD) profiles that were characteristic of individual isomers and were acquired for protonated molecules or fragment ions. Both approaches provided comparable results. Calculations were used to determine the structures and collision cross sections of both protonated and lithiated isomers that accurately characterized their ion mobility properties. The applicability of ATD profiles to isomer differentiation was demonstrated using direct infusion and flow injection analysis with electrospray of solutions, as well as desorption electrospray of solid samples. Data processing was performed by applying multiple linear regression to the ATD profiles. Using the proposed ATD profile-based approach, the relationships between the determined and given content of isomers showed good linearity with coefficients of determination typically greater than 0.99. Flow injection analysis using an autosampler allowed us to rapidly determine isomeric ratios in a sample containing two isomeric pairs with a minor isomer of 10% (determined 9.3% of 3-MMC and 11.0% of 3-FMC in a mixture with buphedrone and 4-FMC). The proposed approach is not only useful for NPS, but also may be applicable to small isomeric molecules analyzed by ion mobility when complete separation of isomers is not achieved.
Collapse
Affiliation(s)
- Marianna Nytka
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech
Republic
| | - Jiahao Wan
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United
States
| | - František Tureček
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United
States
| | - Karel Lemr
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech
Republic
| |
Collapse
|
4
|
Johnson CR, Sabatini HM, Aderorho R, Chouinard CD. Dependency of fentanyl analogue protomer ratios on solvent conditions as measured by ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5070. [PMID: 38989742 DOI: 10.1002/jms.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Recently, our group has shown that fentanyl and many of its analogues form prototropic isomers ("protomers") during electrospray ionization. These different protomers can be resolved using ion mobility spectrometry and annotated using mobility-aligned tandem mass spectrometry fragmentation. However, their formation and the extent to which experimental variables contribute to their relative ratio remain poorly understood. In the present study, we systematically investigated the effects of mixtures of common chromatographic solvents (water, methanol, and acetonitrile) and pH on the ratio of previously observed protomers for 23 fentanyl analogues. Interestingly, these ratios (N-piperidine protonation vs. secondary amine/O = protonation) decreased significantly for many analogues (e.g., despropionyl ortho-, meta-, and para-methyl fentanyl), increased significantly for others (e.g., cis-isofentanyl), and remained relatively constant for the others as solvent conditions changed from 100% organic solvent (methanol or acetonitrile) to 100% water. Interestingly, pH also had significant effects on this ratio, causing the change in ratio to switch in many cases. Lastly, increasing conditions to pH ≥ 4.0 also prompted the appearance of new mobility peaks for ortho- and para-methyl acetyl fentanyl, where all previous studies had only showed one single distribution. Because these ratios have promise to be used qualitatively for identification of these (and emerging) fentanyl analogues, understanding how various conditions (i.e., mobile phase selection and/or chromatographic gradient) affect their ratios is critically important to the development of advanced ion mobility and mass spectrometry methodologies to identify fentanyl analogues.
Collapse
Affiliation(s)
| | - Heidi M Sabatini
- Department of Chemistry, Clemson University, Clemson, SC, USA, 29634
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, SC, USA, 29634
| | | |
Collapse
|
5
|
Hollerbach AL, Lin VS, Ibrahim YM, Ewing RG, Metz TO, Rodda KE. Elucidating the Gas-Phase Behavior of Nitazene Analog Protomers Using Structures for Lossless Ion Manipulations Ion Mobility-Orbitrap Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1609-1621. [PMID: 38907730 DOI: 10.1021/jasms.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
2-Benzylbenzimidazoles, or "nitazenes", are a class of novel synthetic opioids (NSOs) that are increasingly being detected alongside fentanyl analogs and other opioids in drug overdose cases. Nitazenes can be 20× more potent than fentanyl but are not routinely tested for during postmortem or clinical toxicology drug screens; thus, their prevalence in drug overdose cases may be under-reported. Traditional analytical workflows utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) often require additional confirmation with authentic reference standards to identify a novel nitazene. However, additional analytical measurements with ion mobility spectrometry (IMS) may provide a path toward reference-free identification, which would greatly accelerate NSO identification rates in toxicology laboratories. Presented here are the first IMS and collision cross section (CCS) measurements on a set of fourteen nitazene analogs using a structures for lossless ion manipulations (SLIM)-orbitrap MS. All nitazenes exhibited two high intensity baseline-separated IMS distributions, which fentanyls and other drug and druglike compounds also exhibit. Incorporating water into the electrospray ionization (ESI) solution caused the intensities of the higher mobility IMS distributions to increase and the intensities of the lower mobility IMS distributions to decrease. Nitazenes lacking a nitro group at the R1 position exhibited the greatest shifts in signal intensities due to water. Furthermore, IMS-MS/MS experiments showed that the higher mobility IMS distributions of all nitazenes possessing a triethylamine group produced fragment ions with m/z 72, 100, and other low intensity fragments while the lower mobility IMS distributions only produced fragment ions with m/z 72 and 100. The IMS, solvent, and fragmentation studies provide experimental evidence that nitazenes potentially exhibit three gas-phase protomers. The cyclic IMS capability of SLIM was also employed to partially resolve four sets of structurally similar nitazene isomers (e.g., protonitazene/isotonitazene, butonitazene/isobutonitazene/secbutonitazene), showcasing the potential of using high-resolution IMS separations in MS-based workflows for reference-free identification of emerging nitazenes and other NSOs.
Collapse
Affiliation(s)
- Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vivian S Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Robert G Ewing
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kabrena E Rodda
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Aderorho R, Lucas SW, Chouinard CD. Rapid differentiation of xylazine metabolites using SLIM IM-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4041-4044. [PMID: 38869241 DOI: 10.1039/d4ay00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Xylazine represents an increased threat to the recreational drug market. In this study, we present a rapid strategy for identifying xylazine and differentiating its common isomeric metabolites using Structures for Lossless Ion Manipulations (SLIM) ion mobility coupled to high-resolution/tandem mass spectrometry (IM-HRMS/MS). Chemical derivatization using dansyl chloride also assisted with separations and led to identification of resolvable reaction product atropisomers.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, 211 S Palmetto Blvd, Clemson, SC 29634, USA.
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, 211 S Palmetto Blvd, Clemson, SC 29634, USA.
| | | |
Collapse
|
7
|
Hollerbach AL, Ibrahim YM, Lin VS, Schultz KJ, Huntley AP, Armentrout PB, Metz TO, Ewing RG. Identification of Unique Fragmentation Patterns of Fentanyl Analog Protomers Using Structures for Lossless Ion Manipulations Ion Mobility-Orbitrap Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:793-803. [PMID: 38469802 DOI: 10.1021/jasms.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The opioid crisis in the United States is being fueled by the rapid emergence of new fentanyl analogs and precursors that can elude traditional library-based screening methods, which require data from known reference compounds. Since reference compounds are unavailable for new fentanyl analogs, we examined if fentanyls (fentanyl + fentanyl analogs) could be identified in a reference-free manner using a combination of electrospray ionization (ESI), high-resolution ion mobility (IM) spectrometry, high-resolution mass spectrometry (MS), and higher-energy collision-induced dissociation (MS/MS). We analyzed a mixture containing nine fentanyls and W-15 (a structurally similar molecule) and found that the protonated forms of all fentanyls exhibited two baseline-separated IM distributions that produced different MS/MS patterns. Upon fragmentation, both IM distributions of all fentanyls produced two high intensity fragments, resulting from amine site cleavages. The higher mobility distributions of all fentanyls also produced several low intensity fragments, but surprisingly, these same fragments exhibited much greater intensities in the lower mobility distributions. This observation demonstrates that many fragments of fentanyls predominantly originate from one of two different gas-phase structures (suggestive of protomers). Furthermore, increasing the water concentration in the ESI solution increased the intensity of the lower mobility distribution relative to the higher mobility distribution, which further supports that fentanyls exist as two gas-phase protomers. Our observations on the IM and MS/MS properties of fentanyls can be exploited to positively differentiate fentanyls from other compounds without requiring reference libraries and will hopefully assist first responders and law enforcement in combating new and emerging fentanyls.
Collapse
Affiliation(s)
- Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vivian S Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Adam P Huntley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Robert G Ewing
- Nuclear, Chemistry & Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Aderorho R, Lucas SW, Chouinard CD. Separation and Characterization of Synthetic Cannabinoid Metabolite Isomers Using SLIM High-Resolution Ion Mobility-Tandem Mass Spectrometry (HRIM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:582-589. [PMID: 38361441 DOI: 10.1021/jasms.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
9
|
Neal SP, Hodges WN, Velosa DC, Aderorho R, Lucas SW, Chouinard CD. Improved analysis of derivatized steroid hormone isomers using ion mobility-mass spectrometry (IM-MS). Anal Bioanal Chem 2023; 415:6757-6769. [PMID: 37740752 DOI: 10.1007/s00216-023-04953-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Over the last decade, applications of ion mobility-mass spectrometry (IM-MS) have exploded due primarily to the widespread commercialization of robust instrumentation from several vendors. Unfortunately, the modest resolving power of many of these platforms (~40-60) has precluded routine separation of constitutional and stereochemical isomers. While instrumentation advances have pushed resolving power to >150 in some cases, chemical approaches offer an alternative for increasing resolution with existing IM-MS instrumentation. Herein we explore the utility of two reactions, derivatization by Girard's reagents and 1,1-carbonyldiimidazole (CDI), for improving IM separation of steroid hormone isomers. These reactions are fast (≤30 min), simple (requiring only basic lab equipment/expertise), and low-cost. Notably, these reactions are structurally selective in that they target carbonyl and hydroxyl groups, respectively, which are found in all naturally occurring steroids. Many steroid hormone isomers differ only in the number, location, and/or stereochemistry of these functional groups, allowing these reactions to "amplify" subtle structural differences and improve IM resolution. Our results show that resolution was significantly improved amongst CDI-derivatized isomer groups of hydroxyprogesterone (two-peak resolution of Rpp = 1.10 between 21-OHP and 11B-OHP), deoxycortisone (Rpp = 1.47 between 11-DHC and 21-DOC), and desoximetasone (Rpp = 1.98 between desoximetasone and fluocortolone). Moreover, characteristic collision cross section (DTCCSN2) measurements can be used to increase confidence in the identification of these compounds in complex biological mixtures. To demonstrate the feasibility of analyzing the derivatized steroids in complex biological matrixes, the reactions were performed following steroid extraction from urine and yielded similar results. Additionally, we applied a software-based approach (high-resolution demultiplexing) that further improved the resolving power (>150). Overall, our results suggest that targeted derivatization reactions coupled with IM-MS can significantly improve the resolution of challenging isomer groups, allowing for more accurate and efficient analysis of complex mixtures.
Collapse
Affiliation(s)
- Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Walker N Hodges
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | | |
Collapse
|