1
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
2
|
Liu P, Shao H, Ding X, Yang R, Rui Q, Wang D. Dysregulation of Neuronal Gαo Signaling by Graphene Oxide in Nematode Caenorhabditis elegans. Sci Rep 2019; 9:6026. [PMID: 30988375 PMCID: PMC6465305 DOI: 10.1038/s41598-019-42603-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/28/2019] [Indexed: 12/29/2022] Open
Abstract
Exposure to graphene oxide (GO) induced some dysregulated microRNAs (miRNAs), such as the increase in mir-247, in nematode Caenorhabditis elegans. We here further identified goa-1 encoding a Gαo and pkc-1 encoding a serine/threonine protein kinase as the targets of neuronal mir-247 in the regulation of GO toxicity. GO exposure increased the expressions of both GOA-1 and PKC-1. Mutation of goa-1 or pkc-1 induced a susceptibility to GO toxicity, and suppressed the resistance of mir-247 mutant to GO toxicity. GOA-1 and PKC-1 could also act in the neurons to regulate the GO toxicity, and neuronal overexpression of mir-247 could not affect the resistance of nematodes overexpressing neuronal goa-1 or pkc-1 lacking 3'-UTR to GO toxicity. In the neurons, GOA-1 acted upstream of diacylglycerol kinase/DGK-1 and PKC-1 to regulate the GO toxicity. Moreover, DGK-1 and GOA-1 functioned synergistically in the regulation of GO toxicity. Our results highlight the crucial role of neuronal Gαo signaling in response to GO in nematodes.
Collapse
Affiliation(s)
- Peidang Liu
- Medical School, Southeast University, Nanjing, 210009, China
| | - Huimin Shao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xuecheng Ding
- Medical School, Southeast University, Nanjing, 210009, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruilong Yang
- Medical School, Southeast University, Nanjing, 210009, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
4
|
Mote RD, Mahajan G, Padmanabhan A, Ambati R, Subramanyam D. Dual repression of endocytic players by ESCC microRNAs and the Polycomb complex regulates mouse embryonic stem cell pluripotency. Sci Rep 2017; 7:17572. [PMID: 29242593 PMCID: PMC5730570 DOI: 10.1038/s41598-017-17828-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023] Open
Abstract
Cell fate determination in the early mammalian embryo is regulated by multiple mechanisms. Recently, genes involved in vesicular trafficking have been shown to play an important role in cell fate choice, although the regulation of their expression remains poorly understood. Here we demonstrate for the first time that multiple endocytosis associated genes (EAGs) are repressed through a novel, dual mechanism in mouse embryonic stem cells (mESCs). This involves the action of the Polycomb Repressive Complex, PRC2, as well as post-transcriptional regulation by the ESC-specific cell cycle-regulating (ESCC) family of microRNAs. This repression is relieved upon differentiation. Forced expression of EAGs in mESCs results in a decrease in pluripotency, highlighting the importance of dual repression in cell fate regulation. We propose that endocytosis is critical for cell fate choice, and dual repression may function to tightly regulate levels of endocytic genes.
Collapse
Affiliation(s)
- Ridim Dadasaheb Mote
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Gaurang Mahajan
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Anup Padmanabhan
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Ramaraju Ambati
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
5
|
Xiao G, Zhi L, Ding X, Rui Q, Wang D. Value of mir-247 in warning of graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra09100a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our results imply the important potential of mir-247 in warning the formation of GO toxicity in the range of μg L−1 in nematodes.
Collapse
Affiliation(s)
- Guosheng Xiao
- College of Biology and Food Engineering
- Chongqing Three Gorges University
- Wanzhou 404100
- China
| | - Lingtong Zhi
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Xuecheng Ding
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Qi Rui
- College of Life Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Dayong Wang
- College of Biology and Food Engineering
- Chongqing Three Gorges University
- Wanzhou 404100
- China
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education
| |
Collapse
|
6
|
Park JH, Ahn S, Kim S, Lee J, Nam JW, Shin C. Degradome sequencing reveals an endogenous microRNA target inC. elegans. FEBS Lett 2013; 587:964-9. [DOI: 10.1016/j.febslet.2013.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 11/15/2022]
|
7
|
Brenner JL, Kemp BJ, Abbott AL. The mir-51 family of microRNAs functions in diverse regulatory pathways in Caenorhabditis elegans. PLoS One 2012; 7:e37185. [PMID: 22615936 PMCID: PMC3353893 DOI: 10.1371/journal.pone.0037185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/17/2012] [Indexed: 11/29/2022] Open
Abstract
The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans.
Collapse
Affiliation(s)
- John L. Brenner
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Benedict J. Kemp
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Allison L. Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
8
|
Kalis AK, Murphy MW, Zarkower D. EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 2010; 344:827-35. [PMID: 20553900 DOI: 10.1016/j.ydbio.2010.05.516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/15/2023]
Abstract
Hox genes of the Abdominal-B (Abd-B) class regulate gonadal development in diverse metazoans. Here we have investigated the role of the Abd-B homolog egl-5 in C. elegans gonadal development. Previous work showed that egl-5 is required male-specifically in the gonad and that mutant gonads are highly dysgenic and possibly feminized. We have used sex-specific gonadal reporter genes to confirm that the gonads of egl-5 males are extensively feminized. Sex-specific expression of egl-5 requires the global sex determination gene tra-1 and the gonadal masculinizing gene fkh-6, but mutagenesis of a short male gonadal enhancer element in egl-5 suggested that this regulation is indirect. Ectopic expression of EGL-5 in hermaphrodites is sufficient to induce male gonadal gene expression, indicating that EGL-5 plays an instructive role in male gonadal fate determination. EGL-5 acts in parallel with a Wnt/beta-catenin pathway to regulate male gonadal fates and can physically interact with the Wnt pathway transcription factor POP-1 and modulate activity of a POP-1 dependent reporter gene. We propose that EGL-5 imparts sex-specific function on POP-1 by recruiting it to male-specific gonadal target genes.
Collapse
Affiliation(s)
- Andrea K Kalis
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
9
|
The conserved miR-51 microRNA family is redundantly required for embryonic development and pharynx attachment in Caenorhabditis elegans. Genetics 2010; 185:897-905. [PMID: 20421599 DOI: 10.1534/genetics.110.117515] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are approximately 22-nucleotide small RNAs that act as endogenous regulators of gene expression by base-pairing with target mRNAs. Here we analyze the function of the six members of the Caenorhabditis elegans miR-51 family of miRNAs (miR-51, miR-52, miR-53, miR-54, miR-55, miR-56). miR-51 family miRNAs are broadly expressed from mid-embryogenesis onward. The miR-51 family is redundantly required for embryonic development. mir-51 family mutants display a highly penetrant pharynx unattached (Pun) phenotype, where the pharyngeal muscle, the food pump of C. elegans, is not attached to the mouth. Unusually, the Pun phenotype in mir-51 family mutants is not due to a failure to attach, but instead a failure to maintain attachment during late embryogenesis. Expression of the miR-51 family in the mouth is sufficient to maintain attachment. The Fat cadherin ortholog CDH-3 is expressed in the mouth and is a direct target of the miR-51 family miRNAs. Genetic analysis reveals that miR-51 family miRNAs might act in part through CDH-3 to regulate pharynx attachment. This study is the first to assign a function to the miR-51/miR-100 miRNA family in any organism.
Collapse
|