1
|
Hu Q, Li G. Role of purinergic receptors in cardiac sympathetic nerve injury in diabetes mellitus. Neuropharmacology 2023; 226:109406. [PMID: 36586475 DOI: 10.1016/j.neuropharm.2022.109406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Diabetic cardiac autonomic neuropathy is a common and serious chronic complication of diabetes, which can lead to sympathetic and parasympathetic nerve imbalance and a relative excitation of the sympathetic nerve. Purinergic receptors play a crucial role in this process. Diabetic cardiac sympathetic nerve injury affects the expression of purinergic receptors, and activated purinergic receptors affect the phosphorylation of different signaling pathways and the regulation of inflammatory processes. This paper introduces the abnormal changes of sympathetic nerve in diabetes mellitus and summarizes the recently published studies on the role of several purinergic receptor subtypes in diabetic cardiac sympathetic nerve injury. These studies suggest that purinergic receptors as novel drug targets are of great significance for the treatment of diabetic autonomic neuropathy. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
2
|
Arribas-Blázquez M, Olivos-Oré LA, Barahona MV, Sánchez de la Muela M, Solar V, Jiménez E, Gualix J, McIntosh JM, Ferrer-Montiel A, Miras-Portugal MT, Artalejo AR. Overexpression of P2X3 and P2X7 Receptors and TRPV1 Channels in Adrenomedullary Chromaffin Cells in a Rat Model of Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20010155. [PMID: 30609840 PMCID: PMC6337219 DOI: 10.3390/ijms20010155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve–chromaffin cell junction. Likewise, adrenomedullary chromaffin cells displayed enlarged acetylcholine-evoked currents with greater sensitivity to α-conotoxin RgIA, a selective blocker of α9 subunit-containing nicotinic acetylcholine receptors, as well as increased exocytosis triggered by voltage-activated Ca2+ entry. Altogether, these adaptations are expected to facilitate catecholamine output into the bloodstream. Last, but most intriguing, functional and immunohistochemical data indicate that P2X3 and P2X7 purinergic receptors and transient receptor potential vanilloid-1 (TRPV1) channels are overexpressed in chromaffin cells from neuropathic animals. These latter observations are reminiscent of molecular changes characteristic of peripheral sensitization of nociceptors following the lesion of a peripheral nerve, and suggest that similar phenomena can occur in other tissues, potentially contributing to behavioral manifestations of neuropathic pain.
Collapse
Affiliation(s)
- Marina Arribas-Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Luis Alcides Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - María Victoria Barahona
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Mercedes Sánchez de la Muela
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Virginia Solar
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Esperanza Jiménez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Javier Gualix
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA.
- Departments of Biology and Psychiatry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain.
| | - María Teresa Miras-Portugal
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Xie AX, Lee JJ, McCarthy KD. Ganglionic GFAP + glial Gq-GPCR signaling enhances heart functions in vivo. JCI Insight 2017; 2:e90565. [PMID: 28138563 DOI: 10.1172/jci.insight.90565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system (SNS) accelerates heart rate, increases cardiac contractility, and constricts resistance vessels. The activity of SNS efferent nerves is generated by a complex neural network containing neurons and glia. Gq G protein-coupled receptor (Gq-GPCR) signaling in glial fibrillary acidic protein-expressing (GFAP+) glia in the central nervous system supports neuronal function and regulates neuronal activity. It is unclear how Gq-GPCR signaling in GFAP+ glia affects the activity of sympathetic neurons or contributes to SNS-regulated cardiovascular functions. In this study, we investigated whether Gq-GPCR activation in GFAP+ glia modulates the regulatory effect of the SNS on the heart; transgenic mice expressing Gq-coupled DREADD (designer receptors exclusively activated by designer drugs) (hM3Dq) selectively in GFAP+ glia were used to address this question in vivo. We found that acute Gq-GPCR activation in peripheral GFAP+ glia significantly accelerated heart rate and increased left ventricle contraction. Pharmacological experiments suggest that the glial-induced cardiac changes were due to Gq-GPCR activation in satellite glial cells within the sympathetic ganglion; this activation led to increased norepinephrine (NE) release and beta-1 adrenergic receptor activation within the heart. Chronic glial Gq-GPCR activation led to hypotension in female Gfap-hM3Dq mice. This study provides direct evidence that Gq-GPCR activation in peripheral GFAP+ glia regulates cardiovascular functions in vivo.
Collapse
|
4
|
Stanzel S, Stubbusch J, Pataskar A, Howard MJ, Deller T, Ernsberger U, Tiwari VK, Rohrer H, Tsarovina K. Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 2016; 76:1111-24. [PMID: 26818017 DOI: 10.1002/dneu.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.
Collapse
Affiliation(s)
- Sabine Stanzel
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Jutta Stubbusch
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Abhijeet Pataskar
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurological Disorders, University of Toledo Health Sciences Campus, Toledo, Ohio, 43614
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany
| | - Uwe Ernsberger
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Vijay K Tiwari
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Hermann Rohrer
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Konstantina Tsarovina
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| |
Collapse
|
5
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
6
|
Abstract
Most early studies of the role of nucleotides in development have evidenced their crucial importance as carriers of energy in all organisms. However, an increasing number of studies are now available to suggest that purines and pyrimidines, acting as extracellular ligands specifically on receptors of the plasma membrane, may play a pivotal role throughout pre- and postnatal development in a wide variety of organisms including amphibians, birds, and mammals. Purinergic receptor expression and functions have been studied in the development of many organs, including the autonomic nervous system (ANS). Nucleotide receptors can induce a multiplicity of cellular signalling pathways via crosstalk with bioactive molecules acting on growth factors and neurotransmitter receptors which are fundamental for the development of a mature and functional ANS. Purines and pyrimidines may influence all the stages of neuronal development, including neural cell proliferation, migration, differentiation and phenotype determination of differentiated cells. Indeed, the normal development of the ANS is disturbed by dysfunction of purinergic signalling in animal models. To establish the primitive and fundamental nature of purinergic neurotransmission in the ontogeny of the ANS, in this review the roles of purines and pyrimidines as signalling molecules during embryological and postnatal development are considered.
Collapse
Affiliation(s)
- Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy.
| |
Collapse
|
7
|
Loera-Valencia R, Jiménez-Vargas NN, Villalobos EC, Juárez EH, Lomas-Ramos TL, Espinosa-Luna R, Montaño LM, Huizinga JD, Barajas-López C. Expression of P2X3 and P2X 5 myenteric receptors varies during the intestinal postnatal development in the guinea pig. Cell Mol Neurobiol 2014; 34:727-36. [PMID: 24723030 PMCID: PMC11488934 DOI: 10.1007/s10571-014-0055-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022]
Abstract
P2X3 receptor expression in various tissues appears to be modulated by age. In the present study, we used single cell RT-PCR to determine the number of P2X3 positive myenteric neurons at different stages of guinea pig postnatal development, and we tested if similar changes also occur to other myenteric P2X receptors. Moreover, we carried out whole-cell recordings using Patch Clamp techniques to determine possible changes in P2X receptors sensitivity to ATP and α,β-methylene ATP (α,β-meATP) between newborn and adult animals. Our data indicate that P2X3 subunit transcripts are present in a larger number of myenteric neurons from newborn guinea pigs whereas P2X5 mRNA is found more frequently in adults. Expression of P2X2 and P2X4 transcripts does not change during postnatal development. In newborn animals, virtually all neurons expressing P2X3 also expressed P2X2 transcripts. This is important because these two subunits are known to form heteromeric channels. ATP potency to activate P2X receptors in neurons of both newborn and adult animals was the same. α,β-meATP, a known P2X3 receptor agonist, induces only a marginal current despite the fact of the higher presence of P2X3 subunits in newborns. These findings imply that P2X3 subunits are mainly forming heteromeric, α,β-meATP insensitive channels perhaps because P2X3 contributes with only one subunit to the heterotrimers while the other subunits could be P2X2, P2X4, or P2X5.
Collapse
Affiliation(s)
- Raúl Loera-Valencia
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Néstor N. Jiménez-Vargas
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Egina C. Villalobos
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Esri H. Juárez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Telma Liliana Lomas-Ramos
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina Universidad Nacional Autónoma de México, México, DF Mexico
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a Sección, CP78216 San Luis Potosí, SLP Mexico
| |
Collapse
|
8
|
Chen Y, Li G, Huang LYM. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons. Mol Pain 2012; 8:9. [PMID: 22314033 PMCID: PMC3292910 DOI: 10.1186/1744-8069-8-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/07/2012] [Indexed: 11/27/2022] Open
Abstract
Background The purinergic P2X3 receptor (P2X3R) expressed in the dorsal root ganglion (DRG) sensory neuron and the P2X7 receptor (P2X7R) expressed in the surrounding satellite glial cell (SGC) are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
9
|
García-Alcocer G, Padilla K, Rodríguez A, Miledi R, Berumen LC. Distribution of the purinegic receptors P2X4 and P2X6 during rat gut development. Neurosci Lett 2012; 509:92-5. [DOI: 10.1016/j.neulet.2011.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022]
|
10
|
Prenatal expression of purinergic receptor P2X3 in human dorsal root ganglion. Purinergic Signal 2011; 8:245-54. [PMID: 22052556 DOI: 10.1007/s11302-011-9277-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023] Open
Abstract
The dorsal root ganglion (DRG) is consisted of neurons that relay multiple types of spinal sensory stimuli to the central nervous system. Several neuroactive molecules may be involved in sensory modulation especially pain processing at the DRG, including the purinergic receptor P2X3 and calcitonin-gene-related peptide (CGRP). P2X3 receptor has been considered a promising pharmaceutical target for the development of new pain medicine. Currently, litter is known about the expression of P2X3 in the human DRG. The present study characterized the localization of P2X3 in prenatal human DRG obtained from fetuses at 4-8 gestational months, by comparing to CGRP expression as well as binding pattern of isolectin-B4 (IB4), a marker of small DRG neurons presumably relevant to nociception. P2X3 immunoreactivity (IR) appeared in most neuron-like perikarya, with their numerical density reduced during the gestational period studied. P2X3 IR was co-labeled very commonly with IB4 binding and infrequently with CGRP IR and was not colocalized with IR for the gliocyte marker glutamine synthetase. Together, the data show an early and broad expression of P2X3 in prenatal human DRG neurons, pointing to a biological role of purinergic signaling during the development of spinal sensory system.
Collapse
|
11
|
Burnstock G, Ulrich H. Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 2011; 68:1369-94. [PMID: 21222015 PMCID: PMC11114541 DOI: 10.1007/s00018-010-0614-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 01/23/2023]
Abstract
Nucleotides are of crucial importance as carriers of energy in all organisms. However, the concept that in addition to their intracellular roles, nucleotides act as extracellular ligands specifically on receptors of the plasma membrane took longer to be accepted. Purinergic signaling exerted by purines and pyrimidines, principally ATP and adenosine, occurs throughout embryologic development in a wide variety of organisms, including amphibians, birds, and mammals. Cellular signaling, mediated by ATP, is present in development at very early stages, e.g., gastrulation of Xenopus and germ layer definition of chick embryo cells. Purinergic receptor expression and functions have been studied in the development of many organs, including the heart, eye, skeletal muscle and the nervous system. In vitro studies with stem cells revealed that purinergic receptors are involved in the processes of proliferation, differentiation, and phenotype determination of differentiated cells. Thus, nucleotides are able to induce various intracellular signaling pathways via crosstalk with other bioactive molecules acting on growth factor and neurotransmitter receptors. Since normal development is disturbed by dysfunction of purinergic signaling in animal models, further studies are needed to elucidate the functions of purinoceptor subtypes in developmental processes.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, Rowland Hill Street, London, UK.
| | | |
Collapse
|
12
|
Köles L, Leichsenring A, Rubini P, Illes P. P2 receptor signaling in neurons and glial cells of the central nervous system. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:441-93. [PMID: 21586367 DOI: 10.1016/b978-0-12-385526-8.00014-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes.
Collapse
Affiliation(s)
- Laszlo Köles
- Rudolph-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Germany
| | | | | | | |
Collapse
|
13
|
Johansson PA, Burnstock G, Dziegielewska KM, Guida E, McIntyre P, Saunders NR. Expression and localization of P2 nucleotide receptor subtypes during development of the lateral ventricular choroid plexus of the rat. Eur J Neurosci 2007; 25:3319-31. [PMID: 17553000 DOI: 10.1111/j.1460-9568.2007.05562.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The choroid plexuses secrete cerebrospinal fluid (CSF) and regulate the brain's internal environment via the blood-CSF barrier. The permeability properties of the blood-CSF interface have been studied previously in adult and immature brains, however, little is known about the development of CSF secretion and its modulation. ATP influences secretion in other epithelia via ionotropic P2X or metabotropic P2Y receptors. P2 receptors have frequently been found to be down-regulated in the postnatal period, suggesting a developmental role for purinergic and pyrimidine signalling. The present study investigated the expression of P2 receptors in lateral ventricular choroid plexus in relation to recent studies of aquaporin-1 expression and rapid expansion of the lateral ventricles in rat embryos. In the present study mRNAs for all known mammalian nucleotide receptor subtypes, except P2X(7), were identified from as early as E15. P2X(7) mRNA was detected from E18. Indications of differential expression patterns were observed for the different subtypes during development: an apparent increase in expression for P2Y(2) and P2X(7), a decline in P2X(1-2,4), no detectable difference in expression levels for P2X(6) and P2Y(12-13) and transient expression peaks for P2X(3,5) and P2Y(1,4,6,14). P2X(4,5,7) and P2Y(1,4) receptor proteins were detected immunohistochemically in the choroidal epithelium from early in development (E15 or E18). Their differing developmental profiles suggest specific roles in the development of CSF secretion that may have particular relevance for the rapid expansion of the ventricles that occurs in the embryo. P2X(5) and P2Y(6) were also detected in the developing neuropendyma from P0 and P9, respectively.
Collapse
Affiliation(s)
- P A Johansson
- Department of Pharmacology, University of Melbourne, Parkville VIC 3010, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
15
|
Bairam A, Joseph V, Lajeunesse Y, Kinkead R. Developmental profile of cholinergic and purinergic traits and receptors in peripheral chemoreflex pathway in cats. Neuroscience 2007; 146:1841-53. [PMID: 17478045 DOI: 10.1016/j.neuroscience.2007.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/23/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
This study describes the developmental profile of specific aspects of cholinergic and purinergic neurotransmission in key organs of the peripheral chemoreflex: the carotid body (CB), petrosal ganglion (PG) and superior cervical ganglion (SCG). Using real time RT-PCR and Western blot analyses, we assessed both mRNA and protein expression levels for choline-acetyl-transferase (ChAT), nicotinic receptor (subunits alpha3, alpha4, alpha7, and beta2), ATP and purinergic receptors (P2X2 and P2X3). These analyses were performed on tissue from 1- and 15-day-old, 2-month-old, and adult cats. During development, ChAT protein expression level increased slightly in CB; however, this increase was more important in PG and SCG. In CB, mRNA level for alpha4 nicotinic receptor subunit decreased during development (90% higher in 1-day-old cats than in adults). In the PG, mRNA level for beta2 nicotinic receptor subunit increased during development (80% higher in adults than in 1-day-old cats). In SCG, mRNA for alpha7 nicotinic receptor levels increased (400% higher in adults vs. 1-day-old cats). Conversely, P2X2 receptor protein level was not altered during development in CB and decreased slightly in PG; a similar pattern was observed for the P2X3 receptor. Our findings suggest that in cats, age-related changes in cholinergic and purinergic systems (such as physiological expression of receptor function) are significant within the afferent chemoreceptor pathway and likely contribute to the temporal changes of O2-chemosensitivity during development.
Collapse
Affiliation(s)
- A Bairam
- Unité de recherche en périnatologie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
16
|
Zimmermann H. Nucleotide signaling in nervous system development. Pflugers Arch 2006; 452:573-88. [PMID: 16639549 DOI: 10.1007/s00424-006-0067-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
The development of the nervous system requires complex series of cellular programming and intercellular communication events that lead from the early neural induction to the formation of a highly structured central and peripheral nervous system. Neurogenesis continuously takes place also in select regions of the adult mammalian brain. During the past years, a multiplicity of cellular control mechanisms has been identified, ranging from differential transcriptional mediators to inducers or inhibitors of cell specification or neurite outgrowth. While the identification of transcription factors typical for the stage-specific progression has been a topic of key interest for many years, less is known concerning the potential multiplicity of relevant intercellular signaling pathways and the fine tuning of epigenetic gene regulation. Nucleotide receptors can induce a multiplicity of cellular signaling pathways and are involved in multiple molecular interactions, thus opening the possibility of cross talk between several signaling pathways, including growth factors, cytokines, and extracellular matrix components. An increasing number of studies provides evidence for a role of nucleotide signaling in nervous system development. This includes progenitor cell proliferation, cell migration, neuronal and glial cellular interaction and differentiation, and synaptic network formation.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Max-von-Lane-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|