1
|
Goovaerts S, Hoskens H, Eller RJ, Herrick N, Musolf AM, Justice CM, Yuan M, Naqvi S, Lee MK, Vandermeulen D, Szabo-Rogers HL, Romitti PA, Boyadjiev SA, Marazita ML, Shaffer JR, Shriver MD, Wysocka J, Walsh S, Weinberg SM, Claes P. Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape. Nat Commun 2023; 14:7436. [PMID: 37973980 PMCID: PMC10654897 DOI: 10.1038/s41467-023-43237-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.
Collapse
Affiliation(s)
- Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
| | - Hanne Hoskens
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Noah Herrick
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Anthony M Musolf
- Statistical Genetics Section, Computational and Statistical Genomics Branch, NHGRI, NIH, MD, Baltimore, USA
| | - Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meng Yuan
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Myoung Keun Lee
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dirk Vandermeulen
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Heather L Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatchewan, Canada
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
BMP/Smad Pathway Is Involved in Lithium Carbonate-Induced Neural-Tube Defects in Mice and Neural Stem Cells. Int J Mol Sci 2022; 23:ijms232314831. [PMID: 36499158 PMCID: PMC9735442 DOI: 10.3390/ijms232314831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.
Collapse
|
4
|
The association of polymorphisms in BMP2/MYO1H and skeletal Class II div.1 maxillary and mandibular dimensions. A preliminary ‘report. Saudi J Biol Sci 2022; 29:103405. [PMID: 36039325 PMCID: PMC9418592 DOI: 10.1016/j.sjbs.2022.103405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The genetic impact directly or indirectly predefines maxillofacial dimensions, potentially leading to an inappropriate relationship of the jaws and subsequently skeletal malocclusion. Previous studies focused mainly on genetic polymorphisms and class III malocclusion. This study was set out to investigate the association between genetic polymorphisms in two genes BMP2 (rs235768) and MYO1H (rs11066446) with Class II division 1 malocclusion, skeletal variation in vertical plane, and maxillary and mandibular jaws length. Subjects and methods Sixty patients classified as Skeletal Class I (n = 30) and Class II division 1 (n = 30) were recruited. DNA was extracted from saliva and analyzed by Sanger sequencing. Lateral cephalometric radiographs were measured for the anterio-posterior relationship of maxillary and mandibular arch using digital tracing. Hardy-Weinberg equilibrium analysis of genotype frequencies was performed using Chi-square test to compare genotype distribution among groups and multiple logistic regression analysis adjusted by gender was also performed. Results The rs235768 polymorphism in BMP2 was associated with hypodivergent face, increased maxillary length, and decreased mandibular length. Meanwhile, the rs11066446 polymorphism in MYO1H was associated with decreased mandibular length. New polymorphism was identified in MYO1H (rs10850090) in association with decreased mandibular length. Conclusion A potential association between polymorpisms in BMP2 rs235768 and MOY1H rs11066446 and rs10850090 and Class II division 1 skeletal malocclusion related phenotypes exists, however, the degree of it has to be further investigated and yet to be discovered.
Collapse
|
5
|
Brown HM, Murray SA, Northrup H, Au KS, Niswander LA. Snx3 is important for mammalian neural tube closure via its role in canonical and non-canonical WNT signaling. Development 2020; 147:147/22/dev192518. [PMID: 33214242 DOI: 10.1242/dev.192518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
Disruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of Snx3, a sorting nexin gene. Snx3-/- mutant mouse embryos display a fully-penetrant cranial NTD. In vivo, we observed decreased canonical WNT target gene expression in the cranial neural epithelium of the Snx3-/- embryos and a defect in convergent extension of the neural epithelium. Snx3-/- cells show decreased WNT secretion, and live cell imaging reveals aberrant recycling of the WNT ligand-binding protein WLS and mis-trafficking to the lysosome for degradation. The importance of SNX3 in WNT signaling regulation is demonstrated by rescue of NT closure in Snx3-/- embryos with a WNT agonist. The potential for SNX3 to function in human neurulation is revealed by a point mutation identified in an NTD-affected individual that results in functionally impaired SNX3 that does not colocalize with WLS and the degradation of WLS in the lysosome. These data indicate that Snx3 is crucial for NT closure via its role in recycling WLS in order to control levels of WNT signaling.
Collapse
Affiliation(s)
- Heather Mary Brown
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Yin C, Cai H, Yang D, Jian Y, Zhang J, Li Z, Wang D. Cigarette smoke induced neural tube defects by down-regulating noggin expression. Birth Defects Res 2020; 113:5-13. [PMID: 32949110 DOI: 10.1002/bdr2.1804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Maternal smoking or passive smoking during gestation increases the risk of congenital birth defects, including neural tube defects (NTDs). Cigarette smoke is a recognized teratogen that causes NTDs, although the mechanisms are not well understood. METHODS An established model of passive smoking in pregnant golden hamsters was used to observe the effect of cigarette smoke on neural tube development using scanning electron microscopy. Level of noggin expression in placenta and neural tube was evaluated by immunohistochemistry. RESULTS Our results indicated that cigarette smoke can cause the neural tube closure of the golden hamster embryo to be delayed or not closed. In normal placental tissues noggin protein and RNA levels were highly expressed, and the expression level in the term placenta was lower than in that of the first trimester or second trimester through analyzing the Human Protein Atlas and the Gene Expression Omnibus (GEO) databases. Cigarette smoke can down-regulate noggin expression in the placenta and promote cell apoptosis. We observed that noggin expression was reduced and BMP2 expression was increased by cigarette smoke. CONCLUSIONS Cigarette smoke may cause cell apoptosis and accelerate placenta maturation. Meanwhile, cigarette smoke may inhibit the development of the embryo, and lead to the formation of NTDs via downregulating the expression of noggin and dis-inhibition of BMP2.
Collapse
Affiliation(s)
- Chuanhui Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Heng Cai
- Department of introduction to medicine, School of basic medicine, Shandong first medical university & Shandong academy of medical sciences, Shandong, China
| | - Dandan Yang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Yi Jian
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Jinfeng Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Centre, Peking University, Beijing, China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
7
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
8
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
9
|
Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C, Bjørås M, Klungland A. Ythdf2-mediated m 6A mRNA clearance modulates neural development in mice. Genome Biol 2018; 19:69. [PMID: 29855337 PMCID: PMC5984442 DOI: 10.1186/s13059-018-1436-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND N 6 -methyladenosine (m6A) modification in mRNAs was recently shown to be dynamically regulated, indicating a pivotal role in multiple developmental processes. Most recently, it was shown that the Mettl3-Mettl14 writer complex of this mark is required for the temporal control of cortical neurogenesis. The m6A reader protein Ythdf2 promotes mRNA degradation by recognizing m6A and recruiting the mRNA decay machinery. RESULTS We show that the conditional depletion of the m6A reader protein Ythdf2 in mice causes lethality at late embryonic developmental stages, with embryos characterized by compromised neural development. We demonstrate that neural stem/progenitor cell (NSPC) self-renewal and spatiotemporal generation of neurons and other cell types are severely impacted by the loss of Ythdf2 in embryonic neocortex. Combining in vivo and in vitro assays, we show that the proliferation and differentiation capabilities of NSPCs decrease significantly in Ythdf2 -/- embryos. The Ythdf2 -/- neurons are unable to produce normally functioning neurites, leading to failure in recovery upon reactive oxygen species stimulation. Consistently, expression of genes enriched in neural development pathways is significantly disturbed. Detailed analysis of the m6A-methylomes of Ythdf2 -/- NSPCs identifies that the JAK-STAT cascade inhibitory genes contribute to neuroprotection and neurite outgrowths show increased expression and m6A enrichment. In agreement with the function of Ythdf2, delayed degradation of neuron differentiation-related m6A-containing mRNAs is seen in Ythdf2 -/- NSPCs. CONCLUSIONS We show that the m6A reader protein Ythdf2 modulates neural development by promoting m6A-dependent degradation of neural development-related mRNA targets.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
| | - Xu Zhao
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway.
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hailing Shi
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Hospital, Memphis, TN, 38105, USA
| | - Zhike Lu
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Sonia Peña Perez
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway
| | - Rajikala Suganthan
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0027, Oslo, Norway.
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway.
| |
Collapse
|
10
|
Yu J, Mu J, Guo Q, Yang L, Zhang J, Liu Z, Yu B, Zhang T, Xie J. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq. IUBMB Life 2017; 69:706-719. [PMID: 28691208 DOI: 10.1002/iub.1653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Qian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Shah TA, Zhu Y, Shaikh NN, Harris MA, Harris SE, Rogers MB. Characterization of new bone morphogenetic protein (Bmp)-2 regulatory alleles. Genesis 2017; 55. [PMID: 28401685 DOI: 10.1002/dvg.23035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell proliferation, differentiation, and apoptosis. Key events requiring precise Bmp2 regulation include heart specification and morphogenesis and neural development. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence pattern formation and organogenesis, the mechanisms that regulate Bmp2 are crucial. A sequence within the 3'UTR of the Bmp2 mRNA termed the "ultra-conserved sequence" (UCS) has been largely unchanged since fishes and mammals diverged. Cre-lox mediated deletion of the UCS in a reporter transgene revealed that the UCS may repress Bmp2 in proepicardium, epicardium, and epicardium-derived cells (EPDC) and in tissues with known epicardial contributions (coronary vessels and valves). The UCS also repressed the transgene in the aorta, outlet septum, posterior cardiac plexus, cardiac and extra-cardiac nerves, and neural ganglia. We used homologous recombination and conditional deletion to generate three new alleles in which the Bmp2 3'UTR was altered as follows: a UCS flanked by loxP sites with or without a neomycin resistance targeting vector, or a deleted UCS. Deletion of the UCS was associated with elevated Bmp2 mRNA and BMP signaling levels, reduced fitness, and embryonic malformations.
Collapse
Affiliation(s)
- Tapan A Shah
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| | - Youhua Zhu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| | - Nadia N Shaikh
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| | - Marie A Harris
- Department of Periodontics, University of Texas Health Science Centre, San Antonio, Texas
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Centre, San Antonio, Texas
| | - Melissa B Rogers
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers NJMS, Newark, New Jersey
| |
Collapse
|
12
|
Anderson MJ, Schimmang T, Lewandoski M. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension. PLoS Genet 2016; 12:e1006018. [PMID: 27144312 PMCID: PMC4856314 DOI: 10.1371/journal.pgen.1006018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. During embryological development, the vertebrate embryo undergoes profound growth in a head-to-tail direction. During this process, formation of different structures within adjacent tissue layers must occur in a coordinated fashion. Insights into how these adjacent tissues molecularly communicate with each other is essential to understanding both basic embryology and the underlying causes of human birth defects. Mice lacking Fgf3, which encodes a secreted signaling factor, have long been known to have premature axis termination, but the underlying mechanism has not been studied until now. Through a series of complex genetic experiments, we show that FGF3 is an essential factor for coordination of neural tube development and axis extension. FGF3 is secreted from the mesodermal layer, which is the major driver of extending the axis, and negatively regulates expression of another class of secreted signaling molecules in the neuroepithelium, BMPs. In the absence of FGF3, excessive BMP signals cause a delay in neural tube closure, premature specification of neural crest cells and negatively affect the mesoderm, causing a premature termination of the embryological axis. Our work suggests that FGF3 may be a player in the complex etiology of the human birth defect, spina bifida, the failure of posterior neural tube closure.
Collapse
Affiliation(s)
- Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Amarnath S, Agarwala S. Cell-cycle-dependent TGFβ-BMP antagonism regulates neural tube closure by modulating tight junctions. J Cell Sci 2016; 130:119-131. [PMID: 27034139 DOI: 10.1242/jcs.179192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Many organs form by invaginating and rolling flat epithelial cell sheets into tubes. Invagination of the ventral midline of the neural plate forms the median hinge point (MHP), an event that elevates the neural folds and is essential for neural tube closure (NTC). MHP formation involves dynamic spatiotemporal modulations of cell shape, but how these are achieved is not understood. Here, we show that cell-cycle-dependent BMP and TGFβ antagonism elicits MHP formation by dynamically regulating interactions between apical (PAR complex) and basolateral (LGL) polarity proteins. TGFβ and BMP-activated receptor (r)-SMADs [phosphorylated SMAD2 or SMAD3 (pSMAD2,3), or phosphorylated SMAD1, SMAD5 or SMAD8 (pSMAD1,5,8)] undergo cell-cycle-dependent modulations and nucleo-cytosolic shuttling along the apicobasal axis of the neural plate. Non-canonical TGFβ and BMP activity in the cytosol determines whether pSMAD2,3 or pSMAD1,5,8 associates with the tight junction (PAR complex) or with LGL, and whether cell shape changes can occur at the MHP. Thus, the interactions of BMP and TGFβ with polarity proteins dynamically modulate MHP formation by regulating r-SMAD competition for tight junctions and r-SMAD sequestration by LGL.
Collapse
Affiliation(s)
- Smita Amarnath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA .,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.,Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
14
|
Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2015; 27:129-39. [PMID: 26747371 DOI: 10.1016/j.cytogfr.2015.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.
Collapse
|
15
|
Folate deficiency decreases apoptosis of endometrium decidual cells in pregnant mice via the mitochondrial pathway. Nutrients 2015; 7:1916-32. [PMID: 25781218 PMCID: PMC4377890 DOI: 10.3390/nu7031916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
It is well known that maternal folate deficiency results in adverse pregnancy outcomes. In addition to aspects in embryonic development, maternal uterine receptivity and the decidualization of stromal cells is also very important for a successful pregnancy. In this study, we focused on endometrium decidualization and investigated whether apoptosis, which is essential for decidualization, was impaired. Flow cytometry and TUNEL detection revealed that apoptosis of mouse endometrium decidual cells was suppressed in the dietary folate-deficient group on Days 7 and 8 of pregnancy (Day 1 = vaginal plug) when decidua regression is initiated. The endometrium decidual tissue of the folate deficiency group expressed less Bax compared to the normal diet group while they had nearly equal expression of Bcl2 protein. Further examination revealed that the mitochondrial transmembrane potential (ΔΨm) decreased, and the fluorescence of diffuse cytoplasmic cytochrome c protein was detected using laser confocal microscopy in normal decidual cells. However, no corresponding changes were observed in the folate-deficient group. Western blotting analyses confirmed that more cytochrome c was released from mitochondria in normal decidual cells. Taken together, these results demonstrated that folate deficiency could inhibit apoptosis of decidual cells via the mitochondrial apoptosis pathway, thereby restraining decidualization of the endometrium and further impairing pregnancy.
Collapse
|
16
|
Lauzon MA, Daviau A, Marcos B, Faucheux N. Growth factor treatment to overcome Alzheimer's dysfunctional signaling. Cell Signal 2015; 27:1025-38. [PMID: 25744541 DOI: 10.1016/j.cellsig.2015.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) will increase as the world population ages, creating a huge socio-economic burden. The three pathophysiological hallmarks of AD are the cholinergic system dysfunction, the β-amyloid peptide deposition and the Tau protein hyperphosphorylation. Current treatments have only transient effects and each tends to concentrate on a single pathophysiological aspect of AD. This review first provides an overall view of AD in terms of its pathophysiological symptoms and signaling dysfunction. We then examine the therapeutic potential of growth factors (GFs) by showing how they can overcome the dysfunctional cell signaling that occurs in AD. Finally, we discuss new alternatives to GFs that help overcome the problem of brain uptake, such as small peptides, with evidence from some of our unpublished data on human neuronal cell line.
Collapse
Affiliation(s)
- Marc-Antoine Lauzon
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Alex Daviau
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Bernard Marcos
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Nathalie Faucheux
- Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
17
|
Schneider L, Pellegatta S, Favaro R, Pisati F, Roncaglia P, Testa G, Nicolis SK, Finocchiaro G, d'Adda di Fagagna F. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Reports 2013; 1:123-38. [PMID: 24052948 PMCID: PMC3757751 DOI: 10.1016/j.stemcr.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.
Collapse
Affiliation(s)
- Leonid Schneider
- IFOM Foundation-The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang X, Wang J, Guan T, Xiang Q, Wang M, Guan Z, Li G, Zhu Z, Xie Q, Zhang T, Niu B. Role of methotrexate exposure in apoptosis and proliferation during early neurulation. J Appl Toxicol 2013; 34:862-9. [DOI: 10.1002/jat.2901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Tao Guan
- Department of Biochemistry and Molecular Biology; Shanxi Medical University; Taiyuan 030001 China
| | - Qian Xiang
- Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing 100020 China
| | - Mingsheng Wang
- Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing 100020 China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Guannan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Qiu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
- Department of Biochemistry and Molecular Biology; Shanxi Medical University; Taiyuan 030001 China
| |
Collapse
|
19
|
Eom DS, Amarnath S, Agarwala S. Apicobasal polarity and neural tube closure. Dev Growth Differ 2012; 55:164-72. [PMID: 23277919 DOI: 10.1111/dgd.12030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 11/10/2012] [Accepted: 11/12/2012] [Indexed: 01/30/2023]
Abstract
During development, a flat neural plate rolls up and closes to form a neural tube. This process, called neural tube closure, is complex and requires morphogenetic events to occur along multiple axes of the neural plate. Recent studies suggest that cell and tissue polarity play a major role in neural tube morphogenesis. While the planar cell polarity pathway is known to be involved in this process, a role for the apicobasal polarity pathway has only recently begun to be elucidated. These studies show that bone morphogenetic proteins can regulate the apicobasal polarity pathway in the neural plate in a cell cycle dependent manner. This dynamically modulates apical junctions in the neural plate, resulting in cell and tissue shape changes that help bend, shape and close the neural tube.
Collapse
Affiliation(s)
- Dae Seok Eom
- Institute for Cell and Molecular Biology, University of Texas at Austin, TX 78712, USA
| | | | | |
Collapse
|
20
|
Eom DS, Amarnath S, Fogel JL, Agarwala S. Bone morphogenetic proteins regulate hinge point formation during neural tube closure by dynamic modulation of apicobasal polarity. ACTA ACUST UNITED AC 2012; 94:804-16. [PMID: 22865775 DOI: 10.1002/bdra.23052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 01/23/2023]
Abstract
BACKGROUND A critical event in neural tube closure is the formation of median hinge points (MHPs) and dorsolateral hinge points (DLHPs). Together, they buckle the ventral midline and elevate and juxtapose the neural folds for proper neural tube closure. Dynamic cell behaviors occur at hinge points (HPs), but their molecular regulation is largely unexplored. Bone morphogenetic proteins (BMPs) have been implicated in a variety of neural tube closure defects, although the underlying mechanisms are poorly understood. METHODS In this study, we used in vivo electroporations, high-resolution microscopy, and biochemical analyses to explore the role of BMP signaling in chick midbrain neural tube closure. RESULTS We identified a cell-cycle-dependent BMP gradient in the midbrain neural plate, which results in low-level BMP activity at the MHP. We show that although BMP signaling does not have a role in midbrain cell-fate specification, its attenuation is necessary and sufficient for MHP formation and midbrain closure. BMP blockade induces MHP formation by regulating apical constriction and basal nuclear migration. Furthermore, BMP signaling is critically important for maintaining epithelial organization by biochemically interacting with apicobasal polarity proteins (e.g., PAR3). As a result, prolonged BMP blockade disrupts apical junctions, desegregating the apical (PAR3(+), ZO1(+)) and basolateral (LGL(+)) compartments. Direct apical LGL-GFP misexpression in turn is sufficient to induce ectopic HPs. CONCLUSIONS BMPs have a critical role in maintaining epithelial organization, a role that is conserved across species and tissue types. Its cell-cycle-dependent modulation in the neural plate dynamically regulates apicobasal polarity and helps to bend, shape, and close the neural tube.
Collapse
Affiliation(s)
- Dae Seok Eom
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
21
|
Feng J, Yang G, Yuan G, Gluhak-Heinrich J, Yang W, Wang L, Chen Z, Schulze McDaniel J, Donly KJ, Harris SE, Macdougall M, Chen S. Abnormalities in the enamel in bmp2-deficient mice. Cells Tissues Organs 2011; 194:216-21. [PMID: 21597270 DOI: 10.1159/000324644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (Bmp2) is essential for tooth formation. However, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in the regulation of postnatal enamel formation was investigated via the conditional ablation of Bmp2 in enamel using the (Osx-Cre) mouse. Bmp2 gene ablation was confirmed by PCR analysis in Osx-Cre, Bmp2(flox/flox) mice. Bmp2-null mice displayed a severe and profound tooth phenotype with asymmetric and open forked incisors. Microradiographs revealed broken incisor tips and dental pulp chamber exposure. The enamel layer of incisors and molars was thin with hypomineralization. Scanning electron microscopy analysis showed that the enamel surface was rough with chipping and the enamel lacked a typical prismatic architecture. These results demonstrate that Bmp2 is essential for enamel formation.
Collapse
Affiliation(s)
- Junsheng Feng
- The University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kruithof BPT, Fritz DT, Liu Y, Garsetti DE, Frank DB, Pregizer SK, Gaussin V, Mortlock DP, Rogers MB. An autonomous BMP2 regulatory element in mesenchymal cells. J Cell Biochem 2011; 112:666-74. [PMID: 21268088 DOI: 10.1002/jcb.22975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3'untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3'UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3'UTR functions independently of promoter, coding region, and 3'UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry (UMDNJ)-New Jersey Medical School (NJMS), Newark, New Jersey 07101-1709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stottmann RW, Klingensmith J. Bone morphogenetic protein signaling is required in the dorsal neural folds before neurulation for the induction of spinal neural crest cells and dorsal neurons. Dev Dyn 2011; 240:755-65. [PMID: 21394823 DOI: 10.1002/dvdy.22579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/06/2022] Open
Abstract
Bone Morphogenetic Protein (BMP) activity has been implicated as a key regulator of multiple aspects of dorsal neural tube development. BMP signaling in the dorsal-most neuroepithelial cells presumably plays a critical role. We use tissue-specific gene ablation to probe the roles of BMPR1A, the type 1 BMP receptor that is seemingly the best candidate to mediate the activities of BMPs on early dorsal neural development. We use two different Cre lines expressed in the dorsal neural folds, one prior to spinal neurulation and one shortly afterward, together with a Bmpr1a conditional null mutation. Our findings indicate that BMPR1A signaling in the dorsal neural folds is important for hindbrain neural tube closure, but suggest it is dispensable for spinal neurulation. Our results also demonstrate a requirement for BMP signaling in patterning of dorsal neural tube cell fate and in neural crest cell formation, and imply a critical period shortly before neural tube closure.
Collapse
Affiliation(s)
- Rolf W Stottmann
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
24
|
Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. ACTA ACUST UNITED AC 2010; 88:653-69. [PMID: 20740593 DOI: 10.1002/bdra.20676] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in relation to the previously reviewed mutants to obtain new insights into mechanisms of NTD etiology. In addition to null mutations, some are hypomorphs or conditional mutants. Some mutations do not cause NTDs on their own, but do so in digenic, trigenic, and oligogenic combinations, an etiology that likely parallels the nature of genetic etiology of human NTDs. Mutants that have only exencephaly are fourfold more frequent than those that have spina bifida aperta with or without exencephaly. Many diverse cellular functions and biochemical pathways are involved; the NTD mutants draw new attention to chromatin modification (epigenetics), the protease-activated receptor cascade, and the ciliopathies. Few mutants directly involve folate metabolism. Prevention of NTDs by maternal folate supplementation has been tested in 13 mutants and reduces NTD frequency in six diverse mutants. Inositol reduces spina bifida aperta frequency in the curly tail mutant, and three new mutants involve inositol metabolism. The many NTD mutants are the foundation for a future complete genetic understanding of the processes of neural fold elevation and fusion along mechanistically distinct cranial-caudal segments of the neural tube, and they point to several candidate processes for study in human NTD etiology.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
25
|
Nordstrand LM, Svärd J, Larsen E, Nilsen A, Ougland R, Furu K, Lien GF, Rognes T, Namekawa SH, Lee JT, Klungland A. Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects. PLoS One 2010; 5:e13827. [PMID: 21072209 PMCID: PMC2972218 DOI: 10.1371/journal.pone.0013827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/14/2010] [Indexed: 11/26/2022] Open
Abstract
Background Eschericia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases. Methods and Findings In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1−/− and heterozygous Alkbh1+/− offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5–10% of the tubules in Alkbh1−/− adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations. Conclusions Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice.
Collapse
Affiliation(s)
- Line M. Nordstrand
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jessica Svärd
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anja Nilsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rune Ougland
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kari Furu
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Guro F. Lien
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Satoshi H. Namekawa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Arne Klungland
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
26
|
Uchimura T, Komatsu Y, Tanaka M, McCann KL, Mishina Y. Bmp2 and Bmp4 genetically interact to support multiple aspects of mouse development including functional heart development. Genesis 2009; 47:374-84. [PMID: 19391114 DOI: 10.1002/dvg.20511] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone morphogenetic proteins (BMPs) have multiple roles during embryogenesis. Current data indicate that the dosage of BMPs is tightly regulated for normal development in mice. Since Bmp2 or Bmp4 homozygous mutant mice show early embryonic lethality, we generated compound heterozygous mice for Bmp2 and Bmp4 to explore the impact of lowered dosage of these BMP ligands. Genotyping pups bred between Bmp2 and Bmp4 heterozygous mice revealed that the ratio of adult compound heterozygous mice for Bmp2 and Bmp4 is much lower than expected. During embryogenesis, the compound heterozygous embryos showed several abnormalities, including defects in eye formation, body wall closure defects, and ventricular septal defects (VSD) in the heart. However, the ratio of the compound heterozygous embryos was the same as expected. Caesarean sections at E18.5 revealed that half of the compound heterozygotes died soon after birth, and the majority of the dead individuals exhibited VSD. Survivors were able to grow to adults, but their body weight was significantly lower than control littermates. They demonstrated progressive abnormalities in the heart, eventually showing a branched leaflet in atrioventricular valves. These results suggest that the dosage of both BMP2 and 4 is critical for functional heart formation during embryogenesis and after birth.
Collapse
Affiliation(s)
- Takashi Uchimura
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|