1
|
Wakabayashi Y, Shimono A, Terauchi Y, Zeng C, Hamada M, Semba K, Watanabe S, Ishikawa K. Identification of a novel RNA transcript TISPL upregulated by stressors that stimulate ATF4. Gene 2024; 917:148464. [PMID: 38615981 DOI: 10.1016/j.gene.2024.148464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Cells sense, respond, and adapt to environmental conditions that cause stress. In a previous study using HeLa cells, we isolated reporter cells responding to the endoplasmic reticulum (ER) stress inducers, thapsigargin and tunicamycin, using a highly sensitive promoter trap vector system. Splinkerette PCR and 5' rapid amplification of cDNA ends (5' RACE) identified a novel transcript that is upregulated by ER stress. Its endogenous expression increased approximately 10-fold in response to thapsigargin and tunicamycin within 1 h, but was down-regulated after 4 h. Because the transcript starts from an intron of a long noncoding RNA known as LINC-PINT, we designated the newly identified transcript TISPL (transcript induced by stressors from LINC-PINTlocus). TISPL was also expressed under several other stress conditions. It was particularly increased > 10-fold upon glucose starvation and 7-fold by arsenite exposure. Furthermore, in silico analyses, including a ChIP-atlas search, revealed that there is an ATF4-binding region with a c/ebp-Atf response element (CARE) downstream of the transcription start site of TISPL. Based on these results, we hypothesized that TISPL may be induced by the phospho-eIF2α and ATF4- axis of the integrated stress response pathway, which is known to be activated by the stress conditions listed above. As expected, knockout of ATF4 abolished the stress-induced upregulation of TISPL. Our results indicate that TISPL may be a useful biomarker for detecting stress conditions that activate ATF4. Our highly sensitive trap vector system proved beneficial in discovering new biomarkers.
Collapse
Affiliation(s)
- Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Aika Shimono
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuki Terauchi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Chao Zeng
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-4-32 Aomi, Koto-ku, Tokyo 135-8073, Japan.
| |
Collapse
|
2
|
Kasahara Y, Tamamura S, Hiyama G, Takagi M, Nakamichi K, Doi Y, Semba K, Watanabe S, Ishikawa K. Tyrosine Kinase Inhibitor Profiling Using Multiple Forskolin-Responsive Reporter Cells. Int J Mol Sci 2023; 24:13863. [PMID: 37762164 PMCID: PMC10530646 DOI: 10.3390/ijms241813863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents.
Collapse
Affiliation(s)
- Yamato Kasahara
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Sakura Tamamura
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan;
| | - Gen Hiyama
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Motoki Takagi
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Yuta Doi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; (Y.K.); (K.N.); (Y.D.); (K.S.)
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (G.H.); (M.T.); (S.W.)
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan;
| |
Collapse
|
3
|
Kemmler CL, Moran HR, Murray BF, Scoresby A, Klem JR, Eckert RL, Lepovsky E, Bertho S, Nieuwenhuize S, Burger S, D'Agati G, Betz C, Puller AC, Felker A, Ditrychova K, Bötschi S, Affolter M, Rohner N, Lovely CB, Kwan KM, Burger A, Mosimann C. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023; 150:dev201531. [PMID: 36975217 PMCID: PMC10263156 DOI: 10.1242/dev.201531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hannah R. Moran
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Brooke F. Murray
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John R. Klem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rachel L. Eckert
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth Lepovsky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Gianluca D'Agati
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Charles Betz
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Ann-Christin Puller
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Ditrychova
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Seraina Bötschi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ben Lovely
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Iacopino S, Licausi F, Giuntoli B. Exploiting the Gal4/UAS System as Plant Orthogonal Molecular Toolbox to Control Reporter Expression in Arabidopsis Protoplasts. Methods Mol Biol 2022; 2379:99-111. [PMID: 35188658 DOI: 10.1007/978-1-0716-1791-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ability of protein domains to fold independently from the rest of the polypeptide is the principle governing the generation of fusion proteins with customized functions. A clear example is the split transcription factor system based on the yeast GAL4 protein and its cognate UAS enhancer. The rare occurrence of the UAS element in the transcriptionally sensitive regions of the Arabidopsis genome makes this transcription factor an ideal orthogonal platform to control reporter induction. Moreover, heterodimeric transcriptional complexes can be generated by exploiting posttranslational modifications hampering or promoting the interaction between GAL4-fused transcriptional partners, whenever this leads to the reconstitution of a fully functional GAL4 factor.The assembly of multiple engineered proteins into a synthetic transcriptional complex requires preliminary testing, before its components can be stably introduced into the plant genome. Mesophyll protoplast transformation represents a fast and reliable technique to test and optimize synthetic regulatory modules. Remarkable properties are the possibility to transform different combinations of plasmids (co-transformation) and the physiological resemblance of these isolated cells with the original tissue.Here we describe an extensive protocol to produce and exploit Arabidopsis mesophyll protoplasts to investigate the transcriptional output of GAL4/UAS-based complexes that are sensitive to posttranslational protein modifications.
Collapse
Affiliation(s)
| | - Francesco Licausi
- University of Pisa, Pisa, Italy
- Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Beatrice Giuntoli
- University of Pisa, Pisa, Italy.
- Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
5
|
Establishment of reporter cells that respond to glucocorticoids by a transposon-mediated promoter-trapping system. Eur J Pharm Sci 2021; 162:105819. [PMID: 33775826 DOI: 10.1016/j.ejps.2021.105819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
Previously, we had established a highly sensitive trap vector system for the efficient isolation of reporter cells for a certain condition of interest. In this study, we used this system to screen reporter cells that express the luciferase and enhanced green fluorescent protein genes in response to dexamethasone, a glucocorticoid receptor agonist to facilitate glucocorticoid signaling research. In total, 10 clones were isolated. The insertion sites of the trap vector were analyzed using 5' rapid amplification of cDNA ends (5' RACE), whereupon LPIN1, PKP2, and FKBP5 were identified as genes that were upregulated by the dexamethasone treatment. Specifically, PKP2 has not previously been focused as a gene that responds to glucocorticoids. The PKP2 mRNA was analyzed and induction of the endogenous gene was confirmed by real-time polymerase chain reaction. Given that PKP2 does not appear to have a consensus glucocorticoid response element (GRE) sequence, this reporter clone could supplement the current GRE-based reporter systems that are prevalently used. Because different clones showed different responses to glucocorticoids, these clones should provide more information than analysis with a single reporter clone. This paper demonstrates that the previously developed trap vector technology can contribute to the rapid construction of drug evaluation systems.
Collapse
|
6
|
Barbereau C, Yehya A, Silhol M, Cubedo N, Verdier JM, Maurice T, Rossel M. Neuroprotective brain-derived neurotrophic factor signaling in the TAU-P301L tauopathy zebrafish model. Pharmacol Res 2020; 158:104865. [PMID: 32417505 DOI: 10.1016/j.phrs.2020.104865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) dysregulations contribute to the neurotoxicity in neurodegenerative pathologies and could be efficiently targeted by therapies. In Alzheimer's disease (AD), although the relationship between BDNF and amyloid load has been extensively studied, how Tau pathology affects BDNF signaling remains unclear. Using the TAU-P301L transgenic zebrafish line, we investigated how early Tau-induced neurotoxicity modifies BDNF signaling. Alterations in BDNF expression levels were observed as early as 48 h post fertilization in TAU-P301L zebrafish embryos while TrkB receptor expression was not affected. Decreasing BDNF expression, using a knockdown strategy in wild-type embryos to mimic Tau-associated decrease, did not modify TrkB expression but promoted neurotoxicity as demonstrated by axonal outgrowth shortening and neuronal cell death. Moreover, the TrkB antagonist ANA-12 reduced the length of axonal projections. Rescue experiments with exogenous BDNF partially corrected neuronal alterations in TAU-P301L by counteracting primary axonal growth impairment but without effect on apoptosis. Importantly, the axonal rescue was proved functionally effective in a behavioral test, at a similar level as obtained with the GSK3β inhibitor LiCl, known to decrease TAU phosphorylation. Finally, treatment with a TrkB agonist, 7,8-dihydroxyflavone, led to comparable results and allowed full rescue of locomotor response. We provided here strong evidence that Tau neurotoxicity provoked alterations in BDNF system and that BDNF pathway might represent an efficient therapeutic target.
Collapse
Affiliation(s)
- Clément Barbereau
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Alaa Yehya
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Michelle Silhol
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Nicolas Cubedo
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France
| | - Mireille Rossel
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, PSL Research University, Montpellier, France.
| |
Collapse
|
7
|
Chan S, Shen D, Sang Y, Wang S, Wang Y, Chen C, Gao B, Song C. Development of enhancer-trapping and -detection vectors mediated by the Tol2 transposon in zebrafish. PeerJ 2019; 7:e6862. [PMID: 31106068 PMCID: PMC6499061 DOI: 10.7717/peerj.6862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Enhancers are key transcriptional drivers of gene expression. The identification of enhancers in the genome is central for understanding gene-expression programs. Although transposon-mediated enhancer trapping (ET) is a powerful approach to the identification of enhancers in zebrafish, its efficiency varies considerably. To improve the ET efficiency, we constructed Tol2-mediated ET vectors with a reporter gene (mCherry) expression box driven by four minimal promoters (Gata, Myc, Krt4 and Oct4), respectively. The ET efficiency and expression background were compared among the four promoters by zebrafish embryo injection at the one-cell stage. The results showed that the Gata minimal promoter yielded the lowest basic expression and the second-highest trapping efficiency (44.6% at 12 hpf (hour post-fertilization) and 23.1% at 72 hpf, n = 305 and n = 307). The Krt4 promoter had the highest trapping efficiency (64% at 12 hpf and 67.1% at 72 hpf, n = 302 and n = 301) and the strongest basic expression. To detect enhancer activity, chicken 5′HS4 double insulators were cloned into the two ET vectors with the Gata or Krt4 minimal promoter, flanking the mCherry expression box. The resulting detection vectors were injected into zebrafish embryos. mCherry expression driven by the Gata promoter (about 5%, n = 301) was decreased significantly compared with that observed for embryos injected with the ET vectors (23% at 72 hpf, n = 308). These results suggest that the insulators block the genome-position effects and that this vector is fit for enhancer-activity evaluation. To assess the compatibility between the enhancers and the minimal promoters, four enhancers (CNS1, Z48, Hand2 and Hs769) were cloned upstream of the Gata or Beta-globin minimal promoter in the enhancer-activity-detection vectors. The resulting recombinant vectors were assayed by zebrafish embryo injection. We found that Z48 and CNS1 responded to the Gata minimal promoter, and that Hand2 only responded to the Beta-globin minimal promoter. In contrast, Hs769 did not respond to either the Gata or Beta-globin minimal promoters. These results suggest the existence of compatibility between enhancers and minimal promoters. This study represents a systematic approach to the discovery of optional ET and enhancer-detection vectors. We are eager to provide a superior tool for understanding functional genomics.
Collapse
Affiliation(s)
- Shuheng Chan
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Dan Shen
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Yatong Sang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Saisai Wang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Yali Wang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Cai Chen
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Bo Gao
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Chengyi Song
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Zhang Y, Ouyang J, Qie J, Zhang G, Liu L, Yang P. Optimization of the Gal4/UAS transgenic tools in zebrafish. Appl Microbiol Biotechnol 2019; 103:1789-1799. [PMID: 30613898 DOI: 10.1007/s00253-018-09591-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
The Gal4/UAS system provides a powerful tool to analyze the function of genes. The system has been employed extensively in zebrafish; however, cytotoxicity of Gal4 and methylation of UAS can hinder future applications of Gal4/UAS in zebrafish. In this study, we provide quantitative data on the cytotoxicity of Gal4-FF and KalTA4 in zebrafish embryos. A better balance between induction efficiency and toxicity was shown when the injection dosage was 20 pg for Gal4-FF and 30 pg for KalTA4. We tested the DNA methylation of UAS in different copies (3×, 5×, 7×, 9×, 11×, and 14×), and the results showed, for the first time, that the degree of UAS methylation increases with the increase in the copy number of UAS. We detected insertions of the Tol2-mediated transgene in the Gal4 line and found as many as three sites of insertion, on average; only about 20% of individuals contained single-site insertion in F1 generation. We suggested that the screening of Gal4 lines with single-site insertion is essential when Tol2-mediated Gal4 transgenic lines are created. Moreover, we designed a novel 5 × non-repetitive UAS (5 × nrUAS) to reduce the appeal of multicopy UAS as a target for methylation. Excitingly, the 5 × nrUAS is less prone to methylation compared to 5 × UAS. We hope the results will facilitate the future application of the Gal4/UAS system in zebrafish research.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China.
| | - Jiawei Ouyang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Jingrong Qie
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Gongyuan Zhang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Liangguo Liu
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Pinhong Yang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| |
Collapse
|
9
|
Ishikawa K, Kobayashi Y, Wakabayashi Y, Watanabe S, Semba K. A highly sensitive trap vector system for isolating reporter cells and identification of responsive genes. Biol Methods Protoc 2018; 3:bpy003. [PMID: 32161797 PMCID: PMC6994077 DOI: 10.1093/biomethods/bpy003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/18/2018] [Indexed: 01/03/2023] Open
Abstract
We devised a versatile vector system for efficient isolation of reporter cells responding to a certain condition of interest. This system combines nontoxic GAL4-UAS and piggyBac transposon systems, allowing application to mammalian cells and improved expression of a fluorescent reporter protein for cell sorting. Case studies under conditions of c-MYC gene induction or endoplasmic reticulum (ER) stress with thapsigargin on mouse or human cell lines confirmed easy and efficient isolation of responsive reporter cells. Sequence analyses of the integrated loci of the thapsigargin-responsive clones identified responsive genes including BiP and OSBPL9. OSBPL9 is a novel ER stress-responsive gene and we confirmed that endogenous mRNA expression of OSBPL9 is upregulated by thapsigargin, and is repressed by IRE1α inhibitors, 4μ8C and toyocamycin, but not significantly by a PERK inhibitor, GSK2656157. These results demonstrate that this approach can be used to discover novel genes regulated by any stimuli without the need for microarray analysis, and that it can concomitantly produce reporter cells without identification of stimuli-responsive promoter/enhancer elements. Therefore, this system has a variety of benefits for basic and clinical research.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Yuta Kobayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
10
|
Okamoto Y, Nishimura N, Matsuda K, Ranawakage DC, Kamachi Y, Kondoh H, Uchikawa M. Cooperation of Sall4 and Sox8 transcription factors in the regulation of the chicken Sox3
gene during otic placode development. Dev Growth Differ 2018. [DOI: 10.1111/dgd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Okamoto
- Graduate School of Frontier Biosciences; Osaka University; Osaka Japan
| | - Naoko Nishimura
- Graduate School of Frontier Biosciences; Osaka University; Osaka Japan
| | - Kazunari Matsuda
- Graduate School of Frontier Biosciences; Osaka University; Osaka Japan
| | - Deshani C. Ranawakage
- School of Environmental Science and Engineering; Kochi University of Technology; Kochi Japan
| | - Yusuke Kamachi
- School of Environmental Science and Engineering; Kochi University of Technology; Kochi Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences; Osaka University; Osaka Japan
- Faculty of Life Sciences; Kyoto Sangyo University; Kyoto Japan
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences; Osaka University; Osaka Japan
| |
Collapse
|
11
|
Pathak GP, Spiltoir JI, Höglund C, Polstein LR, Heine-Koskinen S, Gersbach CA, Rossi J, Tucker CL. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res 2017; 45:e167. [PMID: 28431041 PMCID: PMC5714224 DOI: 10.1093/nar/gkx260] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/17/2017] [Indexed: 11/13/2022] Open
Abstract
Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. In previous work, we used cryptochrome 2 (CRY2) and CIB1, Arabidopsis proteins that interact upon light illumination, to regulate transcription with light in yeast. While adopting this approach to regulate transcription in mammalian cells, we observed light-dependent redistribution and clearing of CRY2-tethered proteins within the nucleus. The nuclear clearing phenotype was dependent on the presence of a dimerization domain contained within the CRY2-fused transcriptional activators. We used this knowledge to develop two different approaches to regulate cellular protein levels with light: a system using CRY2 and CIB1 to induce protein expression with light through stimulation of transcription, and a system using CRY2 and a LOV-fused degron to simultaneously block transcription and deplete protein levels with light. These tools will allow precise, bi-directional control of gene expression in a variety of cells and model systems.
Collapse
Affiliation(s)
- Gopal P Pathak
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica I Spiltoir
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Camilla Höglund
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sari Heine-Koskinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jari Rossi
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Fehrenbacher N, Tojal da Silva I, Ramirez C, Zhou Y, Cho KJ, Kuchay S, Shi J, Thomas S, Pagano M, Hancock JF, Bar-Sagi D, Philips MR. The G protein-coupled receptor GPR31 promotes membrane association of KRAS. J Cell Biol 2017; 216:2329-2338. [PMID: 28619714 PMCID: PMC5551702 DOI: 10.1083/jcb.201609096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022] Open
Abstract
Mutant KRAS drives oncogenesis when associated with the plasma membrane. Fehrenbacher et al. identify GPR31, a G protein–coupled receptor, as a secretory pathway chaperone that guides the KRAS protein to the plasma membrane. The product of the KRAS oncogene, KRAS4B, promotes tumor growth when associated with the plasma membrane (PM). PM association is mediated, in part, by farnesylation of KRAS4B, but trafficking of nascent KRAS4B to the PM is incompletely understood. We performed a genome-wide screen to identify genes required for KRAS4B membrane association and identified a G protein–coupled receptor, GPR31. GPR31 associated with KRAS4B on cellular membranes in a farnesylation-dependent fashion, and retention of GPR31 on the endoplasmic reticulum inhibited delivery of KRAS4B to the PM. Silencing of GPR31 expression partially mislocalized KRAS4B, slowed the growth of KRAS-dependent tumor cells, and blocked KRAS-stimulated macropinocytosis. Our data suggest that GPR31 acts as a secretory pathway chaperone for KRAS4B.
Collapse
Affiliation(s)
- Nicole Fehrenbacher
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | | | - Craig Ramirez
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX
| | - Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX
| | - Shafi Kuchay
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY.,Howard Hughes Medical Institute, New York, NY
| | - Jie Shi
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Susan Thomas
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Michele Pagano
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY.,Howard Hughes Medical Institute, New York, NY
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, TX
| | - Dafna Bar-Sagi
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Mark R Philips
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
13
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
14
|
Otsuna H, Hutcheson DA, Duncan RN, McPherson AD, Scoresby AN, Gaynes BF, Tong Z, Fujimoto E, Kwan KM, Chien CB, Dorsky RI. High-resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancer-trap lines. Dev Dyn 2015; 244:785-96. [PMID: 25694140 PMCID: PMC4449297 DOI: 10.1002/dvdy.24260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The application of the Gal4/UAS system to enhancer and gene trapping screens in zebrafish has greatly increased the ability to label and manipulate cell populations in multiple tissues, including the central nervous system (CNS). However the ability to select existing lines for specific applications has been limited by the lack of detailed expression analysis. RESULTS We describe a Gal4 enhancer trap screen in which we used advanced image analysis, including three-dimensional confocal reconstructions and documentation of expression patterns at multiple developmental time points. In all, we have created and annotated 98 lines exhibiting a wide range of expression patterns, most of which include CNS expression. Expression was also observed in nonneural tissues such as muscle, skin epithelium, vasculature, and neural crest derivatives. All lines and data are publicly available from the Zebrafish International Research Center (ZIRC) from the Zebrafish Model Organism Database (ZFIN). CONCLUSIONS Our detailed documentation of expression patterns, combined with the public availability of images and fish lines, provides a valuable resource for researchers wishing to study CNS development and function in zebrafish. Our data also suggest that many existing enhancer trap lines may have previously uncharacterized expression in multiple tissues and cell types.
Collapse
Affiliation(s)
- Hideo Otsuna
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Robert N Duncan
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Adam D McPherson
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Aaron N Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Brooke F Gaynes
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Zongzong Tong
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Esther Fujimoto
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Horstick EJ, Jordan DC, Bergeron SA, Tabor KM, Serpe M, Feldman B, Burgess HA. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Res 2015; 43:e48. [PMID: 25628360 PMCID: PMC4402511 DOI: 10.1093/nar/gkv035] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 12/18/2022] Open
Abstract
Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3′ untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.
Collapse
Affiliation(s)
- Eric J Horstick
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Diana C Jordan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kathryn M Tabor
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Suzuki S, Murotomi K, Nakajima Y, Kawai K, Ohta KI, Warita K, Miki T, Takeuchi Y. Development of an artificial calcium-dependent transcription factor to detect sustained intracellular calcium elevation. ACS Synth Biol 2014; 3:717-22. [PMID: 25188040 DOI: 10.1021/sb500070c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of a synthetic transcription factor that responds to intracellular calcium signals enables analyzing cellular events at the single-cell level or "rewiring" the intracellular information networks. In this study, we developed the calcium-dependent transcription factor (CaTF), which was cleaved by calpain and then translocated to the nuclei where it induced reporter expression. Our results demonstrated that CaTF-mediated reporter expression was stable and responded to the intracellular calcium level and calpain activity. In addition, CaTF detected the sustained calcium increase that was induced by physiological stimulation with epidermal growth factor (EGF). These results suggest that CaTF could be a useful tool to analyze intracellular calcium signals and be an interface between an endogenous signal network and synthetic gene network.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department
of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Kazutoshi Murotomi
- Health
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Yoshihiro Nakajima
- Health
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Katsuhisa Kawai
- Department
of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Ken-ichi Ohta
- Department
of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Katsuhiko Warita
- Department
of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Takanori Miki
- Department
of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Yoshiki Takeuchi
- Department
of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| |
Collapse
|
17
|
Takeuchi M, Matsuda K, Yamaguchi S, Asakawa K, Miyasaka N, Lal P, Yoshihara Y, Koga A, Kawakami K, Shimizu T, Hibi M. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry. Dev Biol 2014; 397:1-17. [PMID: 25300581 DOI: 10.1016/j.ydbio.2014.09.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/26/2014] [Indexed: 02/02/2023]
Abstract
The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.
Collapse
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shingo Yamaguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Pradeep Lal
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama 464-8506, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
18
|
Weber T, Köster R. Genetic tools for multicolor imaging in zebrafish larvae. Methods 2013; 62:279-91. [DOI: 10.1016/j.ymeth.2013.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/08/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023] Open
|
19
|
Gerety SS, Breau MA, Sasai N, Xu Q, Briscoe J, Wilkinson DG. An inducible transgene expression system for zebrafish and chick. Development 2013; 140:2235-43. [PMID: 23633515 DOI: 10.1242/dev.091520] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have generated an inducible system to control the timing of transgene expression in zebrafish and chick. An estrogen receptor variant (ERT2) fused to the GAL4 transcriptional activator rapidly and robustly activates transcription within 3 hours of treatment with the drug 4-hydroxy-tamoxifen (4-OHT) in tissue culture and transgenic zebrafish. We have generated a broadly expressed inducible ERT2-GAL4 zebrafish line using the ubiquitin (ubi) enhancer. In addition, use of ERT2-GAL4 in conjunction with tissue-specific enhancers enables the control of transgene expression in both space and time. This spatial restriction and the ability to sustain forced expression are important advantages over the currently used heat-shock promoters. Moreover, in contrast to currently available TET and LexA systems, which require separate constructs with their own unique recognition sequences, ERT2-GAL4 is compatible with the growing stock of UAS lines being generated in the community. We also applied the same inducible system to the chick embryo and find that it is fully functional, suggesting that this strategy is generally applicable.
Collapse
Affiliation(s)
- Sebastian S Gerety
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Subedi A, Macurak M, Gee ST, Monge E, Goll MG, Potter CJ, Parsons MJ, Halpern ME. Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 2013; 66:433-40. [PMID: 23792917 DOI: 10.1016/j.ymeth.2013.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/04/2013] [Accepted: 06/13/2013] [Indexed: 12/12/2022] Open
Abstract
The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.
Collapse
Affiliation(s)
- Abhignya Subedi
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Macurak
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Stephen T Gee
- Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
| | - Estela Monge
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Mary G Goll
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
| | - Michael J Parsons
- Department of Surgery, Johns Hopkins Medical Institute, Baltimore, MD, 21205, USA
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Asakawa K, Abe G, Kawakami K. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 2013; 7:100. [PMID: 23754985 PMCID: PMC3664770 DOI: 10.3389/fncir.2013.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Developmental Genetics, Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
22
|
Trinh LA, Fraser SE. Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Dev Growth Differ 2013; 55:434-45. [DOI: 10.1111/dgd.12055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Le A. Trinh
- Division of Biology; California Institute of Technology; Beckman Institute (139-74); 1200 E. California Blvd; Pasadena; California; 91125; USA
| | - Scott E. Fraser
- Division of Biology; California Institute of Technology; Beckman Institute (139-74); 1200 E. California Blvd; Pasadena; California; 91125; USA
| |
Collapse
|
23
|
Hocking JC, Distel M, Köster RW. Studying cellular and subcellular dynamics in the developing zebrafish nervous system. Exp Neurol 2013; 242:1-10. [DOI: 10.1016/j.expneurol.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 11/22/2011] [Accepted: 03/15/2012] [Indexed: 12/23/2022]
|
24
|
Levesque MP, Krauss J, Koehler C, Boden C, Harris MP. New tools for the identification of developmentally regulated enhancer regions in embryonic and adult zebrafish. Zebrafish 2013; 10:21-9. [PMID: 23461416 DOI: 10.1089/zeb.2012.0775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have conducted a screen to identify developmentally regulated enhancers that drive tissue-specific Gal4 expression in zebrafish. We obtained 63 stable transgenic lines with expression patterns in embryonic or adult zebrafish. The use of a newly identified minimal promoter from the medaka edar locus resulted in a relatively unbiased set of expression patterns representing many tissue types derived from all germ layers. Subsequent detailed characterization of selected lines showed strong and reproducible Gal4-driven GFP expression in diverse tissues, including neurons from the central and peripheral nervous systems, pigment cells, erythrocytes, and peridermal cells. By screening adults for GFP expression, we also isolated lines expressed in tissues of the adult zebrafish, including scales, fin rays, and joints. The new and efficient minimal promoter and large number of transactivating driver-lines we identified will provide the zebrafish community with a useful resource for further enhancer trap screening, as well as precise investigation of tissue-specific processes in vivo.
Collapse
Affiliation(s)
- Mitchell P Levesque
- Department of Genetics, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany .
| | | | | | | | | |
Collapse
|
25
|
Xie X, Mathias JR, Smith MA, Walker SL, Teng Y, Distel M, Köster RW, Sirotkin HI, Saxena MT, Mumm JS. Silencer-delimited transgenesis: NRSE/RE1 sequences promote neural-specific transgene expression in a NRSF/REST-dependent manner. BMC Biol 2012. [PMID: 23198762 PMCID: PMC3529185 DOI: 10.1186/1741-7007-10-93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have investigated a simple strategy for enhancing transgene expression specificity by leveraging genetic silencer elements. The approach serves to restrict transgene expression to a tissue of interest - the nervous system in the example provided here - thereby promoting specific/exclusive targeting of discrete cellular subtypes. Recent innovations are bringing us closer to understanding how the brain is organized, how neural circuits function, and how neurons can be regenerated. Fluorescent proteins enable mapping of the 'connectome', optogenetic tools allow excitable cells to be short-circuited or hyperactivated, and targeted ablation of neuronal subtypes facilitates investigations of circuit function and neuronal regeneration. Optimally, such toolsets need to be expressed solely within the cell types of interest as off-site expression makes establishing causal relationships difficult. To address this, we have exploited a gene 'silencing' system that promotes neuronal specificity by repressing expression in non-neural tissues. This methodology solves non-specific background issues that plague large-scale enhancer trap efforts and may provide a means of leveraging promoters/enhancers that otherwise express too broadly to be of value for in vivo manipulations. RESULTS We show that a conserved neuron-restrictive silencer element (NRSE) can function to restrict transgene expression to the nervous system. The neuron-restrictive silencing factor/repressor element 1 silencing transcription factor (NRSF/REST) transcriptional repressor binds NRSE/repressor element 1 (RE1) sites and silences gene expression in non-neuronal cells. Inserting NRSE sites into transgenes strongly biased expression to neural tissues. NRSE sequences were effective in restricting expression of bipartite Gal4-based 'driver' transgenes within the context of an enhancer trap and when associated with a defined promoter and enhancer. However, NRSE sequences did not serve to restrict expression of an upstream activating sequence (UAS)-based reporter/effector transgene when associated solely with the UAS element. Morpholino knockdown assays showed that NRSF/REST expression is required for NRSE-based transgene silencing. CONCLUSIONS Our findings demonstrate that the addition of NRSE sequences to transgenes can provide useful new tools for functional studies of the nervous system. However, the general approach may be more broadly applicable; tissue-specific silencer elements are operable in tissues other than the nervous system, suggesting this approach can be similarly applied to other paradigms. Thus, creating synthetic associations between endogenous regulatory elements and tissue-specific silencers may facilitate targeting of cellular subtypes for which defined promoters/enhancers are lacking.
Collapse
Affiliation(s)
- Xiayang Xie
- Department of Cellular Biology and Anatomy, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lynd A, Lycett GJ. Development of the bi-partite Gal4-UAS system in the African malaria mosquito, Anopheles gambiae. PLoS One 2012; 7:e31552. [PMID: 22348104 PMCID: PMC3278442 DOI: 10.1371/journal.pone.0031552] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Functional genetic analysis in Anopheles gambiae would be greatly improved by the development of a binary expression system, which would allow the more rapid and flexible characterisation of genes influencing disease transmission, including those involved in insecticide resistance, parasite interaction, host and mate seeking behaviour. The Gal4-UAS system, widely used in Drosophila melanogaster functional genetics, has been significantly modified to achieve robust application in several different species. Towards this end, previous work generated a series of modified Gal4 constructs that were up to 20 fold more active than the native gene in An. gambiae cells. To examine the Gal4-UAS system in vivo, transgenic An. gambiae driver lines carrying a modified Gal4 gene under the control of the carboxypeptidase promoter, and responder lines carrying UAS regulated luciferase and eYFP reporter genes have been created. Crossing of the Gal4 and UAS lines resulted in progeny that expressed both reporters in the expected midgut specific pattern. Although there was minor variation in reporter gene activity between the different crosses examined, the tissue specific expression pattern was consistent regardless of the genomic location of the transgene cassettes. The results show that the modified Gal4-UAS system can be used to successfully activate expression of transgenes in a robust and tissue specific manner in Anopheles gambiae. The midgut driver and dual reporter responder constructs are the first to be developed and tested successfully in transgenic An. gambiae and provide the basis for further advancement of the system in this and other insect species.
Collapse
Affiliation(s)
- Amy Lynd
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gareth John Lycett
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Del Bene F, Wyart C. Optogenetics: A new enlightenment age for zebrafish neurobiology. Dev Neurobiol 2012; 72:404-14. [DOI: 10.1002/dneu.20914] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Kobayashi I, Tsukioka H, Kômoto N, Uchino K, Sezutsu H, Tamura T, Kusakabe T, Tomita S. SID-1 protein of Caenorhabditis elegans mediates uptake of dsRNA into Bombyx cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:148-154. [PMID: 22178129 DOI: 10.1016/j.ibmb.2011.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 05/28/2023]
Abstract
RNA interference is one of the most revolutionary tools in the study of gene function, particularly in non-model systems. However, in Bombyx mori, as with many lepidopteran species, attempts at systemic RNAi have had mixed success. Gene identification and phylogenetic analyses suggest that Bombyx has the core RNAi machinery, which is necessary to undergo RNAi as a cellular response. We introduced sid genes from Caenorhabditis elegans into Bombyx BmN4 cells to enhance the uptake of dsRNA and revealed that the SID-1 protein, but not SID-2, has the ability to endow the RNAi effect with the addition of dsRNA to the medium. Observed RNAi effect was dependent on both the levels of sid-1 expression and the concentration of the dsRNA. These results suggest that SID-1 promotes the uptake of dsRNA from the medium into Bombyx cells. We generated transgenic animals that express sid-1 but have not detected significant enhancements of in vivo phenotype in response to the injection of the dsRNA into hemocoel.
Collapse
Affiliation(s)
- Isao Kobayashi
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gupta P, Zhao XF, Prat CR, Narawane S, Suh CS, Gharbi N, Ellingsen S, Fjose A. Zebrafish transgenic lines co-expressing a hybrid Gal4 activator and eGFP in tissue-restricted patterns. Gene Expr Patterns 2011; 11:517-24. [DOI: 10.1016/j.gep.2011.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/31/2011] [Accepted: 09/03/2011] [Indexed: 11/25/2022]
|
30
|
Fujimoto E, Gaynes B, Brimley CJ, Chien CB, Bonkowsky JL. Gal80 intersectional regulation of cell-type specific expression in vertebrates. Dev Dyn 2011; 240:2324-34. [PMID: 21905164 DOI: 10.1002/dvdy.22734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2011] [Indexed: 11/09/2022] Open
Abstract
Characterization and functional manipulation of specific groups of neurons in the vertebrate central nervous system (CNS) remains a major hurdle for understanding complex circuitry and functions. In zebrafish, the Gal4/UAS system has permitted expression of transgenes and enhancer trap screens, but is often limited by broad expression domains. We have developed a method for cell-type specific expression using Gal80 inhibition of Gal4-dependent expression. We show that native Gal4 is able to drive strong expression, that Gal80 can inhibit this expression, and that overlapping Gal4 and Gal80 expression can achieve "intersectional" expression in spatially and genetically defined subsets of neurons. We also optimize Gal80 for expression in vertebrates, track Gal80 expression with a co-expressed fluorescent marker, and use a temperature-sensitive allele of Gal80 to temporally regulate its function. These data demonstrate that Gal80 is a powerful addition to the genetic techniques available to map and manipulate neural circuits in zebrafish.
Collapse
Affiliation(s)
- Esther Fujimoto
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
31
|
Wyart C, Del Bene F. Let there be light: zebrafish neurobiology and the optogenetic revolution. Rev Neurosci 2011; 22:121-30. [PMID: 21615266 DOI: 10.1515/rns.2011.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Optogenetics has revolutionized the toolbox arsenal that neuroscientists now possess to investigate neuronal circuit function in intact and living animals. With a combination of light emitting 'sensors' and light activated 'actuators', we can monitor and control neuronal activity with minimal perturbation and unprecedented spatiotemporal resolution. Zebrafish neuronal circuits represent an ideal system to apply an optogenetic based analysis owing to its transparency, relatively small size and amenability to genetic manipulation. In this review, we describe some of the most recent advances in the development and applications of optogenetic sensors (i.e., genetically encoded calcium indicators and voltage sensors) and actuators (i.e., light activated ion channels and ion pumps). We focus mostly on the tools that have already been successfully applied in zebrafish and on those that show the greatest potential for the future. We also describe crucial technical aspects to implement optogenetics in zebrafish including strategies to drive a high level of transgene expression in defined neuronal populations, and recent optical advances that allow the precise spatiotemporal control of sample illumination.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau et de la Moelle epiniere, Centre de Recherche, CHU Pitié-Salpétrière, Paris, France.
| | | |
Collapse
|
32
|
Fujimoto E, Stevenson TJ, Chien CB, Bonkowsky JL. Identification of a dopaminergic enhancer indicates complexity in vertebrate dopamine neuron phenotype specification. Dev Biol 2011; 352:393-404. [PMID: 21276790 PMCID: PMC3069253 DOI: 10.1016/j.ydbio.2011.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/05/2023]
Abstract
The dopaminergic neurons of the basal ganglia play critical roles in CNS function and human disease, but specification of dopamine neuron phenotype is poorly understood in vertebrates. We performed an in vivo screen in zebrafish to identify dopaminergic neuron enhancers, in order to facilitate studies on the specification of neuronal identity, connectivity, and function in the basal ganglia. Based primarily on identification of conserved non-coding elements, we tested 54 DNA elements from four species (zebrafish, pufferfish, mouse, and rat), that included 21 genes with known or putative roles in dopaminergic neuron specification or function. Most elements failed to drive CNS expression or did not express specifically in dopaminergic neurons. However, we did isolate a discrete enhancer from the otpb gene that drove specific expression in diencephalic dopaminergic neurons, although it did not share sequence conservation with regulatory regions of otpa or other dopamine-specific genes. For the otpb enhancer, regulation of expression in dopamine neurons requires multiple elements spread across a large genomic area. In addition, we compared our in vivo testing with in silico analysis of genomic regions for genes involved in dopamine neuron function, but failed to find conserved regions that functioned as enhancers. We conclude that regulation of dopaminergic neuron phenotype in vertebrates is regulated by dispersed regulatory elements.
Collapse
Affiliation(s)
- Esther Fujimoto
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Tamara J. Stevenson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84132
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132
| |
Collapse
|
33
|
Kobayashi I, Kojima K, Uchino K, Sezutsu H, Iizuka T, Tatematsu KI, Yonemura N, Tanaka H, Yamakawa M, Ogura E, Kamachi Y, Tamura T. An efficient binary system for gene expression in the silkworm, Bombyx mori, using GAL4 variants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:195-210. [PMID: 21254202 DOI: 10.1002/arch.20402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/18/2010] [Accepted: 10/02/2010] [Indexed: 05/30/2023]
Abstract
A binary gene expression system using the yeast GAL4 DNA-binding protein and the upstream activating sequence (UAS) of galactose-driven yeast genes is an established and powerful tool for the analysis of gene function. However, in the domesticated silkworm, Bombyx mori, this system has been limited in its utility by the relatively low transcriptional activation activity of GAL4 and by its toxicity. In this study, we investigated the potential of several established GAL4 variants (GAL4Δ, GAL4VP16, GAL4VPmad2, GAL4VPmad3, and GAL4NFκB) and of two new GAL4 variants, GAL4Rel and GAL4Relish, which contain the transcription-activating regions of the BmRel and BmRelish genes, respectively, to improve the utility of the GAL4/UAS system in B. mori. We generated constructs containing these GAL4 variants under the control of constitutive or inducible promoters and investigated their transcription-activating activity in cultured B. mori cells and embryos and in transgenic silkworms. GAL4VP16 and GAL4NFκB exhibited high transactivation activity but appeared to be toxic when used as transgenes under the control of a constitutive promoter. Similarly, GAL4VPmad2 and GAL4VPmad3 exhibited higher transactivation activity than GAL4, combined with strong toxicity. The transcription-activating activity of GAL4Δ was about twice that of GAL4. The two new GAL4 variants, GAL4Rel and GAL4Relish, were less active than GAL4. Using GAL4VP16 and GAL4NFκB constructs, we have developed a very efficient GAL4/UAS binary gene expression system for use in cultured B. mori cells and embryos and in transgenic silkworms.
Collapse
Affiliation(s)
- Isao Kobayashi
- Transgenic Silkworm Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Renninger SL, Schonthaler HB, Neuhauss SCF, Dahm R. Investigating the genetics of visual processing, function and behaviour in zebrafish. Neurogenetics 2011; 12:97-116. [PMID: 21267617 DOI: 10.1007/s10048-011-0273-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/04/2011] [Indexed: 12/11/2022]
Abstract
Over the past three decades, the zebrafish has been proven to be an excellent model to investigate the genetic control of vertebrate embryonic development, and it is now also increasingly used to study behaviour and adult physiology. Moreover, mutagenesis approaches have resulted in large collections of mutants with phenotypes that resemble human pathologies, suggesting that these lines can be used to model diseases and screen drug candidates. With the recent development of new methods for gene targeting and manipulating or monitoring gene expression, the range of genetic modifications now possible in zebrafish is increasing rapidly. Combined with the classical strengths of the zebrafish as a model organism, these advances are set to substantially expand the type of biological questions that can be addressed in this species. In this review, we outline how the potential of the zebrafish can be harvested in the context of eye development and visual function. We review recent technological advances used to study the formation of the eyes and visual areas of the brain, visual processing on the cellular, subcellular and molecular level, and the genetics of visual behaviour in vertebrates.
Collapse
Affiliation(s)
- Sabine L Renninger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Faucherre A, López-Schier H. Delaying Gal4-driven gene expression in the zebrafish with morpholinos and Gal80. PLoS One 2011; 6:e16587. [PMID: 21298067 PMCID: PMC3027692 DOI: 10.1371/journal.pone.0016587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
The modular Gal4/UAS gene expression system has become an indispensable tool in modern biology. Several large-scale gene- and enhancer-trap screens in the zebrafish have generated hundreds of transgenic lines expressing Gal4 in unique patterns. However, the early embryonic expression of the Gal4 severely limits their use for studies on regeneration or behavior because UAS-driven effectors could disrupt normal organogenesis. To overcome this limitation, we explored the use of the Gal4 repressor Gal80 in transient assays and with stable transgenes to temporally control Gal4 activity. We also validated a strategy to delay Gal4-driven gene expression using a morpholino targeted to Gal4. The first approach is limited to transgenes expressing the native Gal4. The morphant approach can also be applied to transgenic lines expressing the Gal4-VP16 fusion protein. It promises to become a standard approach to delay Gal4-driven transgene expression and enhance the genetic toolkit for the zebrafish.
Collapse
Affiliation(s)
- Adèle Faucherre
- Laboratory of Sensory Cell Biology and Organogenesis, Centre de Regulació Genòmica, Barcelona, Spain
| | - Hernán López-Schier
- Laboratory of Sensory Cell Biology and Organogenesis, Centre de Regulació Genòmica, Barcelona, Spain
- * E-mail:
| |
Collapse
|
36
|
Abstract
The myelin sheath is an essential component of the vertebrate nervous system, and its disruption causes numerous diseases, including multiple sclerosis (MS), and neurodegeneration. Although we understand a great deal about the early development of the glial cells that make myelin (Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system), we know much less about the cellular and molecular mechanisms that regulate the later stages of differentiation that orchestrate myelin formation. Over the past decade, the zebrafish has been employed as a model with which to dissect the development of myelinated axons. Forward genetic screens have revealed new genes essential for myelination, as well as new roles for genes previously implicated in myelinated axon formation in other systems. High-resolution in vivo imaging in zebrafish has also begun to illuminate novel cell behaviors during myelinating glial cell development. Here we review the contribution of zebrafish research to our understanding of myelinated axon formation to date. We also describe and discuss many of the methodologies used in these studies and preview future endeavors that will ensure that the zebrafish remains at the cutting edge of this important area of research.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | |
Collapse
|
37
|
Abstract
Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day.
Collapse
|
38
|
Hong SM, Yamashita J, Mitsunobu H, Uchino K, Kobayashi I, Sezutsu H, Tamura T, Nakajima H, Miyagawa Y, Lee JM, Mon H, Miyata Y, Kawaguchi Y, Kusakabe T. Efficient soluble protein production on transgenic silkworms expressing cytoplasmic chaperones. Appl Microbiol Biotechnol 2010; 87:2147-56. [DOI: 10.1007/s00253-010-2617-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/29/2022]
|
39
|
Okuda Y, Ogura E, Kondoh H, Kamachi Y. B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet 2010; 6:e1000936. [PMID: 20463883 PMCID: PMC2865518 DOI: 10.1371/journal.pgen.1000936] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/02/2010] [Indexed: 11/18/2022] Open
Abstract
The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT–PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1) early dorsoventral patterning by controlling bmp2b/7; (2) gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3) neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively) and ascl1a (negatively), and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4) neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate specification with patterning and morphogenetic processes occurring in the early embryo. In the developing embryo, various processes such as cell fate specification, embryo patterning, and morphogenesis take place concurrently. The embryo must control gene expression in order to coordinate these processes and thereby enable the proper organization of its structures. The B1 sox transcription factor genes, exemplified by the “stem cell gene” sox2, are thought to play a key role in these embryonic processes from the blastoderm stage to the neural stage. However, the precise regulatory functions of these genes are largely unknown due to the lack of loss-of-function studies. In our current study, we took advantage of the zebrafish system and successfully depleted B1 sox activity from the early embryo using antisense knockdown technology. This approach enabled us to further uncover the regulatory functions of B1 sox in early embryos. We found that the activity of the B1 sox genes is required for the expression of a wide range of developmental regulators including transcription factors, signaling pathway components, and cell adhesion molecules. These findings suggest that the B1 sox functions are central to coordinating diverse embryonic processes, particularly those that occur during the development of the primordium of the central nervous system.
Collapse
Affiliation(s)
- Yuichi Okuda
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Eri Ogura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- * E-mail:
| |
Collapse
|
40
|
Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE. Remobilization of Tol2 transposons in Xenopus tropicalis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:11. [PMID: 20096115 PMCID: PMC2848417 DOI: 10.1186/1471-213x-10-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 01/22/2010] [Indexed: 12/05/2022]
Abstract
Background The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency. Results To test whether Tol2 transposons integrated in the Xenopus tropicalis genome are substrates for remobilization, we injected in vitro transcribed Tol2 mRNA into one-cell embryos harbouring a single copy of a Tol2 transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single Tol2 transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the Tol2 transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis. Conclusions In this study, we demonstrate that single copy Tol2 transposons integrated into the Xenopus tropicalis genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.
Collapse
Affiliation(s)
- Donald A Yergeau
- Department of Pathology, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
For more than a decade, the zebrafish has proven to be an excellent model organism to investigate the mechanisms of neurogenesis during development. The often cited advantages, namely external development, genetic, and optical accessibility, have permitted direct examination and experimental manipulations of neurogenesis during development. Recent studies have begun to investigate adult neurogenesis, taking advantage of its widespread occurrence in the mature zebrafish brain to investigate the mechanisms underlying neural stem cell maintenance and recruitment. Here we provide a comprehensive overview of the tools and techniques available to study neurogenesis in zebrafish both during development and in adulthood. As useful resources, we provide tables of available molecular markers, transgenic, and mutant lines. We further provide optimized protocols for studying neurogenesis in the adult zebrafish brain, including in situ hybridization, immunohistochemistry, in vivo lipofection and electroporation methods to deliver expression constructs, administration of bromodeoxyuridine (BrdU), and finally slice cultures. These currently available tools have put zebrafish on par with other model organisms used to investigate neurogenesis.
Collapse
Affiliation(s)
- Prisca Chapouton
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
42
|
Scott EK, Baier H. The cellular architecture of the larval zebrafish tectum, as revealed by gal4 enhancer trap lines. Front Neural Circuits 2009; 3:13. [PMID: 19862330 PMCID: PMC2763897 DOI: 10.3389/neuro.04.013.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022] Open
Abstract
We have carried out a Gal4 enhancer trap screen in zebrafish, and have generated 184 stable transgenic lines with interesting expression patterns throughout the nervous system. Of these, three display clear expression in the tectum, each with a distinguishable and stereotyped distribution of Gal4 expressing cells. Detailed morphological analysis of single cells, using a genetic “Golgi-like” labelling method, revealed four common cell types (superficial, periventricular, shallow periventricular, and radial glial), along with a range of other less common neurons. The shallow periventricular (PV) and a subset of the PV neurons are tectal efferent neurons that target various parts of the reticular formation. We find that it is specifically PV neurons with dendrites in the deep tectal neuropil that target the reticular formation. This indicates that these neurons receive the tectum's highly processed visual information (which is fed from the superficial retinorecipient layers), and relay it to premotor regions. Our results show that the larval tectum, both broadly and at the single cell level, strongly resembles a miniature version of its adult counterpart, and that it has all of the necessary anatomical characteristics to inform motor responses based on sensory input. We also demonstrate that mosaic expression of GFP in Gal4 enhancer trap lines can be used to describe the types and abundance of cells in an expression pattern, including the architectures of individual neurons. Such detailed anatomical descriptions will be an important part of future efforts to describe the functions of discrete tectal circuits in the generation of behavior.
Collapse
Affiliation(s)
- Ethan K Scott
- Department of Physiology, University of California San Francisco, CA, USA
| | | |
Collapse
|
43
|
Baier H, Scott EK. Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight. Curr Opin Neurobiol 2009; 19:553-60. [PMID: 19781935 DOI: 10.1016/j.conb.2009.08.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/11/2009] [Indexed: 01/01/2023]
Abstract
Methods to label neurons and to monitor their activity with genetically encoded fluorescent reporters have been a staple of neuroscience research for several years. The recent introduction of photoswitchable ion channels and pumps, such as channelrhodopsin (ChR2), halorhodopsin (NpHR), and light-gated glutamate receptor (LiGluR), is enabling remote optical manipulation of neuronal activity. The translucent brains of zebrafish offer superior experimental conditions for optogenetic approaches in vivo. Enhancer and gene trapping approaches have generated hundreds of Gal4 driver lines in which the expression of UAS-linked effectors can be targeted to subpopulations of neurons. Local photoactivation of genetically targeted LiGluR, ChR2, or NpHR has uncovered novel functions for specific areas and cell types in zebrafish behavior. Because the manipulation is restricted to times and places where genetics (cell types) and optics (beams of light) intersect, this method affords excellent resolving power for the functional analysis of neural circuitry.
Collapse
Affiliation(s)
- Herwig Baier
- University of California, San Francisco, Department of Physiology, San Francisco, CA 94158-2324, USA.
| | | |
Collapse
|
44
|
Mon H, Sugahara R, Hong SM, Lee JM, Kamachi Y, Kawaguchi Y, Kusakabe T. Analysis of protein interactions with two-hybrid system in cultured insect cells. Anal Biochem 2009; 392:180-2. [DOI: 10.1016/j.ab.2009.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
|
45
|
Abstract
Over recent years, several groundbreaking techniques have been developed that allow for the anatomical description of neurons, and the observation and manipulation of their activity. Combined, these approaches should provide a great leap forward in our understanding of the structure and connectivity of the nervous system and how, as a network of individual neurons, it generates behavior. Zebrafish, given their external development and optical transparency, are an appealing system in which to employ these methods. These traits allow for direct observation of fluorescence in describing anatomy and observing neural activity, and for the manipulation of neurons using a host of light-triggered proteins. Gal4/Upstream Activating Sequence techniques, as they are based on a binary system, allow for the flexible deployment of a range of transgenes in expression patterns of interest. As such, they provide a promising approach for viewing neurons in a variety of ways, each of which can reveal something different about their structure, connectivity, or function. In this study, the author will review recent progress in the development of the Gal4/Upstream Activating Sequence system in zebrafish, feature examples of promising studies to date, and examine how various new technologies can be used in the future to untangle the complex mechanisms by which behavior is generated.
Collapse
Affiliation(s)
- Ethan K Scott
- The University of Queensland, The Queensland Brain Institute, Brisbane, Australia.
| |
Collapse
|