1
|
Wu S, Chen X, Chen Y, Li C, Yang R, Zhang T, Ma J. Genetic characteristics associated with isolated Microtia revealed through whole exome sequencing of 201 pedigrees. Hum Mol Genet 2025:ddaf063. [PMID: 40275486 DOI: 10.1093/hmg/ddaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Microtia is one of the most common congenital craniofacial malformations, characterized by the maldevelopment of the external and middle ear. While numerous genes have been implicated in syndromic forms of microtia, the genetic underpinnings of isolated microtia remain poorly understood. In this study, we conducted whole exome sequencing (WES) on 201 pedigrees with isolated microtia to investigate its genetic basis. Bioinformatics analysis identified 1362 deleterious variants corresponding to 332 candidate genes, including 40 previously associated with microtia-related phenotypes. Among these, variants in FOXI3, the most frequently identified pathogenic gene for isolated microtia so far, were detected. Remarkably, the remaining 39 genes, which have been recognized as pathogenic in syndromes with microtia, are also suggested to play a role in isolated microtia. However, the precise molecular mechanisms by which these genes contribute to microtia remain to be elucidated. Furthermore, through protein-protein interaction network analysis, functional annotation, and zebrafish expression profiling, we identified two novel genes, MCM2 and BDNF, as the most promising contributors to the pathogenesis of isolated microtia. Our findings, based on the largest WES study of isolated microtia pedigrees to date, provide new insights into the genetic architecture of isolated microtia and suggest promising avenues for future research.
Collapse
Affiliation(s)
- Siyi Wu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China
- Institute of Medical Genetics & Genomics, Fudan University, No. 131 Dong'an Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
2
|
Im H, Song Y, Kim JK, Park DK, Kim DS, Kim H, Shin JO. Molecular Regulation of Palatogenesis and Clefting: An Integrative Analysis of Genetic, Epigenetic Networks, and Environmental Interactions. Int J Mol Sci 2025; 26:1382. [PMID: 39941150 PMCID: PMC11818578 DOI: 10.3390/ijms26031382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Palatogenesis is a complex developmental process requiring temporospatially coordinated cellular and molecular events. The following review focuses on genetic, epigenetic, and environmental aspects directing palatal formation and their implication in orofacial clefting genesis. Essential for palatal shelf development and elevation (TGF-β, BMP, FGF, and WNT), the subsequent processes of fusion (SHH) and proliferation, migration, differentiation, and apoptosis of neural crest-derived cells are controlled through signaling pathways. Interruptions to these processes may result in the birth defect cleft lip and/or palate (CL/P), which happens in approximately 1 in every 700 live births worldwide. Recent progress has emphasized epigenetic regulations via the class of non-coding RNAs with microRNAs based on critically important biological processes, such as proliferation, apoptosis, and epithelial-mesenchymal transition. These environmental risks (maternal smoking, alcohol, retinoic acid, and folate deficiency) interact with genetic and epigenetic factors during palatogenesis, while teratogens like dexamethasone and TCDD inhibit palatal fusion. In orofacial cleft, genetic, epigenetic, and environmental impact on the complex epidemiology. This is an extensive review, offering current perspectives on gene-environment interactions, as well as non-coding RNAs, in palatogenesis and emphasizing open questions regarding these interactions in palatal development.
Collapse
Affiliation(s)
- Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Yujeong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong 339770, Republic of Korea
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE 19711, USA
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Hankyu Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| |
Collapse
|
3
|
Williams RM, Taylor G, Ling ITC, Candido-Ferreira I, Fountain DM, Mayes S, Ateş-Kalkan PS, Haug JO, Price AJ, McKinney SA, Bozhilovh YK, Tyser RCV, Srinivas S, Hughes JR, Sauka-Spengler T. Chromatin remodeller Chd7 is developmentally regulated in the neural crest by tissue-specific transcription factors. PLoS Biol 2024; 22:e3002786. [PMID: 39418292 PMCID: PMC11521297 DOI: 10.1371/journal.pbio.3002786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/29/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Neurocristopathies such as CHARGE syndrome result from aberrant neural crest development. A large proportion of CHARGE cases are attributed to pathogenic variants in the gene encoding CHD7, chromodomain helicase DNA binding protein 7, which remodels chromatin. While the role for CHD7 in neural crest development is well documented, how this factor is specifically up-regulated in neural crest cells is not understood. Here, we use epigenomic profiling of chick and human neural crest to identify a cohort of enhancers regulating Chd7 expression in neural crest cells and other tissues. We functionally validate upstream transcription factor binding at candidate enhancers, revealing novel epistatic relationships between neural crest master regulators and Chd7, showing tissue-specific regulation of a globally acting chromatin remodeller. Furthermore, we find conserved enhancer features in human embryonic epigenomic data and validate the activity of the human equivalent CHD7 enhancers in the chick embryo. Our findings embed Chd7 in the neural crest gene regulatory network and offer potentially clinically relevant elements for interpreting CHARGE syndrome cases without causative allocation.
Collapse
Affiliation(s)
- Ruth M. Williams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Guneş Taylor
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Irving T. C. Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, Department of Paediatric Surgery, Children’s Hospital Oxford, Oxford, United Kingdom
| | - Ivan Candido-Ferreira
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Daniel M. Fountain
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Sarah Mayes
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | | | - Julianna O. Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yavor K. Bozhilovh
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Richard C. V. Tyser
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Jim R. Hughes
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| |
Collapse
|
4
|
Breuer M, Rummler M, Singh J, Maher S, Zaouter C, Jamadagni P, Pilon N, Willie BM, Patten SA. CHD7 regulates craniofacial cartilage development via controlling HTR2B expression. J Bone Miner Res 2024; 39:498-512. [PMID: 38477756 PMCID: PMC11262153 DOI: 10.1093/jbmr/zjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024]
Abstract
Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.
Collapse
Affiliation(s)
- Maximilian Breuer
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Jaskaran Singh
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Sabrina Maher
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charlotte Zaouter
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Priyanka Jamadagni
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Départment des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
5
|
Gopinathan G, Xu Q, Luan X, Diekwisch TGH. CFDP1 regulates the stability of pericentric heterochromatin thereby affecting RAN GTPase activity and mitotic spindle formation. PLoS Biol 2024; 22:e3002574. [PMID: 38630655 PMCID: PMC11023358 DOI: 10.1371/journal.pbio.3002574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 03/02/2024] [Indexed: 04/19/2024] Open
Abstract
The densely packed centromeric heterochromatin at minor and major satellites is comprised of H3K9me2/3 histones, the heterochromatin protein HP1α, and histone variants. In the present study, we sought to determine the mechanisms by which condensed heterochromatin at major and minor satellites stabilized by the chromatin factor CFDP1 affects the activity of the small GTPase Ran as a requirement for spindle formation. CFDP1 colocalized with heterochromatin at major and minor satellites and was essential for the structural stability of centromeric heterochromatin. Loss of CENPA, HP1α, and H2A.Z heterochromatin components resulted in decreased binding of the spindle nucleation facilitator RCC1 to minor and major satellite repeats. Decreased RanGTP levels as a result of diminished RCC1 binding interfered with chromatin-mediated microtubule nucleation at the onset of mitotic spindle formation. Rescuing chromatin H2A.Z levels in cells and mice lacking CFDP1 through knock-down of the histone chaperone ANP32E not only partially restored RCC1-dependent RanGTP levels but also alleviated CFDP1-knockout-related craniofacial defects and increased microtubule nucleation in CFDP1/ANP32E co-silenced cells. Together, these studies provide evidence for a direct link between condensed heterochromatin at major and minor satellites and microtubule nucleation through the chromatin protein CFDP1.
Collapse
Affiliation(s)
- Gokul Gopinathan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Qian Xu
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Xianghong Luan
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Thomas G. H. Diekwisch
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
6
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
7
|
Shpargel KB, Quickstad G. SETting up the genome: KMT2D and KDM6A genomic function in the Kabuki syndrome craniofacial developmental disorder. Birth Defects Res 2023; 115:1885-1898. [PMID: 37800171 PMCID: PMC11190966 DOI: 10.1002/bdr2.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Kabuki syndrome is a congenital developmental disorder that is characterized by distinctive facial gestalt and skeletal abnormalities. Although rare, the disorder shares clinical features with several related craniofacial syndromes that manifest from mutations in chromatin-modifying enzymes. Collectively, these clinical studies underscore the crucial, concerted functions of chromatin factors in shaping developmental genome structure and driving cellular transcriptional states. Kabuki syndrome predominantly results from mutations in KMT2D, a histone H3 lysine 4 methylase, or KDM6A, a histone H3 lysine 27 demethylase. AIMS In this review, we summarize the research efforts to model Kabuki syndrome in vivo to understand the cellular and molecular mechanisms that lead to the craniofacial and skeletal pathogenesis that defines the disorder. DISCUSSION As several studies have indicated the importance of KMT2D and KDM6A function through catalytic-independent mechanisms, we highlight noncanonical roles for these enzymes as recruitment centers for alternative chromatin and transcriptional machinery.
Collapse
Affiliation(s)
- Karl B. Shpargel
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Gabrielle Quickstad
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Keuls RA, Oh YS, Patel I, Parchem RJ. Post-transcriptional regulation in cranial neural crest cells expands developmental potential. Proc Natl Acad Sci U S A 2023; 120:e2212578120. [PMID: 36724256 PMCID: PMC9963983 DOI: 10.1073/pnas.2212578120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 02/03/2023] Open
Abstract
Developmental potential is progressively restricted after germ layer specification during gastrulation. However, cranial neural crest cells challenge this paradigm, as they develop from anterior ectoderm, yet give rise to both ectodermal derivatives of the peripheral nervous system and ectomesenchymal bone and cartilage. How cranial neural crest cells differentiate into multiple lineages is poorly understood. Here, we demonstrate that cranial neural crest cells possess a transient state of increased chromatin accessibility. We profile the spatiotemporal emergence of premigratory neural crest and find evidence of lineage bias toward either a neuronal or ectomesenchymal fate, with each expressing distinct factors from earlier stages of development. We identify the miR-302 miRNA family to be highly expressed in cranial neural crest cells and genetic deletion leads to precocious specification of the ectomesenchymal lineage. Loss of mir-302 results in reduced chromatin accessibility in the neuronal progenitor lineage of neural crest and a reduction in peripheral neuron differentiation. Mechanistically, we find that mir-302 directly targets Sox9 to slow the timing of ectomesenchymal neural crest specification and represses multiple genes involved in chromatin condensation to promote accessibility required for neuronal differentiation. Our findings reveal a posttranscriptional mechanism governed by miRNAs to expand developmental potential of cranial neural crest.
Collapse
Affiliation(s)
- Rachel A. Keuls
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Young Sun Oh
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Ivanshi Patel
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX77030
| | - Ronald J. Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
9
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Dąbrowska J, Biedziak B, Szponar-Żurowska A, Budner M, Jagodziński PP, Płoski R, Mostowska A. Identification of novel susceptibility genes for non-syndromic cleft lip with or without cleft palate using NGS-based multigene panel testing. Mol Genet Genomics 2022; 297:1315-1327. [PMID: 35778651 DOI: 10.1007/s00438-022-01919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/12/2022] [Indexed: 01/02/2023]
Abstract
For non-syndromic cleft lip with or without cleft palate (ns-CL/P), the proportion of heritability explained by the known risk loci is estimated to be about 30% and is captured mainly by common variants identified in genome-wide association studies. To contribute to the explanation of the "missing heritability" problem for orofacial clefts, a candidate gene approach was taken to investigate the potential role of rare and private variants in the ns-CL/P risk. Using the next-generation sequencing technology, the coding sequence of a set of 423 candidate genes was analysed in 135 patients from the Polish population. After stringent multistage filtering, 37 rare coding and splicing variants of 28 genes were identified. 35% of these genetic alternations that may play a role of genetic modifiers influencing an individual's risk were detected in genes not previously associated with the ns-CL/P susceptibility, including COL11A1, COL17A1, DLX1, EFTUD2, FGF4, FGF8, FLNB, JAG1, NOTCH2, SHH, WNT5A and WNT9A. Significant enrichment of rare alleles in ns-CL/P patients compared with controls was also demonstrated for ARHGAP29, CHD7, COL17A1, FGF12, GAD1 and SATB2. In addition, analysis of panoramic radiographs of patients with identified predisposing variants may support the hypothesis of a common genetic link between orofacial clefts and dental abnormalities. In conclusion, our study has confirmed that rare coding variants might contribute to the genetic architecture of ns-CL/P. Since only single predisposing variants were identified in novel cleft susceptibility genes, future research will be required to confirm and fully understand their role in the aetiology of ns-CL/P.
Collapse
Affiliation(s)
- Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland
| | - Barbara Biedziak
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Szponar-Żurowska
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Margareta Budner
- Eastern Poland Burn Treatment and Reconstructive Center, Leczna, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland.
| |
Collapse
|
11
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
12
|
Liu C, Kang N, Guo Y, Gong P. Advances in Chromodomain Helicase DNA-Binding (CHD) Proteins Regulating Stem Cell Differentiation and Human Diseases. Front Cell Dev Biol 2021; 9:710203. [PMID: 34616726 PMCID: PMC8488160 DOI: 10.3389/fcell.2021.710203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Regulation of gene expression is critical for stem cell differentiation, tissue development, and human health maintenance. Recently, epigenetic modifications of histone and chromatin remodeling have been verified as key controllers of gene expression and human diseases. Objective: In this study, we review the role of chromodomain helicase DNA-binding (CHD) proteins in stem cell differentiation, cell fate decision, and several known human developmental disorders and cancers. Conclusion: CHD proteins play a crucial role in stem cell differentiation and human diseases.
Collapse
Affiliation(s)
- Caojie Liu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Abstract
STUDY DESIGN A case-control association study. OBJECTIVES The aim of this study was to investigate whether CHD7 was associated with adolescent idiopathic scoliosis in Chinese Han population and to further explore the functional role of CHD7 in the development of adolescent idiopathic scoliosis (AIS). SUMMARY OF BACKGROUND DATA Several studies have explored the association of CHD7 with scoliosis in patients of European descent, while the results were inconsistent. There was a lack of study investigating the association of CHD7 with AIS in Chinese Han population. METHODS Variants within CHD7 were genotyped in 965 AIS patients and 976 healthy controls. Whole exome sequencing was performed in 96 AIS patients. Paraspinal muscles of 43AIS patients and 38 lumbar disc herniation patients were collected for the evaluation of the gene expression. Intergroup comparison was performed with the χ2 test for genotyping data or Student t test for tissue expression. The relationship of CHD7 expression with clinical phenotypes was determined by the Pearson correlation. RESULT Variant rs121434341 of CHD7 was significantly associated with AIS. AIS patients were found to have a remarkable higher frequency of allele G when compared with healthy controls (2.89% vs. 1.57%, P = 0.0018), with an odds ratio value of 1.89. A pathogenic mutation affecting normal splicing was identified in a patient. Moreover, the expression level of CHD7 in AIS patients was significantly lower than in the controls (0.0008437 ± 0.00004583 vs. 0.001129 ± 0.00003773, P < 0.001), and CHD7 expression was positively correlated with bone mineral contents (P = 0.036, r = 0.32). CONCLUSION Genetic variants of CHD7 were significantly associated with AIS. Moreover, the decreased expression of CHD7 may be involved in the abnormal bone mass of AIS patients. Further studies are warranted to investigate the functional role of CHD7 in the pathogenesis of AIS.Level of Evidence: 3.
Collapse
|
14
|
De Luca C, Picone S, Cassina M, Marziali S, Morlino S, Camerota L, Tamburrini G, Castori M, Paolillo P, Salviati L, Brancati F. Craniosynostosis is a feature of CHD7-related CHARGE syndrome. Am J Med Genet A 2021; 185:2160-2163. [PMID: 33844462 DOI: 10.1002/ajmg.a.62208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/08/2022]
Abstract
CHARGE syndrome is a rare genetic multiple-malformation disorder characterized by wide phenotypic variability. It is often caused by heterozygous variants in CHD7 and, more rarely, SEMA3E. Although craniofacial alterations are frequent in this condition, to date craniosynostosis is not considered part of the clinical spectrum. Here, we report bi-coronal craniosynostosis in a newborn affected by CHARGE syndrome caused by the de novo heterozygous c.6157C>T, p.(Arg2053*) CHD7 variant. We found two additional subjects in the literature with different craniosynostoses and distinct CHD7 alterations. The inclusion of CHD7-related CHARGE syndrome in the group of rare causes of syndromic craniosynostoses is proposed.
Collapse
Affiliation(s)
- Chiara De Luca
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simonetta Picone
- Neonatology and Neonatal Intensive Care, Policlinico Casilino Hospital, Rome, Italy
| | - Matteo Cassina
- Clinical Genetics, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Simone Marziali
- Division of Neuroradiology, Policlinico Casilino Hospital, Rome, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Letizia Camerota
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianpiero Tamburrini
- Pediatric Neurosurgery, Institute of Neurosurgery, Fondazione Policlinico Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Piermichele Paolillo
- Neonatology and Neonatal Intensive Care, Policlinico Casilino Hospital, Rome, Italy
| | - Leonardo Salviati
- Clinical Genetics, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Francesco Brancati
- Human Genetics, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Division of Human Functional Genomics, San Raffaele Pisana IRCCS, Rome, Italy
| |
Collapse
|
15
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Wyatt BH, Raymond TO, Lansdon LA, Darbro BW, Murray JC, Manak JR, Dickinson AJG. Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders. Genesis 2021; 59:e23394. [PMID: 32918369 PMCID: PMC10701884 DOI: 10.1002/dvg.23394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
The chromodomain family member chromodomain 1 (CHD1) has been shown to have numerous critical molecular functions including transcriptional regulation, splicing, and DNA repair. Complete loss of function of this gene is not compatible with life. On the other hand, missense and copy number variants of CHD1 can result in intellectual disabilities and craniofacial malformations in human patients including cleft palate and Pilarowski-Bjornsson Syndrome. We have used the aquatic developmental model organism Xenopus laevis, to determine a specific role for Chd1 in such cranioafcial disorders. Protein and gene knockdown techniques in Xenopus, including antisense oligos and mosaic Crispr/Cas9-mediated mutagenesis, recapitulated the craniofacial defects observed in humans. Further analysis indicated that embryos deficient in Chd1 had defects in cranial neural crest development and jaw cartilage morphology. Additionally, flow cytometry and immunohistochemistry revealed that decreased Chd1 resulted in increased in apoptosis in the developing head. Together, these experiments demonstrate that Chd1 is critical for fundamental processes and cell survival in craniofacial development. We also presented evidence that Chd1 is regulated by retinoic acid signaling during craniofacial development. Expression levels of chd1 mRNA, specifically in the head, were increased by RAR agonist exposure and decreased upon antagonist treatment. Subphenotypic levels of an RAR antagonist and Chd1 morpholinos synergized to result in orofacial defects. Further, RAR DNA binding sequences (RAREs) were detected in chd1 regulatory regions by bioinformatic analysis. In summary, by combining human genetics and experiments in an aquatic model we now have a better understanding of the role of CHD1 in craniofacial disorders.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Thomas O. Raymond
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lisa A. Lansdon
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri
| | | | | | - John Robert Manak
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
17
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
18
|
CHD7 regulates cardiovascular development through ATP-dependent and -independent activities. Proc Natl Acad Sci U S A 2020; 117:28847-28858. [PMID: 33127760 DOI: 10.1073/pnas.2005222117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CHD7 encodes an ATP-dependent chromatin remodeling factor. Mutation of this gene causes multiple developmental disorders, including CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth/development, Genital abnormalities, and Ear anomalies) syndrome, in which conotruncal anomalies are the most prevalent form of heart defects. How CHD7 regulates conotruncal development remains unclear. In this study, we establish that deletion of Chd7 in neural crest cells (NCCs) causes severe conotruncal defects and perinatal lethality, thus providing mouse genetic evidence demonstrating that CHD7 cell-autonomously regulates cardiac NCC development, thereby clarifying a long-standing controversy in the literature. Using transcriptomic analyses, we show that CHD7 fine-tunes the expression of a gene network that is critical for cardiac NCC development. To gain further molecular insights into gene regulation by CHD7, we performed a protein-protein interaction screen by incubating recombinant CHD7 on a protein array. We find that CHD7 directly interacts with several developmental disorder-mutated proteins including WDR5, a core component of H3K4 methyltransferase complexes. This direct interaction suggested that CHD7 may recruit histone-modifying enzymes to target loci independently of its remodeling functions. We therefore generated a mouse model that harbors an ATPase-deficient allele and demonstrates that mutant CHD7 retains the ability to recruit H3K4 methyltransferase activity to its targets. Thus, our data uncover that CHD7 regulates cardiovascular development through ATP-dependent and -independent activities, shedding light on the etiology of CHD7-related congenital disorders. Importantly, our data also imply that patients carrying a premature stop codon versus missense mutations will likely display different molecular alterations; these patients might therefore require personalized therapeutic interventions.
Collapse
|
19
|
Shpargel KB, Mangini CL, Xie G, Ge K, Magnuson T. The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development 2020; 147:dev.187997. [PMID: 32541010 DOI: 10.1242/dev.187997] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Cassidy L Mangini
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Guojia Xie
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Terry Magnuson
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
20
|
Schwenty-Lara J, Nehl D, Borchers A. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. Hum Mol Genet 2020; 29:305-319. [PMID: 31813957 PMCID: PMC7003132 DOI: 10.1093/hmg/ddz284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Denise Nehl
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
21
|
Vanyai HK, Garnham A, May RE, McRae HM, Collin C, Wilcox S, Smyth GK, Thomas T, Voss AK. MOZ directs the distal-less homeobox gene expression program during craniofacial development. Development 2019; 146:146/14/dev175042. [DOI: 10.1242/dev.175042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Oral clefts are common birth defects. Individuals with oral clefts who have identical genetic mutations regularly present with variable penetrance and severity. Epigenetic or chromatin-mediated mechanisms are commonly invoked to explain variable penetrance. However, specific examples of these are rare. Two functional copies of the MOZ (KAT6A, MYST3) gene, encoding a MYST family lysine acetyltransferase chromatin regulator, are essential for human craniofacial development, but the molecular role of MOZ in this context is unclear. Using genetic interaction and genomic studies, we have investigated the effects of loss of MOZ on the gene expression program during mouse development. Among the more than 500 genes differentially expressed after loss of MOZ, 19 genes had previously been associated with cleft palates. These included four distal-less homeobox (DLX) transcription factor-encoding genes, Dlx1, Dlx2, Dlx3 and Dlx5 and DLX target genes (including Barx1, Gbx2, Osr2 and Sim2). MOZ occupied the Dlx5 locus and was required for normal levels of histone H3 lysine 9 acetylation. MOZ affected Dlx gene expression cell-autonomously within neural crest cells. Our study identifies a specific program by which the chromatin modifier MOZ regulates craniofacial development.
Collapse
Affiliation(s)
- Hannah K. Vanyai
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Alexandra Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Rose E. May
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Helen M. McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Caitlin Collin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
22
|
Kurosaka H. Choanal atresia and stenosis: Development and diseases of the nasal cavity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e336. [PMID: 30320458 DOI: 10.1002/wdev.336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022]
Abstract
Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
24
|
Akula M, Park JW, West-Mays JA. Relationship between neural crest cell specification and rare ocular diseases. J Neurosci Res 2018; 97:7-15. [PMID: 29660784 DOI: 10.1002/jnr.24245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
Development of the eye is closely associated with neural crest cell migration and specification. Eye development is extremely complex, as it requires the working of a combination of local factors, receptors, inductors, and signaling interactions between tissues such as the optic cup and periocular mesenchyme (POM). The POM is comprised of neural crest-derived mesenchymal progenitor cells that give rise to numerous important ocular structures including those tissues that form the optic cup and anterior segment of the eye. A number of genes are involved in the migration and specification of the POM such as PITX2, PITX3, FOXC1, FOXE3, PAX6, LMX1B, GPR48, TFAP2A, and TFAP2B. In this review, we will discuss the relevance of these genes in the development of the POM and how mutations and defects result in rare ocular diseases.
Collapse
Affiliation(s)
- Monica Akula
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jeong Won Park
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
de Geus CM, Free RH, Verbist BM, Sival DA, Blake KD, Meiners LC, van Ravenswaaij‐Arts CMA. Guidelines in CHARGE syndrome and the missing link: Cranial imaging. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2017; 175:450-464. [PMID: 29168326 PMCID: PMC5765497 DOI: 10.1002/ajmg.c.31593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
"CHARGE syndrome" is a complex syndrome with high and extremely variable comorbidity. As a result, clinicians may struggle to provide accurate and comprehensive care, and this has led to the publication of several clinical surveillance guidelines and recommendations for CHARGE syndrome, based on both single case observations and cohort studies. Here we perform a structured literature review to examine all the existing advice. Our findings provide additional support for the validity of the recently published Trider checklist. We also identified a gap in literature when reviewing all guidelines and recommendations, and we propose a guideline for neuroradiological evaluation of patients with CHARGE syndrome. This is of importance, as patients with CHARGE are at risk for peri-anesthetic complications, making recurrent imaging procedures under anesthesia a particular risk in clinical practice. However, comprehensive cranial imaging is also of tremendous value for timely diagnosis, proper treatment of symptoms and for further research into CHARGE syndrome. We hope the guideline for neuroradiological evaluation will help clinicians provide efficient and comprehensive care for individuals with CHARGE syndrome.
Collapse
Affiliation(s)
- Christa M. de Geus
- University of Groningen, University Medical Center GroningenCenter of Expertise for CHARGE syndromeGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of GeneticsGroningenThe Netherlands
| | - Rolien H. Free
- University of Groningen, University Medical Center GroningenCenter of Expertise for CHARGE syndromeGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of ENTGroningenThe Netherlands
| | - Berit M. Verbist
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of RadiologyRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Deborah A. Sival
- University of Groningen, University Medical Center GroningenCenter of Expertise for CHARGE syndromeGroningenThe Netherlands
- University of Groningen, Beatrix Children's HospitalUniversity Medical Center Groningen, department of PediatricsGroningenThe Netherlands
| | - Kim D. Blake
- IWK Health CentreHalifaxNova ScotiaCanada
- Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| | - Linda C. Meiners
- University of Groningen, University Medical Center GroningenCenter of Expertise for CHARGE syndromeGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of RadiologyGroningenThe Netherlands
| | - Conny M. A. van Ravenswaaij‐Arts
- University of Groningen, University Medical Center GroningenCenter of Expertise for CHARGE syndromeGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of GeneticsGroningenThe Netherlands
| |
Collapse
|
26
|
Corsten-Janssen N, Scambler PJ. Clinical and molecular effects of CHD7 in the heart. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:487-495. [PMID: 29088513 DOI: 10.1002/ajmg.c.31590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/28/2022]
Abstract
Heart defects caused by loss-of-function mutations in CHD7 are a frequent cause of morbidity and mortality in CHARGE syndrome. Here we review the clinical and molecular aspects of CHD7 that are related to the cardiovascular manifestations of the syndrome. The types of heart defects found in patients with CHD7 mutations are variable, with an overrepresentation of atrioventricular septal defect and outflow tract defect including aortic arch anomalies compared to nonsyndromic heart defects. Chd7 haploinsufficiency in mouse is a good model for studying the heart effects seen in CHARGE syndrome, and mouse models reveal a role for Chd7 in multiple lineages during heart development. Formation of the great vessels requires Chd7 expression in the pharyngeal surface ectoderm, and this expression likely has an non-autonomous effect on neural crest cells. In the cardiogenic mesoderm, Chd7 is required for atrioventricular cushion development and septation of the outflow tract. Emerging knowledge about the function of CHD7 in the heart indicates that it may act in concert with transcription factors such as TBX1 and SMADs to regulate genes such as p53 and the cardiac transcription factor NKX2.5.
Collapse
Affiliation(s)
- Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter J Scambler
- UCL Great Ormond Street Institute of Child Health, Section Developmental Biology of Birth Defects, London, UK
| |
Collapse
|
27
|
Pauli S, Bajpai R, Borchers A. CHARGEd with neural crest defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:478-486. [PMID: 29082625 DOI: 10.1002/ajmg.c.31584] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
Shpargel KB, Starmer J, Wang C, Ge K, Magnuson T. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc Natl Acad Sci U S A 2017; 114:E9046-E9055. [PMID: 29073101 PMCID: PMC5664495 DOI: 10.1073/pnas.1705011114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kabuki syndrome, a congenital craniofacial disorder, manifests from mutations in an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A) or a H3 lysine 4 methylase (KMT2D). However, the cellular and molecular etiology of histone-modifying enzymes in craniofacial disorders is unknown. We now establish Kabuki syndrome as a neurocristopathy, whereby the majority of clinical features are modeled in mice carrying neural crest (NC) deletion of UTX, including craniofacial dysmorphism, cardiac defects, and postnatal growth retardation. Female UTX NC knockout (FKO) demonstrates enhanced phenotypic severity over males (MKOs), due to partial redundancy with UTY, a Y-chromosome demethylase-dead homolog. Thus, NC cells may require demethylase-independent UTX activity. Consistently, Kabuki causative point mutations upstream of the JmjC domain do not disrupt UTX demethylation. We have isolated primary NC cells at a phenocritical postmigratory timepoint in both FKO and MKO mice, and genome-wide expression and histone profiling have revealed UTX molecular function in establishing appropriate chromatin structure to regulate crucial NC stem-cell signaling pathways. However, the majority of UTX regulated genes do not experience aberrations in H3K27me3 or H3K4me3, implicating alternative roles for UTX in transcriptional control. These findings are substantiated through demethylase-dead knockin mutation of UTX, which supports appropriate facial development.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264
| | - Joshua Starmer
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264
| | - Chaochen Wang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7264
| |
Collapse
|
29
|
Chu X, Guo X, Jiang Y, Yu H, Liu L, Shan W, Yang Z. Genotranscriptomic meta-analysis of the CHD family chromatin remodelers in human cancers - initial evidence of an oncogenic role for CHD7. Mol Oncol 2017; 11:1348-1360. [PMID: 28649742 PMCID: PMC5623824 DOI: 10.1002/1878-0261.12104] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/27/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase DNA binding proteins (CHDs) are characterized by N-terminal tandem chromodomains and a central adenosine triphosphate-dependent helicase domain. CHDs govern the cellular machinery's access to DNA, thereby playing critical roles in various cellular processes including transcription, proliferation, and DNA damage repair. Accumulating evidence demonstrates that mutation and dysregulation of CHDs are implicated in the pathogenesis of developmental disorders and cancer. However, we know little about genomic and transcriptomic alterations and the clinical significance of most CHDs in human cancer. We used TCGA and METABRIC datasets to perform integrated genomic and transcriptomic analyses of nine CHD genes in more than 10 000 primary cancer specimens from 32 tumor types, focusing on breast cancers. We identified associations among recurrent copy number alteration, gene expression, clinicopathological features, and patient survival. We found that CHD7 was the most commonly gained/amplified and mutated, whereas CHD3 was the most deleted across the majority of tumor types, including breast cancer. Overexpression of CHD7 was more prevalent in aggressive subtypes of breast cancer and was significantly correlated with high tumor grade and poor prognosis. CHD7 is required to maintain open, accessible chromatin, thus providing fine-tuning of transcriptional regulation of certain classes of genes. We found that CHD7 expression was positively correlated with a small subset of classical oncogenes, notably NRAS, in breast cancer. Knockdown of CHD7 inhibits cell proliferation and decreases gene expression of several CHD7 targets, including NRAS, in breast cancer cell lines. Thus, our results demonstrate the oncogenic potential of CHD7 and its association with poor prognostic parameters in human cancer.
Collapse
Affiliation(s)
- Xiaofang Chu
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Xuhui Guo
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Department of Breast SurgeryAffiliated Cancer Hospital of Zhengzhou UniversityHenanChina
| | - Yuanyuan Jiang
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Huimei Yu
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- College of Basic MedicineJilin UniversityChangchunChina
| | - Lanxin Liu
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Wenqi Shan
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Zeng‐Quan Yang
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
30
|
Hota SK, Bruneau BG. ATP-dependent chromatin remodeling during mammalian development. Development 2017; 143:2882-97. [PMID: 27531948 DOI: 10.1242/dev.128892] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precise gene expression ensures proper stem and progenitor cell differentiation, lineage commitment and organogenesis during mammalian development. ATP-dependent chromatin-remodeling complexes utilize the energy from ATP hydrolysis to reorganize chromatin and, hence, regulate gene expression. These complexes contain diverse subunits that together provide a multitude of functions, from early embryogenesis through cell differentiation and development into various adult tissues. Here, we review the functions of chromatin remodelers and their different subunits during mammalian development. We discuss the mechanisms by which chromatin remodelers function and highlight their specificities during mammalian cell differentiation and organogenesis.
Collapse
Affiliation(s)
- Swetansu K Hota
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, CA 94143, USA Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Mills AA. The Chromodomain Helicase DNA-Binding Chromatin Remodelers: Family Traits that Protect from and Promote Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026450. [PMID: 28096241 DOI: 10.1101/cshperspect.a026450] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plethora of mutations in chromatin regulators in diverse human cancers is emerging, attesting to the pivotal role of chromatin dynamics in tumorigenesis. A recurrent theme is inactivation of the chromodomain helicase DNA-binding (CHD) family of proteins-ATP-dependent chromatin remodelers that govern the cellular machinery's access to DNA, thereby controlling fundamental processes, including transcription, proliferation, and DNA damage repair. This review highlights what is currently known about how genetic and epigenetic perturbation of CHD proteins and the pathways that they regulate set the stage for cancer, providing new insight for designing more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| |
Collapse
|
32
|
Chen Y, Wang M, Chen D, Wang J, Kang N. Chromatin remodeling enzyme CHD7 is necessary for osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun 2016; 478:1588-93. [PMID: 27586276 DOI: 10.1016/j.bbrc.2016.08.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/27/2016] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic potential due to their abilities to self-renewal and their potential for differentiating into a variety of cell lineages. However, how to improve the differentiation efficiency of MSC into osteoblast remains a big challenge in the field of bone regenerative medicine. In current study, we identified a role of CHD7 in osteogenic differentiation of MSC. We showed that CHD7 expression in MSC could be induced by BMP2 or osteogenic induction medium. Depletion of CHD7 in MSC via siRNA knockdown resulted in inhibition of key osteogenic transcription factors and impaired osteogenic capability of MSC. Complementarily, overexpression of CHD7 in MSC led to increased osteogenic ability. Mechanistically, we demonstrated that CHD7 interacted with SMAD1, downstream factor of BMP signaling. BMP2 stimulated the binding of CHD7 to the enhancer region of SP7. Finally, CHD7-silencing MSC showed comprised osteogenic ability when cultured with scaffold in vivo. Overall, our study established a new epigenetic regulation of MSC osteogenic differentiation and provided a potential target for controlling MSC osteogenesis.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mengyuan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Demeng Chen
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ning Kang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China; Dental Implant Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Mandalos NP, Remboutsika E. Sox2: To crest or not to crest? Semin Cell Dev Biol 2016; 63:43-49. [PMID: 27592260 DOI: 10.1016/j.semcdb.2016.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Precise control of neural progenitor transformation into neural crest stem cells ensures proper craniofacial and head development. In the neural progenitor pool, SoxB factors play an essential role as cell fate determinants of neural development, whereas during neural crest stem cell formation, Sox2 plays a predominant role as a guardian of the developmental clock that ensures precision of cell flow in the developing head.
Collapse
Affiliation(s)
- Nikolaos Panagiotis Mandalos
- National University of Athens Medical School, Department of Pediatrics, 75 Mikras Asias Str., 115 27, Athens, Greece; Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming Str., 16672 Vari-Attica, Greece; Adjunct Faculty, The Lieber Institute for Brain Development, Basic Sciences Division, Johns Hopkins Medical Campus, 855 North Wolfe Str., Suite 300, 3rd Floor, Baltimore, MD 21205, USA
| | - Eumorphia Remboutsika
- National University of Athens Medical School, Department of Pediatrics, 75 Mikras Asias Str., 115 27, Athens, Greece; Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming Str., 16672 Vari-Attica, Greece; Adjunct Faculty, The Lieber Institute for Brain Development, Basic Sciences Division, Johns Hopkins Medical Campus, 855 North Wolfe Str., Suite 300, 3rd Floor, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Asad Z, Pandey A, Babu A, Sun Y, Shevade K, Kapoor S, Ullah I, Ranjan S, Scaria V, Bajpai R, Sachidanandan C. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum Mol Genet 2016; 25:3539-3554. [PMID: 27418670 PMCID: PMC5179949 DOI: 10.1093/hmg/ddw198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
CHD7 mutations are implicated in a majority of cases of the congenital disorder, CHARGE syndrome. CHARGE, an autosomal dominant syndrome, is known to affect multiple tissues including eye, heart, ear, craniofacial nerves and skeleton and genital organs. Using a morpholino-antisense-oligonucleotide-based zebrafish model for CHARGE syndrome, we uncover a complex spectrum of abnormalities in the neural crest and the crest-derived cell types. We report for the first time, defects in myelinating Schwann cells, enteric neurons and pigment cells in a CHARGE model. We also observe defects in the specification of peripheral neurons and the craniofacial skeleton as previously reported. Chd7 morphants have impaired migration of neural crest cells and deregulation of sox10 expression from the early stages. Knocking down Sox10 in the zebrafish CHARGE model rescued the defects in Schwann cells and craniofacial cartilage. Our zebrafish CHARGE model thus reveals important regulatory roles for Chd7 at multiple points of neural crest development viz., migration, fate choice and differentiation and we suggest that sox10 deregulation is an important driver of the neural crest-derived aspects of Chd7 dependent CHARGE syndrome.
Collapse
Affiliation(s)
- Zainab Asad
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Aditi Pandey
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Yuhan Sun
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaivalya Shevade
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ikram Ullah
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| |
Collapse
|
35
|
Goodwin AF, Kim R, Bush JO, Klein OD. From Bench to Bedside and Back: Improving Diagnosis and Treatment of Craniofacial Malformations Utilizing Animal Models. Curr Top Dev Biol 2015; 115:459-92. [PMID: 26589935 DOI: 10.1016/bs.ctdb.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniofacial anomalies are among the most common birth defects and are associated with increased mortality and, in many cases, the need for lifelong treatment. Over the past few decades, dramatic advances in the surgical and medical care of these patients have led to marked improvements in patient outcomes. However, none of the treatments currently in clinical use address the underlying molecular causes of these disorders. Fortunately, the field of craniofacial developmental biology provides a strong foundation for improved diagnosis and for therapies that target the genetic causes of birth defects. In this chapter, we discuss recent advances in our understanding of the embryology of craniofacial conditions, and we focus on the use of animal models to guide rational therapies anchored in genetics and biochemistry.
Collapse
Affiliation(s)
- Alice F Goodwin
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Rebecca Kim
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA; Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA; Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
36
|
Abstract
Unrestrained p53 activity during development, as occurs upon loss of the p53 negative regulators Mdm2 or Mdmx, causes early embryonic lethality. Surprisingly, co-expression of wild-type p53 and a transcriptionally-dead variant of p53, with mutations in both transactivation domains (p53(L25Q,W26S,F53Q,F54S)), also causes lethality, but later in gestation and in association with a host of very specific phenotypes reminiscent of a syndrome known as CHARGE. Molecular analyses revealed that wild-type p53 is inappropriately activated in p53(5,26,53,54/)(+) embryos, triggering cell-cycle arrest or apoptosis during development to cause CHARGE phenotypes. In addition, CHARGE syndrome is typically caused by mutations in the CHD7 chromatin remodeler, and we have shown that activated p53 contributes to phenotypes caused by CHD7-deficiency. Together, these studies provide new insight into CHARGE syndrome and expand our understanding of the role of p53 in diseases other than cancer.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- a Division of Radiation and Cancer Biology; Department of Radiation Oncology ; Stanford School of Medicine ; Stanford , CA USA
| | | |
Collapse
|
37
|
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6:121-138. [PMID: 26322171 PMCID: PMC4549757 DOI: 10.4331/wjbc.v6.i3.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
Collapse
|