1
|
Lee M, Carpenter C, Hwang YS, Yoon J, Lu Q, Westlake CJ, Moody SA, Yamaguchi TP, Daar IO. Proliferation associated 2G4 is required for the ciliation of vertebrate motile cilia. Commun Biol 2024; 7:1430. [PMID: 39496919 PMCID: PMC11535434 DOI: 10.1038/s42003-024-07150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Motile cilia are critical structures that regulate early embryonic development and tissue homeostasis through synchronized ciliary motility. The formation of motile cilia is dependent on precisely controlled sequential processes including the generation, migration, and docking of centrioles/basal bodies as well as ciliary growth. Using the published proteomics data from various organisms, we identified proliferation-associated 2G4 as a novel regulator of ciliogenesis. Loss-of-function studies using Xenopus laevis as a model system reveal that Pa2G4 is essential for proper ciliogenesis and synchronized movement of cilia in multiciliated cells (MCCs) and the gastrocoel roof plate (GRP). Pa2G4 morphant MCCs exhibit defective basal body docking to the surface as a result of compromised Rac1 activity, apical actin network formation, and immature distal appendage generation. Interestingly, the regions that include the RNA-binding domain and the C-terminus of Pa2G4 are necessary for ciliogenesis in both MCCs and GRP cells. Our findings may provide insights into motile cilia-related genetic diseases such as Primary Ciliary Dyskinesia.
Collapse
Affiliation(s)
- Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, USA
| | - Terry P Yamaguchi
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
2
|
Neal SJ, Rajasekaran A, Jusić N, Taylor L, Read M, Alfandari D, Pignoni F, Moody SA. Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:212-240. [PMID: 37830236 PMCID: PMC11014897 DOI: 10.1002/jez.b.23222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.
Collapse
Affiliation(s)
- Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Anindita Rajasekaran
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Nisveta Jusić
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Louis Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mai Read
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
3
|
Keer S, Neilson KM, Cousin H, Majumdar HD, Alfandari D, Klein SL, Moody SA. Bop1 is required to establish precursor domains of craniofacial tissues. Genesis 2024; 62:e23580. [PMID: 37974491 PMCID: PMC11021169 DOI: 10.1002/dvg.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Steven L. Klein
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA. The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. Dev Dyn 2023; 252:1407-1427. [PMID: 37597164 PMCID: PMC10842325 DOI: 10.1002/dvdy.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Kiyoshi Yamauchi
- Department of Biological Science Shizuoka University Shizuoka, Japan
| | - Steven L. Klein
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| |
Collapse
|
5
|
Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA. Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. Front Cell Dev Biol 2023; 11:1274788. [PMID: 37854072 PMCID: PMC10579616 DOI: 10.3389/fcell.2023.1274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
6
|
Keer S, Cousin H, Jourdeuil K, Neilson KM, Tavares ALP, Alfandari D, Moody SA. Mcrs1 is required for branchial arch and cranial cartilage development. Dev Biol 2022; 489:62-75. [PMID: 35697116 PMCID: PMC10426812 DOI: 10.1016/j.ydbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Helene Cousin
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Dominique Alfandari
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA.
| |
Collapse
|
7
|
Functions of block of proliferation 1 during anterior development in Xenopus laevis. PLoS One 2022; 17:e0273507. [PMID: 36007075 PMCID: PMC9409556 DOI: 10.1371/journal.pone.0273507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Block of proliferation 1 (Bop1) is a nucleolar protein known to be necessary for the assembly of the 60S subunit of ribosomes. Here, we show a specific bop1 expression in the developing anterior tissue of the South African clawed frog Xenopus laevis. Morpholino oligonucleotide-mediated knockdown approaches demonstrated that Bop1 is required for proper development of the cranial cartilage, brain, and the eyes. Furthermore, we show that bop1 knockdown leads to impaired retinal lamination with disorganized cell layers. Expression of neural crest-, brain-, and eye-specific marker genes was disturbed. Apoptotic and proliferative processes, which are known to be affected during ribosomal biogenesis defects, are not hindered upon bop1 knockdown. Because early Xenopus embryos contain a large store of maternal ribosomes, we considered if Bop1 might have a role independent of de novo ribosomal biogenesis. At early embryonic stages, pax6 expression was strongly reduced in bop1 morphants and synergy experiments indicate a common signaling pathway of the two molecules, Bop1 and Pax6. Our studies imply a novel function of Bop1 independent of ribosomal biogenesis.
Collapse
|
8
|
Coppenrath K, Tavares ALP, Shaidani NI, Wlizla M, Moody SA, Horb M. Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. Genesis 2021; 59:e23453. [PMID: 34664392 DOI: 10.1002/dvg.23453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
The vertebrate Six (Sine oculis homeobox) family of homeodomain transcription factors plays critical roles in the development of several organs. Six1 plays a central role in cranial placode development, including the precursor tissues of the inner ear, as well as other cranial sensory organs and the kidney. In humans, mutations in SIX1 underlie some cases of Branchio-oto-renal (BOR) syndrome, which is characterized by moderate-to-severe hearing loss. We utilized CRISPR/Cas9 technology to establish a six1 mutant line in Xenopus tropicalis that is available to the research community. We demonstrate that at larval stages, the six1-null animals show severe disruptions in gene expression of putative Six1 target genes in the otic vesicle, cranial ganglia, branchial arch, and neural tube. At tadpole stages, six1-null animals display dysmorphic Meckel's, ceratohyal, and otic capsule cartilage morphology. This mutant line will be of value for the study of the development of several organs as well as congenital syndromes that involve these tissues.
Collapse
Affiliation(s)
- Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Marcin Wlizla
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Embryology Department, Charles River Laboratories, Wilmington, Massachusetts, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Marko Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
9
|
Tavares ALP, Jourdeuil K, Neilson KM, Majumdar HD, Moody SA. Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development. Development 2021; 148:272053. [PMID: 34414417 DOI: 10.1242/dev.199684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| |
Collapse
|
10
|
Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes. J Dev Biol 2021; 9:jdb9030025. [PMID: 34208995 PMCID: PMC8293042 DOI: 10.3390/jdb9030025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.
Collapse
|
11
|
Connaughton DM, Dai R, Owen DJ, Marquez J, Mann N, Graham-Paquin AL, Nakayama M, Coyaud E, Laurent EMN, St-Germain JR, Blok LS, Vino A, Klämbt V, Deutsch K, Wu CHW, Kolvenbach CM, Kause F, Ottlewski I, Schneider R, Kitzler TM, Majmundar AJ, Buerger F, Onuchic-Whitford AC, Youying M, Kolb A, Salmanullah D, Chen E, van der Ven AT, Rao J, Ityel H, Seltzsam S, Rieke JM, Chen J, Vivante A, Hwang DY, Kohl S, Dworschak GC, Hermle T, Alders M, Bartolomaeus T, Bauer SB, Baum MA, Brilstra EH, Challman TD, Zyskind J, Costin CE, Dipple KM, Duijkers FA, Ferguson M, Fitzpatrick DR, Fick R, Glass IA, Hulick PJ, Kline AD, Krey I, Kumar S, Lu W, Marco EJ, Wentzensen IM, Mefford HC, Platzer K, Povolotskaya IS, Savatt JM, Shcherbakova NV, Senguttuvan P, Squire AE, Stein DR, Thiffault I, Voinova VY, Somers MJG, Ferguson MA, Traum AZ, Daouk GH, Daga A, Rodig NM, Terhal PA, van Binsbergen E, Eid LA, Tasic V, Rasouly HM, Lim TY, Ahram DF, Gharavi AG, Reutter HM, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Lifton RP, Xu H, Mane SM, Sanna-Cherchi S, Sharrocks AD, Raught B, Fisher SE, Bouchard M, Khokha MK, Shril S, Hildebrandt F. Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. Am J Hum Genet 2020; 107:727-742. [PMID: 32891193 PMCID: PMC7536580 DOI: 10.1016/j.ajhg.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Dervla M Connaughton
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Nephrology, Department of Medicine, University Hospital - London Health Sciences Centre, Schulich School of Medicine & Dentistry, Western University, 339 Windermere Road, London, ON N6A 5A5, Canada
| | - Rufeng Dai
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Danielle J Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adda L Graham-Paquin
- Rosalind & Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lot Snijders Blok
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500HE Nijmegen, the Netherlands; Human Genetics Department, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Verena Klämbt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen-Han Wilfred Wu
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline M Kolvenbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Kause
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabel Ottlewski
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ronen Schneider
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas M Kitzler
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amar J Majmundar
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Onuchic-Whitford
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mao Youying
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Kolb
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daanya Salmanullah
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Evan Chen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amelie T van der Ven
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Hadas Ityel
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steve Seltzsam
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Johanna M Rieke
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asaf Vivante
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Tel Aviv University, Faculty of Medicine, Tel Aviv-Yafo 6997801, Israel
| | - Daw-Yang Hwang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Kohl
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel C Dworschak
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Hermle
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariëlle Alders
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Meibergdreef 9, 1105 Amsterdam, Netherlands
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle A Baum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eva H Brilstra
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Thomas D Challman
- Geisinger, Autism & Developmental Medicine Institute, 100 N Academy Avenue, Danville, PA 17822, USA
| | - Jacob Zyskind
- Department of Clinical Genomics, GeneDx, 207 Perry Pkwy, Gaithersburg, MD 20877, USA
| | - Carrie E Costin
- Department of Clinical Genetics, Akron Children's Hospital, One Perkins Square, Akron, OH 44308, USA
| | - Katrina M Dipple
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Floor A Duijkers
- Department of Clinical Genetics, University of Amsterdam, 1012 WX Amsterdam, the Netherlands
| | - Marcia Ferguson
- Department of Clinical Genetics, Harvey Institute for Human Genetics, 6701 Charles St, Towson, MD 21204, USA
| | - David R Fitzpatrick
- MRC Institute of Genetics & Molecular Medicine, Royal Hospital for Sick Children, The University of Edinburgh, 2XU, Crewe Rd S, Edinburgh EH4 2XU, UK
| | - Roger Fick
- Mary Bridge Childrens Hospital, 316 Martin Luther King JR Way, Tacoma, WA 98405, USA
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, 1000 Central Street, Suite 610, Evanston, IL 60201, USA
| | - Antonie D Kline
- Department of Clinical Genetics, Harvey Institute for Human Genetics, 6701 Charles St, Towson, MD 21204, USA
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany; Swiss Epilepsy Center, Klinik Lengg, Bleulerstrasse 60, 8000 Zürich, Switzerland
| | - Selvin Kumar
- Department of Pediatric Nephrology, Institute of Child Health and Hospital for Children, Tamil Salai, Egmore, Chennai, Tamil Nadu 600008, India
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, 650 Albany Street, Boston, MA 02118, USA
| | - Elysa J Marco
- Cortica Healthcare, 4000 Civic Center Drive, Ste 100, San Rafael, CA 94939, USA
| | - Ingrid M Wentzensen
- Department of Clinical Genomics, GeneDx, 207 Perry Pkwy, Gaithersburg, MD 20877, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Juliann M Savatt
- Geisinger, Autism & Developmental Medicine Institute, 100 N Academy Avenue, Danville, PA 17822, USA
| | - Natalia V Shcherbakova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Prabha Senguttuvan
- Department of Pediatric Nephrology, Dr. Mehta's Multi-Specialty Hospital, No.2, Mc Nichols Rd, Chetpet, Chennai, Tamil Nadu 600031, India
| | - Audrey E Squire
- Seattle Children's Hospital, Department of Genetic Medicine, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Deborah R Stein
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO 64108, USA; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, 5000 Holmes St, Kansas City, MO 64110, USA
| | - Victoria Y Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Michael J G Somers
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Ferguson
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avram Z Traum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ghaleb H Daouk
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ankana Daga
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Loai A Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, Skopje 1000, North Macedonia
| | - Hila Milo Rasouly
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Tze Y Lim
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Dina F Ahram
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Heiko M Reutter
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany; Section of Neonatology and Pediatric Intensive Care, Clinic for Pediatrics, University Hospital Bonn, Adenauerallee 119, 53313 Bonn, Germany
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Kristen M Laricchia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Richard P Lifton
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500HE Nijmegen, the Netherlands
| | - Maxime Bouchard
- Rosalind & Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Moody SA. Mcrs1 interacts with Six1 to influence early craniofacial and otic development. Dev Biol 2020; 467:39-50. [PMID: 32891623 DOI: 10.1016/j.ydbio.2020.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022]
Abstract
The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Stephanie Keer
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nicole Bousquet
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Olivia Macrorie
- Department of Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
13
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
14
|
Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech 2020; 13:dmm043489. [PMID: 31980437 PMCID: PMC7063838 DOI: 10.1242/dmm.043489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.
Collapse
Affiliation(s)
- Ankita M Shah
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Patrick Krohn
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Institute of Zoology, University of Hohenheim, Stuttgart 70599, Germany
| | - Aparna B Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Charles H Sullivan
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Yeshwant R Chillakuru
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
15
|
Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Dev Biol 2017; 421:171-182. [PMID: 27940157 PMCID: PMC5221411 DOI: 10.1016/j.ydbio.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Genevieve Abbruzzesse
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristy Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Vanessa Bartolo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Patrick Krohn
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
16
|
Taneyhill LA, Hoover-Fong J, Lozanoff S, Marcucio R, Richtsmeier JT, Trainor PA. The society for craniofacial genetics and developmental biology 38th annual meeting. Am J Med Genet A 2016; 170:1732-53. [PMID: 27102868 DOI: 10.1002/ajmg.a.37651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Abstract
The mission of the Society for Craniofacial Genetics and Developmental Biology (SCGDB) is to promote education, research, and communication about normal and abnormal development of the tissues and organs of the head. The SCGDB welcomes as members undergraduate students, graduate students, post doctoral researchers, clinicians, orthodontists, scientists, and academicians who share an interest in craniofacial biology. Each year our members come together to share their novel findings, build upon, and challenge current knowledge of craniofacial biology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, 1405 Animal Sciences Center, College Park, Maryland
| | - Julie Hoover-Fong
- Greenberg Center for Skeletal Dysplasias, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Scott Lozanoff
- Department of Anatomy, Biochemistry & Physiology, University of Hawaii John A. Burns School of Medicine Honolulu, Hawaii
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, California
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas Medical Centre, Kansas City, Kansas
| |
Collapse
|
17
|
Lienkamp SS. Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 2016; 51:117-24. [PMID: 26851624 DOI: 10.1016/j.semcdb.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.
Collapse
Affiliation(s)
- Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
18
|
Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F. Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:16-24. [PMID: 26117063 PMCID: PMC4662879 DOI: 10.1016/j.cbpc.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Congenital hearing loss is an important clinical problem because, without early intervention, affected children do not properly acquire language and consequently have difficulties developing social skills. Although most newborns in the US are screened for hearing deficits, even earlier diagnosis can be made with prenatal genetic screening. Genetic screening that identifies the relevant mutated gene can also warn about potential congenital defects in organs not related to hearing. We will discuss efforts to identify new candidate genes that underlie the Branchiootorenal spectrum disorders in which affected children have hearing deficits and are also at risk for kidney defects. Mutations in two genes, SIX1 and EYA1, have been identified in about half of the patients tested. To uncover new candidate genes, we have used the aquatic animal model, Xenopus laevis, to identify genes that are part of the developmental genetic pathway of Six1 during otic and kidney development. We have already identified a large number of potential Six1 transcriptional targets and candidate co-factor proteins that are expressed at the right time and in the correct tissues to interact with Six1 during development. We discuss the advantages of using this system for gene discovery in a human congenital hearing loss syndrome.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA.
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Kristy L Kenyon
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Ophthalmology, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
19
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
20
|
Anderson AM, Weasner BP, Weasner BM, Kumar JP. The Drosophila Wilms׳ Tumor 1-Associating Protein (WTAP) homolog is required for eye development. Dev Biol 2014; 390:170-80. [PMID: 24690230 DOI: 10.1016/j.ydbio.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 11/17/2022]
Abstract
Sine Oculis (So), the founding member of the SIX family of homeobox transcription factors, binds to sequence specific DNA elements and regulates transcription of downstream target genes. It does so, in part, through the formation of distinct biochemical complexes with Eyes Absent (Eya) and Groucho (Gro). While these complexes play significant roles during development, they do not account for all So-dependent activities in Drosophila. It is thought that additional So-containing complexes make important contributions as well. This contention is supported by the identification of nearly two-dozen additional proteins that complex with So. However, very little is known about the roles that these additional complexes play in development. In this report we have used yeast two-hybrid screens and co-immunoprecipitation assays from Kc167 cells to identify a biochemical complex consisting of So and Fl(2)d, the Drosophila homolog of human Wilms׳ Tumor 1-Associating Protein (WTAP). We show that Fl(2)d protein is distributed throughout the entire eye-antennal imaginal disc and that loss-of-function mutations lead to perturbations in retinal development. The eye defects are manifested behind the morphogenetic furrow and result in part from increased levels of the pan-neuronal RNA binding protein Embryonic Lethal Abnormal Vision (Elav) and the RUNX class transcription factor Lozenge (Lz). We also provide evidence that So and Fl(2)d interact genetically in the developing eye. Wilms׳ tumor-1 (WT1), a binding partner of WTAP, is required for normal eye formation in mammals and loss-of-function mutations are associated with some versions of retinoblastoma. In contrast, WTAP and its homologs have not been implicated in eye development. To our knowledge, the results presented in this report are the first description of a role for WTAP in the retina of any seeing animal.
Collapse
Affiliation(s)
- Abigail M Anderson
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
21
|
Tadjuidje E, Hegde RS. The Eyes Absent proteins in development and disease. Cell Mol Life Sci 2012; 70:1897-913. [PMID: 22971774 DOI: 10.1007/s00018-012-1144-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
The Eyes Absent (EYA) proteins, first described in the context of fly eye development, are now implicated in processes as disparate as organ development, innate immunity, DNA damage repair, photoperiodism, angiogenesis, and cancer metastasis. These functions are associated with an unusual combination of biochemical activities: tyrosine phosphatase and threonine phosphatase activities in separate domains, and transactivation potential when associated with a DNA-binding partner. EYA mutations are linked to multiorgan developmental disorders, as well as to adult diseases ranging from dilated cardiomyopathy to late-onset sensorineural hearing loss. With the growing understanding of EYA biochemical and cellular activity, biological function, and association with disease, comes the possibility that the EYA proteins are amenable to the design of targeted therapeutics. The availability of structural information, direct links to disease states, available animal models, and the fact that they utilize unconventional reaction mechanisms that could allow specificity, suggest that EYAs are well-positioned for drug discovery efforts. This review provides a summary of EYA structure, activity, and function, as they relate to development and disease, with particular emphasis on recent findings.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
22
|
Sehic D, Karlsson J, Sandstedt B, Gisselsson D. SIX1 protein expression selectively identifies blastemal elements in Wilms tumor. Pediatr Blood Cancer 2012; 59:62-8. [PMID: 22180226 DOI: 10.1002/pbc.24025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/04/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wilms tumor (WT) is the most common renal neoplasm in children. Histologically, most WTs consist of three tissue elements: blastema, epithelium, and stroma. Some cases also show diffuse or focal anaplastic features. Previous studies have shown that a predominance of blastemal cells in post-chemotherapy WT specimens is associated with a poor clinical course. However, there is currently no molecular marker for blastemal cells, and risk stratification for post-nephrectomy treatment is therefore often based on clinico-histological parameters alone. PROCEDURE In the present study, three public gene expression microarray datasets, including 82 WTs and 8 normal fetal kidneys, were used to establish a consensus gene expression profile of WT. By bioinformatic analyses, 17 genes overexpressed in WT compared to fetal kidney were then selected for evaluation of their protein expression in WT cell lines and in the different histological components in paraffin-embedded WT tissue sections by immunofluorescence. RESULTS Most of the evaluated proteins were expressed in all three common histological components. A prominent exception was SIX1, being expressed predominantly in blastemal elements in 24/25 pediatric cases containing blastema. Anaplastic elements exhibited highly variable SIX1-positivity. The SIX2 protein, known to be co-expressed with SIX1 during nephrogenesis, only exhibited blastemal-predominant expression in half of the SIX2 evaluated cases. CONCLUSIONS Genes highly expressed in WT compared to fetal kidney are generally overexpressed in all of the three common WT tissue elements. An exception is the predominant expression of SIX1 in blastemal cells, hereby identifying this protein as a candidate marker for blastema.
Collapse
Affiliation(s)
- Daniel Sehic
- Department of Clinical Genetics, Lund University, University and Regional Laboratories, Lund, Sweden
| | | | | | | |
Collapse
|
23
|
Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 2012; 370:3-23. [PMID: 22790010 DOI: 10.1016/j.ydbio.2012.06.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
Collapse
Affiliation(s)
- Timothy Grocott
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
24
|
Lleras-Forero L, Streit A. Development of the sensory nervous system in the vertebrate head: the importance of being on time. Curr Opin Genet Dev 2012; 22:315-22. [PMID: 22726669 DOI: 10.1016/j.gde.2012.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/18/2022]
Abstract
Sense organs and cranial sensory ganglia are functionally diverse, yet share a common developmental origin. They arise from a pool of multipotent progenitors and local signals gradually restrict their development potential to specify the inner ear, olfactory epithelium, lens and sensory neurons. This process requires the temporal integration of multiple signalling pathways, cross-repressive transcription factor interactions and tight coordination of cell fate specification and morphogenesis.
Collapse
Affiliation(s)
- Laura Lleras-Forero
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | | |
Collapse
|
25
|
Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev Biol 2012; 365:363-75. [PMID: 22425621 DOI: 10.1016/j.ydbio.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 01/20/2023]
Abstract
FoxD4/5, a forkhead transcription factor, plays a critical role in establishing and maintaining the embryonic neural ectoderm. It both up-regulates genes that maintain a proliferative, immature neural ectoderm and down-regulates genes that promote the transition to a differentiating neural plate. We constructed deletion and mutant versions of FoxD4/5 to determine which domains are functionally responsible for these opposite activities, which regulate the critical developmental transition of neural precursors to neural progenitors to differentiating neural plate cells. Our results show that up-regulation of genes that maintain immature neural precursors (gem, zic2) requires the Acidic blob (AB) region in the N-terminal portion of the protein, indicating that the AB is the transactivating domain. Additionally, down-regulation of those genes that promote the transition to neural progenitors (sox) and those that lead to neural differentiation (zic, irx) involves: 1) an interaction with the Groucho co-repressor at the Eh-1 motif in the C-terminus; and 2) sequence downstream of this motif. Finally, the ability of FoxD4/5 to induce the ectopic expression of neural precursor genes in the ventral ectoderm also involves both the AB region and the Eh-1 motif; FoxD4/5 accomplishes ectopic neural induction by both activating neural precursor genes and repressing BMP signaling and epidermal genes. This study identifies the specific, conserved domains of the FoxD4/5 protein that allow this single transcription factor to regulate a network of genes that controls the transition of a proliferative neural ectodermal population to a committed neural plate population poised to begin differentiation.
Collapse
Affiliation(s)
- Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington DC, USA
| | | | | | | | | | | |
Collapse
|