1
|
Gabriel GC, Wu YL, Lo CW. Establishment of Cardiac Laterality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:167-183. [PMID: 38884711 DOI: 10.1007/978-3-031-44087-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
3
|
Wyatt BH, Amin NM, Bagley K, Wcisel DJ, Dush MK, Yoder JA, Nascone-Yoder NM. Single-minded 2 is required for left-right asymmetric stomach morphogenesis. Development 2021; 148:dev199265. [PMID: 34486651 PMCID: PMC8512893 DOI: 10.1242/dev.199265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
The morphogenesis of left-right (LR) asymmetry is a crucial phase of organogenesis. In the digestive tract, the development of anatomical asymmetry is first evident in the leftward curvature of the stomach. To elucidate the molecular events that shape this archetypal laterality, we performed transcriptome analyses of the left versus right sides of the developing stomach in frog embryos. Besides the known LR gene pitx2, the only gene found to be expressed asymmetrically throughout all stages of curvature was single-minded 2 (sim2), a Down Syndrome-related transcription factor and homolog of a Drosophila gene (sim) required for LR asymmetric looping of the fly gut. We demonstrate that sim2 functions downstream of LR patterning cues to regulate key cellular properties and behaviors in the left stomach epithelium that drive asymmetric curvature. Our results reveal unexpected convergent cooption of single-minded genes during the evolution of LR asymmetric morphogenesis, and have implications for dose-dependent roles of laterality factors in non-laterality-related birth defects.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Nirav M. Amin
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Dustin J. Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Michael K. Dush
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
4
|
Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020; 38:741-755. [PMID: 32129551 PMCID: PMC7891398 DOI: 10.1002/stem.3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two‐stage genome‐wide CRISPR‐knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA‐Seq profiling of the ZIC2‐mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA‐seq analysis showed the ZIC2 mutants affected the apelin receptor‐related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome‐wide unbiased CRISPR‐knockout screen to identify the key steps in human mesoderm precursor cell‐ and heart progenitor cell‐fate determination during in vitro hPSC cardiogenesis.
Collapse
Affiliation(s)
- Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie S Foo
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ran Yang
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bylund
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
5
|
Tekendo-Ngongang C, Owosela B, Muenke M, Kruszka P. Comorbidity of congenital heart defects and holoprosencephaly is likely genetically driven and gene-specific. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:154-158. [PMID: 32022405 DOI: 10.1002/ajmg.c.31770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Comorbidity of holoprosencephaly (HPE) and congenital heart disease (CHD) in individuals with genetic variants in known HPE-related genes has been recurrently observed. Morphogenesis of the brain and heart from very early stages are regulated by several biological pathways, some of them involved in both heart and brain development as evidenced by genetic studies on model organisms. For instance, downregulation of Hedgehog or Nodal signaling pathways, both known as major triggers of HPE, has been shown to play a role in the pathogenesis of CHD, including structural defects and left-right asymmetry defects. In this study, individuals with various types of HPE were investigated clinically and by genomic sequencing. Cardiac phenotypes were assessed in 434 individuals with HPE who underwent targeted sequencing. CHDs were identified in 8% (n = 33) of individuals, including 10 (30%) cases of complex heart disease. Only four individuals (4/33) had damaging variants in the known HPE genes STAG2, SIX3, and SHH. Interestingly, no CHD was identified in the 37 individuals of our cohort with pathogenic variants in ZIC2. These findings suggest that CHD occurs more frequently in HPE-affected individuals with or without identifiable genetic variants, and this co-occurrence may be genetically driven and gene-specific.
Collapse
Affiliation(s)
- Cedrik Tekendo-Ngongang
- Medical Genetics Branch, National Human Genome Research Institutes, National Institutes of Health, Bethesda, Maryland
| | - Babajide Owosela
- Medical Genetics Branch, National Human Genome Research Institutes, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institutes, National Institutes of Health, Bethesda, Maryland
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institutes, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Abuzenadah A, Al-Saedi S, Karim S, Al-Qahtani M. Role of Overexpressed Transcription Factor FOXO1 in Fatal Cardiovascular Septal Defects in Patau Syndrome: Molecular and Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19113547. [PMID: 30423812 PMCID: PMC6274780 DOI: 10.3390/ijms19113547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Patau Syndrome (PS), characterized as a lethal disease, allows less than 15% survival over the first year of life. Most deaths owe to brain and heart disorders, more so due to septal defects because of altered gene regulations. We ascertained the cytogenetic basis of PS first, followed by molecular analysis and docking studies. Thirty-seven PS cases were referred from the Department of Pediatrics, King Abdulaziz University Hospital to the Center of Excellence in Genomic Medicine Research, Jeddah during 2008 to 2018. Cytogenetic analyses were performed by standard G-band method and trisomy13 were found in all the PS cases. Studies have suggested that genes of chromosome 13 and other chromosomes are associated with PS. We, therefore, did molecular pathway analysis, gene interaction, and ontology studies to identify their associations. Genomic analysis revealed important chr13 genes such as FOXO1, Col4A1, HMGBB1, FLT1, EFNB2, EDNRB, GAS6, TNFSF1, STARD13, TRPC4, TUBA3C, and TUBA3D, and their regulatory partners on other chromosomes associated with cardiovascular disorders, atrial and ventricular septal defects. There is strong indication of involving FOXO1 (Forkhead Box O1) gene-a strong transcription factor present on chr13, interacting with many septal defects link genes. The study was extended using molecular docking to find a potential drug lead for overexpressed FOXO1 inhibition. The phenothiazine and trifluoperazine showed efficiency to inhibit overexpressed FOXO1 protein, and could be potential drugs for PS/trisomy13 after validation.
Collapse
Affiliation(s)
- Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Saad Al-Saedi
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Barratt KS, Diamand KEM, Arkell RM. Identification of reference genes suitable for RT-qPCR studies of murine gastrulation and patterning. Mamm Genome 2018; 29:656-662. [PMID: 30094508 DOI: 10.1007/s00335-018-9769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 11/26/2022]
Abstract
Quantitative reverse transcriptase PCR (RT-qPCR), a powerful and efficient means of rapidly comparing gene expression between experimental conditions, is routinely used as a phenotyping tool in developmental biology. The accurate comparison of gene expression across multiple embryonic stages requires normalisation to reference genes that have stable expression across the time points to be examined. As the embryo and its constituent tissues undergo rapid growth and differentiation during development, reference genes known to be stable across some time points cannot be assumed to be stable across all developmental stages. The immediate post-implantation events of gastrulation and patterning are characterised by a rapid expansion in cell number and increasing specialisation of cells. The optimal reference genes for comparative gene expression studies at these specific stages have not been experimentally identified. In this study, the expression of five commonly used reference genes (H2afz, Ubc, Actb, Tbp and Gapdh) was measured across murine gastrulation and patterning (6.5-9.5 dpc) and analysed with the normalisation tools geNorm, Bestkeeper and Normfinder. The results, validated by RT-qPCR analysis of two genes with well-documented expression patterns across these stages, indicated the best strategy for RT-qPCR studies spanning murine gastrulation and patterning utilises the concurrent reference genes H2afz and Ubc.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
8
|
Roessler E, Hu P, Marino J, Hong S, Hart R, Berger S, Martinez A, Abe Y, Kruszka P, Thomas JW, Mullikin JC, Wang Y, Wong WSW, Niederhuber JE, Solomon BD, Richieri-Costa A, Ribeiro-Bicudo LA, Muenke M. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling. Hum Mutat 2018; 39:1416-1427. [PMID: 29992659 DOI: 10.1002/humu.23590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Here, we applied targeted capture to examine 153 genes representative of all the major vertebrate developmental pathways among 333 probands to rank their relative significance as causes for holoprosencephaly (HPE). We now show that comparisons of variant transmission versus nontransmission among 136 HPE Trios indicates some reported genes now lack confirmation, while novel genes are implicated. Furthermore, we demonstrate that variation of modest intrinsic effect can synergize with these driver mutations as gene modifiers.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel Hart
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariel Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yu Abe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James W Thomas
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James C Mullikin
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | -
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yupeng Wang
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Wendy S W Wong
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - John E Niederhuber
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Benjamin D Solomon
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia.,Presently the Managing Director, GeneDx, Gaithersburg, Maryland
| | - Antônio Richieri-Costa
- Hospital for the Rehabilitation of Craniofacial Anomalies, São Paulo University, São Paulo, Brazil
| | - L A Ribeiro-Bicudo
- Institute of Bioscience, Department of Genetics, Federal University of Goias, Goias, Brazil
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
A Requirement for Zic2 in the Regulation of Nodal Expression Underlies the Establishment of Left-Sided Identity. Sci Rep 2018; 8:10439. [PMID: 29992973 PMCID: PMC6041270 DOI: 10.1038/s41598-018-28714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
ZIC2 mutation is known to cause holoprosencephaly (HPE). A subset of ZIC2 HPE probands harbour cardiovascular and visceral anomalies suggestive of laterality defects. 3D-imaging of novel mouse Zic2 mutants uncovers, in addition to HPE, laterality defects in lungs, heart, vasculature and viscera. A strong bias towards right isomerism indicates a failure to establish left identity in the lateral plate mesoderm (LPM), a phenotype that cannot be explained simply by the defective ciliogenesis previously noted in Zic2 mutants. Gene expression analysis showed that the left-determining NODAL-dependent signalling cascade fails to be activated in the LPM, and that the expression of Nodal at the node, which normally triggers this event, is itself defective in these embryos. Analysis of ChiP-seq data, in vitro transcriptional assays and mutagenesis reveals a requirement for a low-affinity ZIC2 binding site for the activation of the Nodal enhancer HBE, which is normally active in node precursor cells. These data show that ZIC2 is required for correct Nodal expression at the node and suggest a model in which ZIC2 acts at different levels to establish LR asymmetry, promoting both the production of the signal that induces left side identity and the morphogenesis of the cilia that bias its distribution.
Collapse
|
10
|
Roessler E, Hu P, Muenke M. Holoprosencephaly in the genomics era. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:165-174. [PMID: 29770992 DOI: 10.1002/ajmg.c.31615] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is the direct consequence of specific genetic and/or environmental insults interrupting the midline specification of the nascent forebrain. Such disturbances can lead to a broad range of phenotypic consequences for the brain and face in humans. This malformation sequence is remarkably common in utero (1 in 250 human fetuses), but 97% typically do not survive to birth. The precise molecular pathogenesis of HPE in these early human embryos remains largely unknown. Here, we outline our current understanding of the principal driving factors leading to HPE pathologies and elaborate our multifactorial integrated genomics approach. Overall, our understanding of the pathogenesis continues to become simpler, rather than more complicated. Genomic technologies now provide unprecedented insight into disease-associated variation, including the overall extent of genetic interactions (coding and noncoding) predicted to explain divergent phenotypes.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Martinez AF, Kruszka PS, Muenke M. Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:246-257. [PMID: 29761634 DOI: 10.1002/ajmg.c.31616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Nonchromosomal, nonsyndromic holoprosencephaly (NCNS-HPE) has traditionally been considered as a condition of brain and craniofacial maldevelopment. In this review, we present the results of a comprehensive literature search supporting a wide spectrum of extracephalic manifestations identified in patients with NCNS-HPE. These manifestations have been described in case reports and in large cohorts of patients with "single-gene" mutations, suggesting that the NCNS-HPE phenotype can be more complex than traditionally thought. Likely, a complex network of interacting genetic variants and environmental factors is responsible for these systemic abnormalities that deviate from the usual brain and craniofacial findings in NCNS-HPE. In addition to the systemic consequences of pituitary dysfunction (as a direct result of brain midline defects), here we describe a number of extracephalic findings of NCNS-HPE affecting various organ systems. It is our goal to provide a guide of extracephalic features for clinicians given the important clinical implications of these manifestations for the management and care of patients with HPE and their mutation-positive relatives. The health risks associated with some manifestations (e.g., fatty liver disease) may have historically been neglected in affected families.
Collapse
Affiliation(s)
- Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul S Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Abstract
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
13
|
Diamand KEM, Barratt KS, Arkell RM. Overview of Rodent Zic Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:179-207. [PMID: 29442323 DOI: 10.1007/978-981-10-7311-3_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The five murine Zic genes encode multifunctional transcriptional regulator proteins important for a large number of processes during embryonic development. The genes and proteins are highly conserved with respect to the orthologous human genes, an attribute evidently mirrored by functional conservation, since the murine and human genes mutate to give the same phenotypes. Each ZIC protein contains a zinc finger domain that participates in both protein-DNA and protein-protein interactions. The ZIC proteins are capable of interacting with the key transcriptional mediators of the SHH, WNT and NODAL signalling pathways as well as with components of the transcriptional machinery and chromatin-modifying complexes. It is possible that this diverse range of protein partners underlies characteristics uncovered by mutagenesis and phenotyping of the murine Zic genes. These features include redundant and unique roles for ZIC proteins, regulatory interdependencies amongst family members and pleiotropic Zic gene function. Future investigations into the complex nature of the Zic gene family activity should be facilitated by recent advances in genome engineering and functional genomics.
Collapse
Affiliation(s)
- Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
14
|
Zic Family Proteins in Emerging Biomedical Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:233-248. [DOI: 10.1007/978-981-10-7311-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Wang J, Ma W, Liu Y. Long non-coding RNA HULC promotes bladder cancer cells proliferation but inhibits apoptosis via regulation of ZIC2 and PI3K/AKT signaling pathway. Cancer Biomark 2017; 20:425-434. [PMID: 28946549 DOI: 10.3233/cbm-170188] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bladder cancer is the fourth most common malignancy among men urinary system and it is a complex disease caused by genetic and environmental factors. OBJECTIVE This study aimed to evaluate the effects of hepatocellular carcinoma up-regulated long non-coding RNA (lncRNA HULC) on bladder cancer and to reveal the potential mechanisms. METHODS The expression level of HULC in 276 bladder cancer patients was detected. The association of HULC level with patient recurrence was performed by Kaplan-Meier and log-rank test. Moreover, T24 and RT4 cells were transfected with HULC and ZIC2 targeted siRNAs, HULC expressing vector and corresponding controls. Subsequently, cell viability, apoptosis and tumorigenesis were examined. RESULTS The expression level of HULC was increased in bladder cancer tissues. High expression of HULC was correlated with advanced clinical stage and lower recurrence-free rate. HULC was remarkably promoted cell viability but inhibited apoptosis, meanwhile conspicuously increased the expression of Cyclin A/D1/E and Bcl-2. Xenograft tumor model showed that HULC promoted tumor weights in vivo. CONCLUSIONS LncRNA HULC promoted bladder cancer cells proliferation and inhibited apoptosis.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Urology, The No.4 People's Hospital of Hengshui, Hengshui 053000, Hebei, China
| | - Weimin Ma
- Department of Urology, Binzhou City Central Hospital, Binzhou 251700, Shandong, China
| | - Yidong Liu
- Department of Urology, Taian City Central Hospital, Taian 271000, Shandong, China
| |
Collapse
|
16
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|
18
|
Zic2mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 2016; 25:3946-3959. [DOI: 10.1093/hmg/ddw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
|
19
|
Abstract
Humans and other vertebrates exhibit left-right (LR) asymmetric arrangement of the internal organs, and failure to establish normal LR asymmetry leads to internal laterality disorders, including situs inversus and heterotaxy. Situs inversus is complete mirror-imaged arrangement of the internal organs along LR axis, whereas heterotaxy is abnormal arrangement of the internal thoraco-abdominal organs across LR axis of the body, most of which are associated with complex cardiovascular malformations. Both disorders are genetically heterogeneous with reduced penetrance, presumably because of monogenic, polygenic or multifactorial causes. Research in genetics of LR asymmetry disorders has been extremely prolific over the past 17 years, and a series of loci and disease genes involved in situs inversus and heterotaxy have been described. The review highlights the classification, chromosomal abnormalities, pathogenic genes and the possible mechanism of human LR asymmetry disorders.
Collapse
|
20
|
Chervenak AP, Bank LM, Thomsen N, Glanville-Jones HC, Jonathan S, Millen KJ, Arkell RM, Barald KF. The role of Zic genes in inner ear development in the mouse: Exploring mutant mouse phenotypes. Dev Dyn 2014; 243:1487-98. [PMID: 25178196 DOI: 10.1002/dvdy.24186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/23/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected. RESULTS Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2(kd/kd) and Zic2(Ku/Ku) mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2(Ku/Ku) mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. CONCLUSIONS The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss.
Collapse
Affiliation(s)
- Andrew P Chervenak
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan; Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|