1
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
2
|
Shimizu Y, Takeda-Kawaguchi T, Kuroda I, Hotta Y, Kawasaki H, Hariyama T, Shibata T, Akao Y, Kunisada T, Tatsumi J, Tezuka KI. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis. J Periodontal Res 2021; 57:162-172. [PMID: 34826339 DOI: 10.1111/jre.12949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Exosomes are small vesicles secreted from many cell types. Their biological effects largely depend on their cellular origin and the physiological state of the originating cells. Exosomes secreted by mesenchymal stem cells exert therapeutic effects against multiple diseases and may serve as potential alternatives to stem cell therapies. We previously established and characterized human leukocyte antigen (HLA) haplotype homo (HHH) dental pulp cell (DPC) lines from human wisdom teeth. In this study, we aimed to investigate the effect of local administration of HHH-DPC exosomes in a mouse model of periodontitis. METHODS Exosomes purified from HHH-DPCs were subjected to particle size analysis, and expression of exosome markers was confirmed by western blotting. We also confirmed the effect of exosomes on the migration of both HHH-DPCs and mouse osteoblastic MC3T3-E1 cells. A mouse experimental periodontitis model was used to evaluate the effect of exosomes in vivo. The morphology of alveolar bone was assessed by micro-computed tomography (μCT) and histological analysis. The effect of exosomes on osteoclastogenesis was evaluated using a co-culture system. RESULTS The exosomes purified from HHH-DPCs were homogeneous and had a spherical membrane structure. HHH-DPC exosomes promoted the migration of both human DPCs and mouse osteoblastic cells. The MTT assay showed a positive effect on the proliferation of human DPCs, but not on mouse osteoblastic cells. Treatment with HHH-DPC exosomes did not alter the differentiation of osteoblastic cells. Imaging with µCT revealed that the exosomes suppressed alveolar bone resorption in the mouse model of periodontitis. Although no change was apparent in the dominance of TRAP-positive osteoclast-like cells in decalcified tissue sections upon exosome treatment, HHH-DPC exosomes significantly suppressed osteoclast formation in vitro. CONCLUSIONS HHH-DPC exosomes stimulated the migration of human DPCs and mouse osteoblastic cells and effectively attenuated bone loss due to periodontitis.
Collapse
Affiliation(s)
- Yuta Shimizu
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Izumi Kuroda
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuaki Hotta
- Central Research Institute of Oral Science, Asahi University School of Dentistry, Gifu, Japan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Toshiyuki Shibata
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junichi Tatsumi
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Ken-Ichi Tezuka
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
3
|
Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development 2021; 148:273451. [PMID: 35020872 DOI: 10.1242/dev.176057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel 'cyclical fate restriction' hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Karen Camargo Sosa
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Saeed Farjami
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK
| | - Vsevolod Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK.,Department of Physics, FEPS, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
4
|
Li M, Knapp SK, Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 2020; 67:99-108. [PMID: 33099084 DOI: 10.1016/j.ceb.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
Melanocytes are neuroectoderm-derived pigment-producing cells with highly polarized dendritic morphology. They protect the skin against ultraviolet radiation by providing melanin to neighbouring keratinocytes. However, the mechanisms underlying melanocyte polarization and its relevance for diseases remain mostly elusive. Numerous studies have instead revealed roles for polarity regulators in other neuroectoderm-derived lineages including different neuronal cell types. Considering the shared ontogeny and morphological similarities, these lineages may be used as reference models for the exploration of melanocyte polarity, for example, regarding dendrite formation, spine morphogenesis and polarized organelle transport. In this review, we summarize and compare the latest progress in understanding polarity regulation in neuronal cells and melanocytes and project key open questions for future work.
Collapse
Affiliation(s)
- Mengnan Li
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Sina K Knapp
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
5
|
Crawford M, Leclerc V, Barr K, Dagnino L. Essential Role for Integrin-Linked Kinase in Melanoblast Colonization of the Skin. J Invest Dermatol 2019; 140:425-434.e10. [PMID: 31330146 DOI: 10.1016/j.jid.2019.07.681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Valerie Leclerc
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Kevin Barr
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
6
|
Li H, Hou L. Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell Melanoma Res 2018; 31:556-569. [PMID: 29582573 DOI: 10.1111/pcmr.12701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
Somatic stem cells are regulated by their niches to maintain tissue homeostasis and repair throughout the lifetime of an organism. An excellent example to study stem cell/niche interactions is provided by the regeneration of melanocytes during the hair cycle and in response to various types of injury. These processes are regulated by neighboring stem cells and multiple signaling pathways, including WNT/β-catenin, KITL/KIT, EDNs/EDNRB, TGF-β/TGF-βR, α-MSH/MC1R, and Notch signaling. In this review, we highlight recent studies that have advanced our understanding of the molecular crosstalk between melanocyte stem cells and their neighboring cells, which collectively form the niche microenvironment, and we focus on the question of how McSCs/niche interactions shape the responses to genotoxic damages and mechanical injury.
Collapse
Affiliation(s)
- Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|