1
|
Saulnier O, Zagozewski J, Liang L, Hendrikse LD, Layug P, Gordon V, Aldinger KA, Haldipur P, Borlase S, Coudière-Morrison L, Cai T, Martell E, Gonzales NM, Palidwor G, Porter CJ, Richard S, Sharif T, Millen KJ, Doble BW, Taylor MD, Werbowetski-Ogilvie TE. A group 3 medulloblastoma stem cell program is maintained by OTX2-mediated alternative splicing. Nat Cell Biol 2024; 26:1233-1246. [PMID: 39025928 PMCID: PMC11321995 DOI: 10.1038/s41556-024-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program. OTX2 can directly or indirectly bind RNA and this may be partially independent of its DNA regulatory functions. OTX2 controls a pro-tumorigenic splicing program that is mirrored in human cerebellar rhombic lip origins. Among the OTX2-regulated differentially spliced genes, PPHLN1 is expressed in the most primitive rhombic lip stem cells, and targeting PPHLN1 splicing reduces tumour growth and enhances survival in vivo. These findings identify OTX2-mediated alternative splicing as a major determinant of cell fate decisions that drive group 3 MB progression.
Collapse
Affiliation(s)
- Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, Paris, France
- INSERM U830, Cancer, Heterogeneity, Instability and Plasticity, Institut Curie, PSL University, Paris, France
- SIREDO Oncology Center, Institut Curie, Paris, France
| | - Jamie Zagozewski
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lisa Liang
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paul Layug
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Victor Gordon
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephanie Borlase
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ludivine Coudière-Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ting Cai
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Naomi M Gonzales
- Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Gareth Palidwor
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Brad W Doble
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Wulff-Fuentes E, Boakye J, Kroenke K, Berendt RR, Martinez-Morant C, Pereckas M, Hanover JA, Olivier-Van Stichelen S. O-GlcNAcylation regulates OTX2's proteostasis. iScience 2023; 26:108184. [PMID: 38026167 PMCID: PMC10661118 DOI: 10.1016/j.isci.2023.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
O-GlcNAcylation is a key post-translational modification, playing a vital role in cell signaling during development, especially in the brain. In this study, we investigated the role of O-GlcNAcylation in regulating the homeobox protein OTX2, which contributes to various brain disorders, such as combined pituitary hormone deficiency, retinopathy, and medulloblastoma. Our research demonstrated that, under normal physiological conditions, the proteasome plays a pivotal role in breaking down endogenous OTX2. However, when the levels of OTX2 rise, it forms oligomers and/or aggregates that require macroautophagy for clearance. Intriguingly, we demonstrated that O-GlcNAcylation enhances the solubility of OTX2, thereby limiting the formation of these aggregates. Additionally, we unveiled an interaction between OTX2 and the chaperone protein CCT5 at the O-GlcNAc sites, suggesting a potential collaborative role in preventing OTX2 aggregation. Finally, our study demonstrated that while OTX2 physiologically promotes cell proliferation, an O-GlcNAc-depleted OTX2 is detrimental to cancer cells.
Collapse
Affiliation(s)
| | - Jeffrey Boakye
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | - Kaeley Kroenke
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rex R. Berendt
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Sun C, Chen S. Disease-causing mutations in genes encoding transcription factors critical for photoreceptor development. Front Mol Neurosci 2023; 16:1134839. [PMID: 37181651 PMCID: PMC10172487 DOI: 10.3389/fnmol.2023.1134839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptor development of the vertebrate visual system is controlled by a complex transcription regulatory network. OTX2 is expressed in the mitotic retinal progenitor cells (RPCs) and controls photoreceptor genesis. CRX that is activated by OTX2 is expressed in photoreceptor precursors after cell cycle exit. NEUROD1 is also present in photoreceptor precursors that are ready to specify into rod and cone photoreceptor subtypes. NRL is required for the rod fate and regulates downstream rod-specific genes including the orphan nuclear receptor NR2E3 which further activates rod-specific genes and simultaneously represses cone-specific genes. Cone subtype specification is also regulated by the interplay of several transcription factors such as THRB and RXRG. Mutations in these key transcription factors are responsible for ocular defects at birth such as microphthalmia and inherited photoreceptor diseases such as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and allied dystrophies. In particular, many mutations are inherited in an autosomal dominant fashion, including the majority of missense mutations in CRX and NRL. In this review, we describe the spectrum of photoreceptor defects that are associated with mutations in the above-mentioned transcription factors, and summarize the current knowledge of molecular mechanisms underlying the pathogenic mutations. At last, we deliberate the outstanding gaps in our understanding of the genotype-phenotype correlations and outline avenues for future research of the treatment strategies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Chi Sun,
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Photoreceptor cKO of OTX2 Enhances OTX2 Intercellular Transfer in the Retina and Causes Photophobia. eNeuro 2021; 8:ENEURO.0229-21.2021. [PMID: 34475267 PMCID: PMC8496205 DOI: 10.1523/eneuro.0229-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In the mature mouse retina, Otx2 is expressed in both retinal pigmented epithelium (RPE) and photoreceptor (PR) cells, and Otx2 knock-out (KO) in the RPE alone results in PR degeneration. To study the cell-autonomous function of OTX2 in PRs, we performed PR-specific Otx2 KO (cKO) in adults. As expected, the protein disappears completely from PR nuclei but is still observed in PR inner and outer segments while its level concomitantly decreases in the RPE, suggesting a transfer of OTX2 from RPE to PRs in response to Otx2 ablation in PRs. The ability of OTX2 to transfer from RPE to PRs was verified by viral expression of tagged-OTX2 in the RPE. Transferred OTX2 distributed across the PR cytoplasm, suggesting functions distinct from nuclear transcription regulation. PR-specific Otx2 cKO did not alter the structure of the retina but impaired the translocation of PR arrestin-1 on illumination changes, making mice photophobic. RNA-seq analyses following Otx2 KO revealed downregulation of genes involved in the cytoskeleton that might account for the arrestin-1 translocation defect, and of genes involved in extracellular matrix (ECM) and signaling factors that may participate in the enhanced transfer of OTX2. Interestingly, several RPE-specific OTX2 target genes involved in melanogenesis were downregulated, lending weight to a decrease of OTX2 levels in the RPE following PR-specific Otx2 cKO. Our study reveals a new role of endogenous OTX2 in PR light adaptation and demonstrates the existence of OTX2 transfer from RPE to PR cells, which is increased on PR-specific Otx2 ablation and might participate in PR neuroprotection.
Collapse
|
5
|
Planques A, Oliveira Moreira V, Benacom D, Bernard C, Jourdren L, Blugeon C, Dingli F, Masson V, Loew D, Prochiantz A, Di Nardo AA. OTX2 Homeoprotein Functions in Adult Choroid Plexus. Int J Mol Sci 2021; 22:8951. [PMID: 34445655 PMCID: PMC8396604 DOI: 10.3390/ijms22168951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life.
Collapse
Affiliation(s)
- Anabelle Planques
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - David Benacom
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Clémence Bernard
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, PSL University, 75005 Paris, France; (L.J.); (C.B.)
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Vanessa Masson
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, CEDEX 05, 75248 Paris, France; (F.D.); (V.M.); (D.L.)
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
- Institute of Neurosciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ariel A. Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241, INSERM U1050, Labex MemoLife, PSL University, 75005 Paris, France; (A.P.); (V.O.M.); (D.B.); (C.B.); (A.P.)
| |
Collapse
|
6
|
Langer BE, Hiller M. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences. Nucleic Acids Res 2019; 47:e19. [PMID: 30496469 PMCID: PMC6393245 DOI: 10.1093/nar/gky1200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Changes in gene regulation are important for phenotypic and in particular morphological evolution. However, it remains challenging to identify the transcription factors (TFs) that contribute to differences in gene regulation and thus to phenotypic differences between species. Here, we present TFforge (Transcription Factor forward genomics), a computational method to identify TFs that are involved in the loss of phenotypic traits. TFforge screens an input set of regulatory genomic regions to detect TFs that exhibit a significant binding site divergence signature in species that lost a particular phenotypic trait. Using simulated data of modular and pleiotropic regulatory elements, we show that TFforge can identify the correct TFs for many different evolutionary scenarios. We applied TFforge to available eye regulatory elements to screen for TFs that exhibit a significant binding site decay signature in subterranean mammals. This screen identified interacting and co-binding eye-related TFs, and thus provides new insights into which TFs likely contribute to eye degeneration in these species. TFforge has broad applicability to identify the TFs that contribute to phenotypic changes between species, and thus can help to unravel the gene-regulatory differences that underlie phenotypic evolution.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Germany
| |
Collapse
|
7
|
Bakhmet EI, Nazarov IB, Gazizova AR, Vorobyeva NE, Kuzmin AA, Gordeev MN, Sinenko SA, Aksenov ND, Artamonova TO, Khodorkovskii MA, Alenina N, Onichtchouk D, Wu G, Schöler HR, Tomilin AN. hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells 2019; 37:1018-1029. [PMID: 31021473 DOI: 10.1002/stem.3025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023]
Abstract
The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor B Nazarov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Adel R Gazizova
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Kuzmin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail N Gordeev
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey A Sinenko
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolai D Aksenov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatyana O Artamonova
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail A Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Daria Onichtchouk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Laboratory of Cellular and Molecular Biology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|