1
|
Zhou P, Xu J, Wang Z, Li B, Zhao Z. Characterization of Guanine Deaminase from Kluyveromyces marxianus and Its Industrial Application to Reduce Guanine Content in Beer. Foods 2025; 14:1085. [PMID: 40238199 PMCID: PMC11988482 DOI: 10.3390/foods14071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Guanine deaminase (GDA) catalyzes the first step in purine catabolism by converting guanine to xanthine. Despite its significant role in the development of low-purine food, studies on GDA remain limited compared to other metabolic deaminases. To identify a GDA with high enzyme activity and appropriate optimum parameters, GDAs from Kluyveromyces lactis, Kluyveromyces marxianus, Lentilactobacillus kefiri, and Lactobacillus buchneri were heterologously expressed in Escherichia coli. The GDA from Kluyveromyces marxianus (KM-GD) showed the most potent enzyme activity (2.21 IU/mL) at 30 °C and pH 6.5, which is close to the pH of saccharified wort. Furthermore, analyzing the crystal structures of GDAs from different sources revealed that hydrogen bonds could enhance substrate affinity and strengthen enzyme activity. In addition, active pockets with an appropriate size may contribute to high enzyme activity. Finally, KM-GD helped reduce guanine by 80.33% in beer wort and by 80.00% in matured beer, thus suggesting its promise for industrial application in low-purine food production.
Collapse
Affiliation(s)
- Peng Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200120, China; (P.Z.); (Z.W.)
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
| | - Junhao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China;
| | - Zixuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200120, China; (P.Z.); (Z.W.)
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200120, China; (P.Z.); (Z.W.)
| | - Zhijun Zhao
- Laboratory of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
| |
Collapse
|
2
|
Sun Q, Gao H, Liu Y, Wang L, Huang J. Validation and stability analysis of guanine deaminase assay kit. Heliyon 2024; 10:e36210. [PMID: 39224279 PMCID: PMC11367462 DOI: 10.1016/j.heliyon.2024.e36210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Guanine deaminase (GD)plays important roles in the diagnosis of liver function. However, there is no totally rapid and simple for the eatimation of GD activity in clinical application. Herein, we have constructed an enzymatic assay system with highly sensitive and strong stability for quantification of GD activity by highly double enzyme-coupling (xanthine oxidase and uric acid oxidase) and adding compound stabilizer in GD kit. In this study, we validated parameters, including reagent blank, sensitivity, accuracy, inter-batch difference, intra-batch difference, linear range. Furthermore, composite stabilizers, containing gentamicin sulfate, bovine serum albumin, and mannitol, were selected to improve stability of GD kit during long-term storage. The experimental results showed that the absorbance of the reagent blank was <0.2, the mean recovery rate was 103 %, the inter-batch and intra-batch diffeerence were <15 %, The linearity range was 0 U/L-50 U/L (R2 > 0.99). All indicators met the kit requirements for clinical applications. When gentamicin sulfate, bovine serum albumin, and mannitol were used as a stabilizer, the kit remained stable for 12 months without significant loss of enzymatic activity. These results indicated that GD kit possesses high sensitivity and strong stability, which can be used for routine biochemical applications and is of great significance for the diagnosis and differential diagnosis of liver diseases.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, PR China
| | - Haidi Gao
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, PR China
| | - Yong Liu
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin Province, PR China
| | - Liqiang Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, PR China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, PR China
| |
Collapse
|
3
|
Wibowo D, Malik RHA, Mustapa F, Nakai T, Maulidiyah M, Nurdin M. Highly Synergistic Sensor of Graphene Electrode Functionalized with Rutile TiO 2 Microstructure to Detect L-Tryptophan Compound. J Oleo Sci 2022; 71:759-770. [PMID: 35387917 DOI: 10.5650/jos.ess21416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrochemical processes are an effective method for detecting dangerous food ingredients. The synergetic between the reduction-oxidation (redox) processes inspired several papers and spurred research towards studying the new materials that can further adapt to optimize the rapid detection of chemical compounds. In this study, we report the eco-synthesis using graphene/TiO2 rutile (G/TiO2) electrode microstructures easily prepared through the physical method by mixing graphene and TiO2 powder and its application for sensing L-tryptophan (Trp) compound. The material characterization results show that the graphene surface is smoother than the G/TiO2 material. Graphene has been detected using X-ray diffraction (XRD) at a value of 2 thetas 26.39° and TiO2 forms rutile crystals (110). The FTIR spectrum exhibits the functional groups from graphene of -OH, C-H, C=C, C-O, and TiO2 identified with Ti-O bonds. The electrochemical test against G/TiO2 electrode microstructures for Trp compound shows that 0.5 g TiO2 rutile was the best composition functionalized with graphene material under 0.1M K3[Fe(CN)6] + 0.1M NaNO3 electrolyte with a scan rate of 0.1 V/s. Determination of the detection limit was obtained at 0.005 mg/L with a HorRat value of 1.05%. The stability test was carried out for 25 days, and the addition of Pb(NO3)2 as an interference compound had a significant effect on the decrease in electrode performance.
Collapse
Affiliation(s)
- Dwiprayogo Wibowo
- Department of Environmental Engineering, Faculty of Engineering, Universitas Muhammadiyah Kendari
| | - Riski Hul Akma Malik
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Faizal Mustapa
- Doctoral student of Agriculture, Department of Water Resources, Universitas Halu Oleo
| | | | - Maulidiyah Maulidiyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| | - Muhammad Nurdin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo
| |
Collapse
|
4
|
Bucardo MS, Wu Y, Ludford PT, Li Y, Fin A, Tor Y. Real-Time Monitoring of Human Guanine Deaminase Activity by an Emissive Guanine Analog. ACS Chem Biol 2021; 16:1208-1214. [PMID: 34190533 PMCID: PMC9109600 DOI: 10.1021/acschembio.1c00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Guanine deaminase (GDA) deaminates guanine to xanthine. Despite its significance, the study of human GDA remains limited compared to other metabolic deaminases. As a result, its substrate and inhibitor repertoire are limited, and effective real-time activity, inhibitory, and discovery assays are missing. Herein, we explore two emissive heterocyclic cores, based on thieno[3,4-d]pyrimidine (thN) and isothiazole[4,3-d]pyrimidine (tzN), as surrogate GDA substrates. We demonstrate that, unlike the thieno analog, thGN, the isothiazolo guanine surrogate, tzGN, does undergo effective enzymatic deamination by GDA and yields the spectroscopically distinct xanthine analog, tzXN. Further, we showcase the potential of this fluorescent nucleobase surrogate to provide a visible spectral window for a real-time study of GDA and its inhibition.
Collapse
Affiliation(s)
- Marcela S Bucardo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - You Wu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Paul T Ludford
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yao Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Andrea Fin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Hu Y, Lyu W, Lowery LA, Koleske AJ. Regulation of MT dynamics via direct binding of an Abl family kinase. J Cell Biol 2019; 218:3986-3997. [PMID: 31699690 PMCID: PMC6891085 DOI: 10.1083/jcb.201812144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/02/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Genetic studies revealed that Abl family kinases interact functionally with microtubules, but the mechanism by which Abl kinases regulate microtubules remains unclear. Hu et al. provide the first evidence that the Abl family kinase Abl2 directly binds microtubules to regulate microtubule dynamics. Abl family kinases are essential regulators of cell shape and movement. Genetic studies revealed functional interactions between Abl kinases and microtubules (MTs), but the mechanism by which Abl family kinases regulate MTs remains unclear. Here, we report that Abl2 directly binds to MTs and regulates MT behaviors. Abl2 uses its C-terminal half to bind MTs, an interaction mediated in part through electrostatic binding to tubulin C-terminal tails. Using purified proteins, we found that Abl2 binds growing MTs and promotes MT polymerization and stability. In cells, knockout of Abl2 significantly impairs MT growth, and this defect can be rescued via reexpression of Abl2. Stable reexpression of an Abl2 fragment containing the MT-binding domain alone was sufficient to restore MT growth at the cell edge. These results show Abl2 uses its C-terminal half to bind MTs and directly regulate MT dynamics.
Collapse
Affiliation(s)
- Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | | | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT .,Department of Neuroscience, Yale University, New Haven, CT
| |
Collapse
|