1
|
Guijarro C, Kelly RG. On the involvement of the second heart field in congenital heart defects. C R Biol 2024; 347:9-18. [PMID: 38488639 DOI: 10.5802/crbiol.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.
Collapse
|
2
|
Kelly RG. Molecular Pathways and Animal Models of Tetralogy of Fallot and Double Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:645-659. [PMID: 38884739 DOI: 10.1007/978-3-031-44087-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot and double-outlet right ventricle are outflow tract (OFT) alignment defects situated on a continuous disease spectrum. A myriad of upstream causes can impact on ventriculoarterial alignment that can be summarized as defects in either i) OFT elongation during looping morphogenesis or ii) OFT remodeling during cardiac septation. Embryological processes underlying these two developmental steps include deployment of second heart field cardiac progenitor cells, establishment and transmission of embryonic left/right information driving OFT rotation and OFT cushion and valve morphogenesis. The formation and remodeling of pulmonary trunk infundibular myocardium is a critical component of both steps. Defects in myocardial, endocardial, or neural crest cell lineages can result in alignment defects, reflecting the complex intercellular signaling events that coordinate arterial pole development. Importantly, however, OFT alignment is mechanistically distinct from neural crest-driven OFT septation, although neural crest cells impact indirectly on alignment through their role in modulating signaling during SHF development. As yet poorly understood nongenetic causes of alignment defects that impact the above processes include hemodynamic changes, maternal exposure to environmental teratogens, and stochastic events. The heterogeneity of causes converging on alignment defects characterizes the OFT as a hotspot of congenital heart defects.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
3
|
Buckingham M, Kelly RG. Cardiac Progenitor Cells of the First and Second Heart Fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:103-124. [PMID: 38884707 DOI: 10.1007/978-3-031-44087-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior. Multipotent cells in this field can also contribute cardiac endothelial and smooth muscle cells. Furthermore, the skeletal muscles of the head and neck are clonally related to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| | - Robert G Kelly
- Aix Marseille Université, Institut de Biologie du Dévelopment de Marseille, Marseille, France.
| |
Collapse
|
4
|
Kawazu Y, Takahashi K, Tsujie T, Chayama K. A tricky fetal case of isolated transposition of great arteries without the I-shaped sign. J Obstet Gynaecol Res 2022; 48:3304-3307. [PMID: 36042690 DOI: 10.1111/jog.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Isolated transposition of the great arteries (TGA) is a congenital heart disease that presents with severe cyanosis after birth and a fetal diagnosis is crucial for the preservation of life. The I-shaped sign (I-sign) is useful as a fetal screening method for TGA. We herein present a tricky fetal case of isolated TGA with a side-by-side position of the great arteries and no I-sign. Severe cyanosis immediately after birth necessitated urgent interventions. A potentially fatal outcome was prevented by a prenatal diagnosis. In the fetal diagnosis of isolated TGA, it is important to not only detect the I-sign, but also conventionally examine the ventricular outflow tract.
Collapse
Affiliation(s)
- Yukiko Kawazu
- Department of Pediatrics, Fukuyama City Hospital, Hiroshima, Japan.,Department of Pediatrics, Toyonaka Municipal Hospital, Osaka, Japan
| | - Kayoko Takahashi
- Department of Obstetrics and Gynecology, Toyonaka Municipal Hospital, Osaka, Japan
| | - Tomoko Tsujie
- Department of Obstetrics and Gynecology, Toyonaka Municipal Hospital, Osaka, Japan
| | - Kosuke Chayama
- Department of Pediatrics, Toyonaka Municipal Hospital, Osaka, Japan
| |
Collapse
|
5
|
Palmquist-Gomes P, Meilhac SM. Shaping the mouse heart tube from the second heart field epithelium. Curr Opin Genet Dev 2022; 73:101896. [PMID: 35026527 DOI: 10.1016/j.gde.2021.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/03/2022]
Abstract
As other tubular organs, the embryonic heart develops from an epithelial sheet of cells, referred to as the heart field. The second heart field, which lies in the dorsal pericardial wall, constitutes a transient cell reservoir, integrating patterning and polarity cues. Conditional mutants have shown that impairment of the epithelial architecture of the second heart field is associated with congenital heart defects. Here, taking the mouse as a model, we review the epithelial properties of the second heart field and how they are modulated upon cardiomyocyte differentiation. Compared to other cases of tubulogenesis, the cellular dynamics in the second heart field are only beginning to be revealed. A challenge for the future will be to unravel key physical forces driving heart tube morphogenesis.
Collapse
Affiliation(s)
- Paul Palmquist-Gomes
- Université de Paris, Imagine- Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, Paris, F-75015, France
| | - Sigolène M Meilhac
- Université de Paris, Imagine- Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, Paris, F-75015, France.
| |
Collapse
|
6
|
Lindsey SE, Vignon-Clementel IE, Butcher JT. Assessing Early Cardiac Outflow Tract Adaptive Responses Through Combined Experimental-Computational Manipulations. Ann Biomed Eng 2021; 49:3227-3242. [PMID: 34117583 PMCID: PMC8664927 DOI: 10.1007/s10439-021-02802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Mechanical forces are essential for proper growth and remodeling of the primitive pharyngeal arch arteries (PAAs) into the great vessels of the heart. Despite general acknowledgement of a hemodynamic-malformation link, the direct correlation between hemodynamics and PAA morphogenesis remains poorly understood. The elusiveness is largely due to difficulty in performing isolated hemodynamic perturbations and quantifying changes in-vivo. Previous in-vivo arch artery occlusion/ablation experiments either did not isolate the effects of hemodynamics, did not analyze the results in a 3D context or did not consider the effects of varying degrees of occlusion. Here, we overcome these limitations by combining minimally invasive occlusion experiments in the avian embryo with 3D anatomical models of development and in-silico testing of experimental phenomenon. We detail morphological and hemodynamic changes 24 hours post vessel occlusion. 3D anatomical models showed that occlusion geometries had more circular cross-sectional areas and more elongated arches than their control counterparts. Computational fluid dynamics revealed a marked change in wall shear stress-morphology trends. Instantaneous (in-silico) occlusion models provided mechanistic insights into the dynamic vessel adaptation process, predicting pressure-area trends for a number of experimental occlusion arches. We follow the propagation of small defects in a single embryo Hamburger Hamilton (HH) Stage 18 embryo to a more serious defect in an HH29 embryo. Results demonstrate that hemodynamic perturbation of the presumptive aortic arch, through varying degrees of vessel occlusion, overrides natural growth mechanisms and prevents it from becoming the dominant arch of the aorta.
Collapse
Affiliation(s)
- Stephanie E Lindsey
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY, 14853-7202, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Irene E Vignon-Clementel
- Centre de Recherche Inria de Saclay-IDF, rue Honoré d'Estienne d'Orves, 91120, Palaiseau, France.
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY, 14853-7202, USA.
| |
Collapse
|
7
|
Fedrigo M, Visentin S, Veronese P, Barison I, Giarraputo A, Cosmi E, Thiene G, Gervasi MT, Basso C, Angelini A. Isolated Dissection of the Ductus Arteriosus Associated with Sudden Unexpected Intrauterine Death. J Cardiovasc Dev Dis 2021; 8:jcdd8080091. [PMID: 34436233 PMCID: PMC8396886 DOI: 10.3390/jcdd8080091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
We report five cases of sudden intrauterine death due to premature closure of the ductus arteriosus. In four cases, this was caused by dissecting the hematoma of the ductus arteriosus with intimal flap and obliteration of the lumen. In one case, the ductus arteriosus was aneurysmatic, with lumen occlusion caused by thrombus stratification. No drug therapy or free medication consumption were reported during pregnancy. The time of stillbirth ranged between 26 and 33 gestational weeks. We performed TUNEL analysis for apoptosis quantification. The dissecting features were intimal tears with flap formation in four of the cases, just above the origin of the ductus arteriosus from the pulmonary artery. The dissecting hematoma of the ductus arteriosus extended downward to the descending aorta and backward to the aortic arch with involvement of the left carotid and left subclavian arteries. TUNEL analysis showed a high number of apoptotic smooth muscle cells in the media in two cases. Abnormal ductal remodeling with absence of subintimal cushions, lacunar spaces rich in glycosaminoglycans (cystic medial necrosis), and smooth muscle cell apoptosis were the pathological substrates accounting for failure of remodeling process and dissection.
Collapse
Affiliation(s)
- Marny Fedrigo
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (M.F.); (I.B.); (A.G.); (G.T.); (C.B.)
| | - Silvia Visentin
- Department of Woman and Children Health, University of Padua, 35128 Padua, Italy; (S.V.); (P.V.); (E.C.); (M.T.G.)
| | - Paola Veronese
- Department of Woman and Children Health, University of Padua, 35128 Padua, Italy; (S.V.); (P.V.); (E.C.); (M.T.G.)
| | - Ilaria Barison
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (M.F.); (I.B.); (A.G.); (G.T.); (C.B.)
| | - Alessia Giarraputo
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (M.F.); (I.B.); (A.G.); (G.T.); (C.B.)
| | - Erich Cosmi
- Department of Woman and Children Health, University of Padua, 35128 Padua, Italy; (S.V.); (P.V.); (E.C.); (M.T.G.)
| | - Gaetano Thiene
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (M.F.); (I.B.); (A.G.); (G.T.); (C.B.)
| | - Maria Teresa Gervasi
- Department of Woman and Children Health, University of Padua, 35128 Padua, Italy; (S.V.); (P.V.); (E.C.); (M.T.G.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (M.F.); (I.B.); (A.G.); (G.T.); (C.B.)
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, 35128 Padua, Italy; (M.F.); (I.B.); (A.G.); (G.T.); (C.B.)
- Correspondence: ; Tel.: +39-049-8272260
| |
Collapse
|
8
|
Dyer LA, Rugonyi S. Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:90. [PMID: 34436232 PMCID: PMC8397097 DOI: 10.3390/jcdd8080090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
Collapse
Affiliation(s)
- Laura A. Dyer
- Department of Biology, University of Portland, Portland, OR 97203, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Peterson JC, Kelder TP, Goumans MJTH, Jongbloed MRM, DeRuiter MC. The Role of Cell Tracing and Fate Mapping Experiments in Cardiac Outflow Tract Development, New Opportunities through Emerging Technologies. J Cardiovasc Dev Dis 2021; 8:47. [PMID: 33925811 PMCID: PMC8146276 DOI: 10.3390/jcdd8050047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst knowledge regarding the pathophysiology of congenital heart disease (CHDs) has advanced greatly in recent years, the underlying developmental processes affecting the cardiac outflow tract (OFT) such as bicuspid aortic valve, tetralogy of Fallot and transposition of the great arteries remain poorly understood. Common among CHDs affecting the OFT, is a large variation in disease phenotypes. Even though the different cell lineages contributing to OFT development have been studied for many decades, it remains challenging to relate cell lineage dynamics to the morphologic variation observed in OFT pathologies. We postulate that the variation observed in cellular contribution in these congenital heart diseases might be related to underlying cell lineage dynamics of which little is known. We believe this gap in knowledge is mainly the result of technical limitations in experimental methods used for cell lineage analysis. The aim of this review is to provide an overview of historical fate mapping and cell tracing techniques used to study OFT development and introduce emerging technologies which provide new opportunities that will aid our understanding of the cellular dynamics underlying OFT pathology.
Collapse
Affiliation(s)
- Joshua C. Peterson
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| | - Tim P. Kelder
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| | - Marie José T. H. Goumans
- Department Cellular and Chemical Biology, Leiden University Medical Center, 2300RC Leiden, The Netherlands;
| | - Monique R. M. Jongbloed
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| |
Collapse
|
10
|
Stefanovic S, Etchevers HC, Zaffran S. Outflow Tract Formation-Embryonic Origins of Conotruncal Congenital Heart Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8040042. [PMID: 33918884 PMCID: PMC8069607 DOI: 10.3390/jcdd8040042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.
Collapse
|
11
|
De Ita M, Cisneros B, Rosas-Vargas H. Genetics of Transposition of Great Arteries: Between Laterality Abnormality and Outflow Tract Defect. J Cardiovasc Transl Res 2020; 14:390-399. [PMID: 32734553 DOI: 10.1007/s12265-020-10064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022]
Abstract
Transposition of great arteries (TGA) is a complex congenital heart disease whose etiology is still unknown. This defect has been associated, at least in part, with genetic abnormalities involved in laterality establishment and heart outflow tract development, which suggest a genetic heterogeneity. In animal models, the evidence of association with certain genes is strong but, surprisingly, genetic anomalies of its human orthologues are found only in a low proportion of patients and in nonaffected subjects, so that the underlying causes remain as an unexplored field. Evidence related to TGA suggests different pathogenic mechanisms involved between patients with normal organ disposition and isomerism. This article reviews the most important genetic abnormalities related to TGA and contextualizes them into the mechanism of embryonic development, comparing them between humans and mice, to comprehend the evidence that could be relevant for genetic counseling. Graphical abstract.
Collapse
Affiliation(s)
- Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- 2o Piso Hospital de Pediatría, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social IMSS, Av. Cuauhtémoc 330, Col Doctores, Delegación Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
12
|
Johnson AL, Schneider JE, Mohun TJ, Williams T, Bhattacharya S, Henderson DJ, Phillips HM, Bamforth SD. Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030027. [PMID: 32717817 PMCID: PMC7570199 DOI: 10.3390/jcdd7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital cardiovascular malformation is a common birth defect incorporating abnormalities of the outflow tract and aortic arch arteries, and mice deficient in the transcription factor AP-2α (Tcfap2a) present with complex defects affecting these structures. AP-2α is expressed in the pharyngeal surface ectoderm and neural crest at mid-embryogenesis in the mouse, but the precise tissue compartment in which AP-2α is required for cardiovascular development has not been identified. In this study we describe the fully penetrant AP-2α deficient cardiovascular phenotype on a C57Bl/6J genetic background and show that this is associated with increased apoptosis in the pharyngeal ectoderm. Neural crest cell migration into the pharyngeal arches was not affected. Cre-expressing transgenic mice were used in conjunction with an AP-2α conditional allele to examine the effect of deleting AP-2α from the pharyngeal surface ectoderm and the neural crest, either individually or in combination, as well as the second heart field. This, surprisingly, was unable to fully recapitulate the global AP-2α deficient cardiovascular phenotype. The outflow tract and arch artery phenotype was, however, recapitulated through early embryonic Cre-mediated recombination. These findings indicate that AP-2α has a complex influence on cardiovascular development either being required very early in embryogenesis and/or having a redundant function in many tissue layers.
Collapse
Affiliation(s)
- Amy-Leigh Johnson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | | | | | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anshutz Medical Campus, Aurora, CO 80045, USA;
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK;
| | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
13
|
Pulmonary ductal coarctation and left pulmonary artery interruption; pathology and role of neural crest and second heart field during development. PLoS One 2020; 15:e0228478. [PMID: 32413023 PMCID: PMC7228067 DOI: 10.1371/journal.pone.0228478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives In congenital heart malformations with pulmonary stenosis to atresia an abnormal lateral ductus arteriosus to left pulmonary artery connection can lead to a localised narrowing (pulmonary ductal coarctation) or even interruption We investigated embryonic remodelling and pathogenesis of this area. Material and methods Normal development was studied in WntCre reporter mice (E10.0–12.5) for neural crest cells and Nkx2.5 immunostaining for second heart field cells. Data were compared to stage matched human embryos and a VEGF120/120 mutant mouse strain developing pulmonary atresia. Results Normal mouse and human embryos showed that the mid-pharyngeal endothelial plexus, connected side-ways to the 6th pharyngeal arch artery. The ventral segment formed the proximal pulmonary artery. The dorsal segment (future DA) was solely surrounded by neural crest cells. The ventral segment had a dual outer lining with neural crest and second heart field cells, while the distal pulmonary artery was covered by none of these cells. The asymmetric contribution of second heart field to the future pulmonary trunk on the left side of the aortic sac (so-called pulmonary push) was evident. The ventral segment became incorporated into the pulmonary trunk leading to a separate connection of the left and right pulmonary arteries. The VEGF120/120 embryos showed a stunted pulmonary push and a variety of vascular anomalies. Summary Side-way connection of the DA to the left pulmonary artery is a congenital anomaly. The primary problem is a stunted development of the pulmonary push leading to pulmonary stenosis/atresia and a subsequent lack of proper incorporation of the ventral segment into the aortic sac. Clinically, the aberrant smooth muscle tissue of the ductus arteriosus should be addressed to prohibit development of severe pulmonary ductal coarctation or even interruption of the left pulmonary artery.
Collapse
|
14
|
Ishizaki-Asami R, Uchida K, Tsuchihashi T, Shibata A, Kodo K, Emoto K, Mikoshiba K, Takahashi T, Yamagishi H. Inositol 1,4,5-trisphosphate receptor 2 as a novel marker of vasculature to delineate processes of cardiopulmonary development. Dev Biol 2019; 458:237-245. [PMID: 31758944 DOI: 10.1016/j.ydbio.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022]
Abstract
Congenital heart diseases (CHDs) involving the outflow tract (OFT), such as persistent truncus arteriosus (PTA), lead to mortality and morbidity with implications not only in the heart, but also in the pulmonary vasculature. The mechanisms of pulmonary artery (PA) development and the etiologies underlying PA disorders associated with CHD remain poorly understood partly because of a specific marker for PA development is nonexistent. The three subtypes of inositol 1,4,5-trisphosphate receptors (IP3R1, 2, and 3) are intracellular Ca2+ channels that are essential for many tissues and organs. We discovered that IP3R2 was expressed in the vasculature and heart during development using transgenic mice, in which a LacZ marker gene was knocked into the IP3R2 locus. Whole-mount and section LacZ staining showed that IP3R2-LacZ-positive cells were detectable exclusively in the smooth muscle cells, or tunica media, of PA, merging into αSMA-positive cells during development. Furthermore, our analyses suggested that IP3R2-LacZ positive PA smooth muscle layers gradually elongate from the central PA to the peripheral PAs from E13.5 to E18.5, supporting the distal angiogenesis theory for the development of PA, whereas IP3R2-LacZ was rarely expressed in smooth muscle cells in the pulmonary trunk. Crossing IP3R-LacZ mice with mice hypomorphic for Tbx1 alleles revealed that PTA of Tbx1 mutants may result from agenesis or hypoplasia of the pulmonary trunk; thus, the left and right central to peripheral PAs connect directly to the dorsal side of the truncus arteriosus in these mutants. Additionally, we found hypercellular interstitial mesenchyme and delayed maturation of the lung endoderm in the Tbx1 mutant lungs. Our study identifies IP3R2 as a novel marker for clear visualization of PA during development and can be utilized for studying cardiopulmonary development and disease.
Collapse
Affiliation(s)
- Reina Ishizaki-Asami
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiko Uchida
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Health Center, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan.
| | - Takatoshi Tsuchihashi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pediatrics, Kawasaki Municipal Hospital, 12-1 Shinkawadōri, Kawasaki-ku, Kawasaki, Kanagawa, 210-0013, Japan
| | - Akimichi Shibata
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pediatrics, Japanese Red Cross Ashikaga Hospital, 284-1 Yobe-cho, Ashikaga, Tochigi, 326-0843, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Katsuhiko Mikoshiba
- SIAIS (Shanghai Institute for Advanced Immunochemical Studies), ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Toho University, Faculty of Science, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan; Laboratory for Developmental Neurobiology, Center for Brain Sciences, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
15
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
16
|
Wang JJ, Liu HX, Song L, Li HR, Yang YP, Zhang T, Jing Y. Isl-1 positive pharyngeal mesenchyme subpopulation and its role in the separation and remodeling of the aortic sac in embryonic mouse heart. Dev Dyn 2019; 248:771-783. [PMID: 31175693 DOI: 10.1002/dvdy.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Second heart field cells and neural crest cells have been reported to participate in the morphogenesis of the pharyngeal arch arteries (PAAs); however, how the PAAs grow out and are separated from the aortic sac into left and right sections is unknown. RESULTS An Isl-1 positive pharyngeal mesenchyme protrusion in the aortic sac ventrally extends and fuses with the aortic sac wall to form a midsagittal septum that divides the aortic sac. The aortic sac division separates the left and right PAAs to form independent arteries. The midsagittal septum dividing the aortic sac has a different expression pattern from the aortic-pulmonary (AP) septum in which Isl-1 positive cells are absent. At 11 days post-conception (dpc) in a mouse embryo, the Isl-1 positive mesenchyme protrusion appears as a heart-shaped structure, in which subpopulations with Isl-1+ Tbx3+ and Isl-1+ Nkx2.5+ cells are included. CONCLUSIONS The aortic sac is a dynamic structure that is continuously divided during the migration from the pharyngeal mesenchyme to the pericardial cavity. The separation of the aortic sac is not complete until the AP septum divides the aortic sac into the ascending aorta and pulmonary trunk. Moreover, the midsagittal septum and the AP septum are distinct structures.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui-Xia Liu
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Song
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hai-Rong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Zhang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ya Jing
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
18
|
Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MJTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 2018; 11:dmm.034637. [PMID: 30242109 PMCID: PMC6215433 DOI: 10.1242/dmm.034637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3-/- mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3-/- embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3-/- mice.
Collapse
Affiliation(s)
- Joshua C Peterson
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mary Chughtai
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Lambertus J Wisse
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Qingping Feng
- Dept. Physiology and Pharmacology, Schulich Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Marie-José T H Goumans
- Dept. Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J Conny VanMunsteren
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique R M Jongbloed
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Dept. Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marco C DeRuiter
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
19
|
Eley L, Alqahtani AM, MacGrogan D, Richardson RV, Murphy L, Salguero-Jimenez A, Sintes Rodriguez San Pedro M, Tiurma S, McCutcheon L, Gilmore A, de La Pompa JL, Chaudhry B, Henderson DJ. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. eLife 2018; 7:34110. [PMID: 29956664 PMCID: PMC6025960 DOI: 10.7554/elife.34110] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Abnormalities of the arterial valve leaflets, predominantly bicuspid aortic valve, are the commonest congenital malformations. Although many studies have investigated the development of the arterial valves, it has been assumed that, as with the atrioventricular valves, endocardial to mesenchymal transition (EndMT) is the predominant mechanism. We show that arterial is distinctly different from atrioventricular valve formation. Whilst the four septal valve leaflets are dominated by NCC and EndMT-derived cells, the intercalated leaflets differentiate directly from Tnnt2-Cre+/Isl1+ progenitors in the outflow wall, via a Notch-Jag dependent mechanism. Further, when this novel group of progenitors are disrupted, development of the intercalated leaflets is disrupted, resulting in leaflet dysplasia and bicuspid valves without raphe, most commonly affecting the aortic valve. This study thus overturns the dogma that heart valves are formed principally by EndMT, identifies a new source of valve interstitial cells, and provides a novel mechanism for causation of bicuspid aortic valves without raphe.
Collapse
Affiliation(s)
- Lorriane Eley
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ahlam Ms Alqahtani
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Rachel V Richardson
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay Murphy
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Salguero-Jimenez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Shindi Tiurma
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren McCutcheon
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adam Gilmore
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - José Luis de La Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Bill Chaudhry
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deborah J Henderson
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
He Z, Grunewald M, Dor Y, Keshet E. VEGF regulates relative allocation of Isl1 + cardiac progenitors to myocardial and endocardial lineages. Mech Dev 2016; 142:40-49. [PMID: 27794491 DOI: 10.1016/j.mod.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023]
Abstract
A fundamental issue in organogenesis is how dichotomous fate decisions are made securing proper allocation of multipotent progenitors to their respective descendants. Previous lineage tracing analyses showing Isl1+/VEGFR2+ cardiac progenitors in the second heart field give rise to both endocardium and myocardium suggest VEGF plays a role in this fate decision, conceivably promoting an endocardial fate. Isl1+ multipotent progenitors and lineage-committed descendants thereof were visualized and quantified within their transition zone in the outflow tract. Forced VEGF expression during the critical E8.5-E10.5 interval tilted the balance between myocardial- and endocardial-committed progenitors towards the latter, culminating in generation of surplus endocardium developing at the expense of a much thinner myocardium. Experiments ruled-out that surplus endocardium is due to VEGF-induced endocardial proliferation and that reduced myocardium is due to myocardial apoptosis. Inducing VEGF after most Isl1+ progenitors have been exhausted had no effect on the normal endocardia/myocardial ratio but instead produced an unrelated coronary phenotype. Together, these results uncover a novel role for VEGF in controlling proper allocation of Isl1+ cardiac progenitors to their respective descending lineages.
Collapse
Affiliation(s)
- Zhiheng He
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Myriam Grunewald
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eli Keshet
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
21
|
Nakajima Y. Mechanism responsible for D-transposition of the great arteries: Is this part of the spectrum of right isomerism? Congenit Anom (Kyoto) 2016; 56:196-202. [PMID: 27329052 DOI: 10.1111/cga.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
Abstract
D-transposition of the great arteries (TGA) is one of the most common conotruncal heart defects at birth and is characterized by a discordant ventriculoarterial connection with a concordant atrioventricular connection. The morphological etiology of TGA is an inverted or arrested rotation of the heart outflow tract (OFT, conotruncus), by which the aorta is transposed in the right ventral direction to the pulmonary trunk. The rotational defect of the OFT is thought to be attributed to hypoplasia of the subpulmonic conus, which originates from the left anterior heart field (AHF) residing in the mesodermal core of the first and second pharyngeal arches. AHF, especially on the left, at the early looped heart stage (corresponding to Carnegie stage 10-11 in the human embryo) is one of the regions responsible for the impediment that causes TGA morphology. In human or experimentally produced right isomerism, malposition of the great arteries including D-TGA is frequently associated. Mutations in genes involving left-right (L-R) asymmetry, such as NODAL, ACTRIIB and downstream target FOXH1, have been found in patients with right isomerism as well as in isolated TGA. The downstream pathways of Nodal-Foxh1 play a critical role not only in L-R determination in the lateral plate mesoderm but also in myocardial specification and differentiation in the AHF, suggesting that TGA is a phenotype in heterotaxia as well as the primary developmental defect of the AHF.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
22
|
Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RMW, Jurdzinski A, Hierck BP, Jongbloed MRM, Berger RMF, Plösch T, DeRuiter MC. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 2016; 9:413-25. [PMID: 26822476 PMCID: PMC4852499 DOI: 10.1242/dmm.022053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascular development of Lrp2 KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. The Lrp2 KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in the Lrp2 KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans with LRP2 mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis. Summary: This paper sheds a new light on the role of the second heart field and neural crest cells in outflow tract formation in the mouse embryo. Depletion of the LPR2 results in a disturbed contribution pattern and subsequent common arterial trunk.
Collapse
Affiliation(s)
- Maria E Baardman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Mathijs V Zwier
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | | | - Wilhelmina S Kerstjens-Frederikse
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, PO-Box 2040, Rotterdam 3000 CA, The Netherlands Neural Development and Gastroenterology Units, UCL Institute of Child Health, London WC1 NEH, UK
| | - Angelika Jurdzinski
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Beerend P Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology and Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| |
Collapse
|
23
|
El Robrini N, Etchevers HC, Ryckebüsch L, Faure E, Eudes N, Niederreither K, Zaffran S, Bertrand N. Cardiac outflow morphogenesis depends on effects of retinoic acid signaling on multiple cell lineages. Dev Dyn 2015; 245:388-401. [PMID: 26442704 DOI: 10.1002/dvdy.24357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/20/2015] [Accepted: 09/27/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Retinoic acid (RA), the bioactive derivative of vitamin A, is essential for vertebrate heart development. Both excess and reduced RA signaling lead to cardiovascular malformations affecting the outflow tract (OFT). To address the cellular mechanisms underlying the effects of RA signaling during OFT morphogenesis, we used transient maternal RA supplementation to rescue the early lethality resulting from inactivation of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene. RESULTS By embryonic day 13.5, all rescued Raldh2(-/-) hearts exhibit severe, reproducible OFT septation defects, although wild-type and Raldh2(+/-) littermates have normal hearts. Cardiac neural crest cells (cNCC) were present in OFT cushions of Raldh2(-/-) mutant embryos but ectopically located in the periphery of the endocardial cushions, rather than immediately underlying the endocardium. Excess mesenchyme was generated by Raldh2(-/-) mutant endocardium, which displaced cNCC derivatives from their subendocardial, medial position. CONCLUSIONS RA signaling affects not only cNCC numbers but also their position relative to endocardial mesenchyme during the septation process. Our study shows that inappropriate coordination between the different cell types of the OFT perturbs its morphogenesis and leads to a severe congenital heart defect, persistent truncus arteriosus.
Collapse
Affiliation(s)
- Nicolas El Robrini
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Heather C Etchevers
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Lucile Ryckebüsch
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Emilie Faure
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Nathalie Eudes
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Karen Niederreither
- CNRS UMR 7104, INSERM U964, IGBMC, University of Strasbourg, Illkirch, France
| | - Stéphane Zaffran
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| | - Nicolas Bertrand
- Aix-Marseille University, GMGF, UMR_S910, Faculté de Médecine, Marseille, France.,INSERM U910, Faculté de Médecine, Marseille, France
| |
Collapse
|
24
|
Narematsu M, Kamimura T, Yamagishi T, Fukui M, Nakajima Y. Impaired development of left anterior heart field by ectopic retinoic acid causes transposition of the great arteries. J Am Heart Assoc 2015; 4:jah3958. [PMID: 25929268 PMCID: PMC4599416 DOI: 10.1161/jaha.115.001889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Transposition of the great arteries is one of the most commonly diagnosed conotruncal heart defects at birth, but its etiology is largely unknown. The anterior heart field (AHF) that resides in the anterior pharyngeal arches contributes to conotruncal development, during which heart progenitors that originated from the left and right AHF migrate to form distinct conotruncal regions. The aim of this study is to identify abnormal AHF development that causes the morphology of transposition of the great arteries. Methods and Results We placed a retinoic acid–soaked bead on the left or the right or on both sides of the AHF of stage 12 to 14 chick embryos and examined the conotruncal heart defect at stage 34. Transposition of the great arteries was diagnosed at high incidence in embryos for which a retinoic acid–soaked bead had been placed in the left AHF at stage 12. Fluorescent dye tracing showed that AHF exposed to retinoic acid failed to contribute to conotruncus development. FGF8 and Isl1 expression were downregulated in retinoic acid–exposed AHF, and differentiation and expansion of cardiomyocytes were suppressed in cultured AHF in medium supplemented with retinoic acid. Conclusions The left AHF at the early looped heart stage, corresponding to Carnegie stages 10 to 11 (28 to 29 days after fertilization) in human embryos, is the region of the impediment that causes the morphology of transposition of the great arteries.
Collapse
Affiliation(s)
- Mayu Narematsu
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| | - Tatsuya Kamimura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| | - Toshiyuki Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| | - Mitsuru Fukui
- Laboratory of Statics, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.F.)
| | - Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan (M.N., T.K., T.Y., Y.N.)
| |
Collapse
|
25
|
Iizuka-Kogo A, Senda T, Akiyama T, Shimomura A, Nomura R, Hasegawa Y, Yamamura KI, Kogo H, Sawai N, Matsuzaki T. Requirement of DLG1 for cardiovascular development and tissue elongation during cochlear, enteric, and skeletal development: possible role in convergent extension. PLoS One 2015; 10:e0123965. [PMID: 25860837 PMCID: PMC4393223 DOI: 10.1371/journal.pone.0123965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
The Dlg1 gene encodes a member of the MAGUK protein family involved in the polarization of epithelial cells. Null mutant mice for the Dlg1 gene (Dlg1-/- mice) exhibit respiratory failure and cyanosis, and die soon after birth. However, the cause of this neonatal lethality has not been determined. In the present study, we further examined Dlg1-/- mice and found severe defects in the cardiovascular system, including ventricular septal defect, persistent truncus arteriosus, and double outlet right ventricle, which would cause the neonatal lethality. These cardiovascular phenotypes resemble those of mutant mice lacking planar cell polarity (PCP) genes and support a recent notion that DLG1 is involved in the PCP pathway. We assessed the degree of involvement of DLG1 in the development of other organs, as the cochlea, intestine, and skeleton, in which PCP signaling has been suggested to play a role. In the organ of Corti, tissue elongation was inhibited accompanied by disorganized arrangement of the hair cell rows, while the orientation of the stereocilia bundle was normal. In the sternum, cleft sternum, abnormal calcification pattern of cartilage, and disorganization of chondrocytes were observed. Furthermore, shortening of the intestine, sternum, and long bones of the limbs was observed. These phenotypes of Dlg1-/- mice involving cellular disorganization and insufficient tissue elongation strongly suggest a defect in the convergent extension movements in these mice. Thus, our present results provide a possibility that DLG1 is particularly required for convergent extension among PCP signaling-dependent processes.
Collapse
Affiliation(s)
- Akiko Iizuka-Kogo
- Department of Anatomy I, Fujita Health University School of Medicine, Aichi, Japan
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Gunma, Japan
- * E-mail:
| | - Takao Senda
- Department of Anatomy I, Fujita Health University School of Medicine, Aichi, Japan
- Department of Anatomy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Shimomura
- Department of Anatomy I, Fujita Health University School of Medicine, Aichi, Japan
- The Department of Communication Disorders, School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ryuji Nomura
- Department of Anatomy I, Fujita Health University School of Medicine, Aichi, Japan
| | - Yoshimi Hasegawa
- Department of Anatomy I, Fujita Health University School of Medicine, Aichi, Japan
| | - Ken-ichi Yamamura
- Division of Developmental Genetics, Institute of Resource Development Analysis, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kogo
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Nobuhiko Sawai
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
26
|
Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM, Jongbloed MRM. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med 2014; 46:640-52. [PMID: 25307363 DOI: 10.3109/07853890.2014.959557] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The primary unseptated heart tube undergoes extensive remodeling including septation at the atrial, atrioventricular, ventricular, and ventriculo-arterial level. Alignment and fusion of the septal components is required to ensure full septation of the heart. Deficiencies lead to septal defects at various levels. Addition of myocardium and mesenchymal tissues from the second heart field (SHF) to the primary heart tube, as well as a population of neural crest cells, provides the necessary cellular players. Surprisingly, the study of the molecular background of these defects does not show a great diversity of responsible transcription factors and downstream gene pathways. Epigenetic modulation and mutations high up in several transcription factor pathways (e.g. NODAL and GATA4) may lead to defects at all levels. Disturbance of modulating pathways, involving primarily the SHF-derived cell populations and the genes expressed therein, results at the arterial pole (e.g. TBX1) in a spectrum of ventricular septal defects located at the level of the outflow tract. At the venous pole (e.g. TBX5), it can explain a variety of atrial septal defects. The various defects can occur as isolated anomalies or within families. In this review developmental, morphological, genetic, as well as epigenetic aspects of septal defects are discussed.
Collapse
|
27
|
Abstract
First trimester sonography is a widely used technique to examine the foetus early in pregnancy. The desire to recognise complex anatomy already in early developmental stages stresses the need for a thorough knowledge of basic developmental processes as well as recognition of cardiac compartments based on their morphology. In this paper, we describe the possibilities and limitations of sonographic assessment of the foetal heart between 10 and 14 weeks of gestation and correlate this to morphology. Examples of the most commonly detected congenital anomalies are atrioventricular septal defects, transposition of the great arteries, and hypoplastic left heart, which are shown in this paper.
Collapse
|
28
|
Dyer LA, Wu Y, Patterson C. Protein isolation from the developing embryonic mouse heart valve region. J Vis Exp 2014:51911. [PMID: 25285454 DOI: 10.3791/51911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Western blot analysis is a commonly employed technique for detecting and quantifying protein levels. However, for small tissue samples, this analysis method may not be sufficiently sensitive to detect a protein of interest. To overcome these difficulties, we examined protocols for obtaining protein from adult human cardiac valves and modified these protocols for the developing early embryonic mouse counterparts. In brief, the mouse embryonic aortic valve regions, including the aortic valve and surrounding aortic wall, are collected in the minimal possible volume of a Tris-based lysis buffer with protease inhibitors. If required based on the breeding strategy, embryos are genotyped prior to pooling four embryonic aortic valve regions for homogenization. After homogenization, an SDS-based sample buffer is used to denature the sample for running on an SDS-PAGE gel and subsequent western blot analysis. Although the protein concentration remains too low to quantify using spectrophotometric protein quantification assays and have sample remaining for subsequent analyses, this technique can be used to successfully detect and semi-quantify phosphorylated proteins via western blot from pooled samples of four embryonic day 13.5 mouse aortic valve regions, each of which yields approximately 1 μg of protein. This technique will be of benefit for studying cell signaling pathway activation and protein expression levels during early embryonic mouse valve development.
Collapse
Affiliation(s)
- Laura A Dyer
- McAllister Heart Institute, University of North Carolina at Chapel Hill;
| | - Yaxu Wu
- McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Cam Patterson
- New York-Presbyterian Hospital/Weill-Cornell Medical Center
| |
Collapse
|
29
|
van Engelen K, Bartelings MM, Gittenberger-de Groot AC, Baars MJH, Postma AV, Bijlsma EK, Mulder BJM, Jongbloed MRM. Bicuspid aortic valve morphology and associated cardiovascular abnormalities in fetal Turner syndrome: a pathomorphological study. Fetal Diagn Ther 2014; 36:59-68. [PMID: 24903004 DOI: 10.1159/000357706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is common in Turner syndrome (TS). In adult TS, 82-95% of BAVs have fusion of the right and left coronary leaflets. Data in fetal stages are scarce. The purpose of this study was to gain insight into aortic valve morphology and associated cardiovascular abnormalities in a fetal TS cohort with adverse outcome early in development. MATERIAL AND METHODS We studied post-mortem heart specimens of 36 TS fetuses and 1 TS newborn. RESULTS BAV was present in 28 (76%) hearts. BAVs showed fusion of the right and left coronary leaflet (type 1 BAV) in 61%, and fusion of the right coronary and non-coronary leaflet (type 2 BAV) in 39%. There were no significant differences in occurrence of additional cardiovascular abnormalities between type 1 and type 2 BAV. However, all type 2 BAV hearts showed ascending aorta hypoplasia and tubular hypoplasia of the B segment, as opposed to only 55 and 64% of type 1 BAV hearts, respectively. DISCUSSION The proportion of type 2 BAV seems higher in TS fetuses than in adults. Fetal type 2 BAV hearts all had severe aortic pathology, possibly contributing to a worse prognosis of type 2 than type 1 BAV in TS.
Collapse
Affiliation(s)
- Klaartje van Engelen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: implications for myocardial differentiation and regional identity. Dev Biol 2014; 390:191-207. [PMID: 24680892 DOI: 10.1016/j.ydbio.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
Collapse
|
31
|
Gittenberger-de Groot AC, Bartelings MM, Poelmann RE, Haak MC, Jongbloed MRM. Embryology of the heart and its impact on understanding fetal and neonatal heart disease. Semin Fetal Neonatal Med 2013; 18:237-44. [PMID: 23886508 DOI: 10.1016/j.siny.2013.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heart development is a complex process during which the heart needs to transform from a single tube towards a fully septated heart with four chambers and a separated outflow tract. Several major events contribute to this process, that largely overlap in time. Abnormal heart development results in congenital heart disease, which has an estimated incidence of 1% of liveborn children. Eighty percent of cases of congenital heart disease are considered to have a multifactoral developmental background, whereas knowledge of monogenetic causes for congenital heart disease is still limited. This review focuses on several novel findings in cardiac development that might enhance our knowledge of aetiology and support refinement of prenatal diagnosis of congenital heart disease.
Collapse
Affiliation(s)
- Adriana C Gittenberger-de Groot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Houyel L, Bajolle F, Capderou A, Laux D, Parisot P, Bonnet D. The pattern of the coronary arterial orifices in hearts with congenital malformations of the outflow tracts: a marker of rotation of the outflow tract during cardiac development? J Anat 2013; 222:349-57. [PMID: 23317176 DOI: 10.1111/joa.12023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2012] [Indexed: 11/29/2022] Open
Abstract
Outflow tract defects, including cardiac neural crest defects (so-called conotruncal defects) and transposition of the great arteries, are due to an abnormal rotation of the outflow tract during cardiac development. Coronary orifices are often abnormal in outflow tract defects, particularly in common arterial trunk (CAT). A recent study indicates that abnormal coronary artery pattern in a mouse model with common arterial outlet (Tbx1-/- mouse mutant) could be due to a reduced and malpositioned subpulmonary coronary-refractory myocardial domain. The aim of our study was to demonstrate the relation between coronary orifices pattern in outflow tract defects in human and the abnormal embryonic rotation of the outflow tract. We analyzed 101 heart specimens with outflow tract defects: 46 CAT, 15 tetralogy of Fallot (TOF), 29 TOF with pulmonary atresia (TOF-PA), 11 double-outlet right ventricle with subaortic ventricular septal defect (DORV) and 17 controls. The position of left and right coronary orifices (LCO, RCO) was measured in degrees on the aortic/truncal circumference. The anterior angle between LCO and RCO (α) was calculated. The LCO was more posterior in TOF (31 °), TOF-PA (47 °), DORV (44 °), CAT (63 °), compared with controls (0 °, P < 0.05), and more posterior in CAT than in other outflow tract defects (P < 0.05). The RCO was more anterior in TOF (242 °), TOF-PA (245 °) and DORV (271 °) than in controls (213 °, P < 0.05), but not in CAT (195 °). The α angle was similar in TOF, TOF-PA, DORV and controls (149 °, 162 °, 133 °, 147 °), but significantly larger in CAT (229 °, P < 0.0001). In all outflow tract defects but CAT, the displacement of LCO (anterior) and RCO (posterior), while the α angle remains constant, might be due to incomplete rotation of the myocardium at the base of the outflow tract, leading to an abnormally positioned subpulmonary coronary-refractory myocardial domain. The larger α angle in CAT could reflect its dual identity, aortic and pulmonary.
Collapse
Affiliation(s)
- Lucile Houyel
- Hôpital Marie-Lannelongue, CMR-M3C, Université Paris-Sud, Le Plessis-Robinson, France.
| | | | | | | | | | | |
Collapse
|