1
|
Nguyen TK, Rodriguez JM, Wesselman HM, Wingert RA. Emx2 is an essential regulator of ciliated cell development across embryonic tissues. iScience 2024; 27:111271. [PMID: 39687012 PMCID: PMC11647118 DOI: 10.1016/j.isci.2024.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/30/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Cilia are hair-like organelles with vital physiological roles, and ciliogenesis defects underlie a range of severe congenital malformations and human diseases. Here, we report that empty spiracles homeobox 2 (emx2) is essential for cilia development across multiple embryonic tissues including the ear, neuromasts and Kupffer's vesicle (KV), which establishes left/right axial pattern. emx2 deficient embryos manifest altered fluid homeostasis and kidney defects including decreased multiciliated cells (MCCs), determining that emx2 is essential to properly establish several renal lineages. Further, emx2 deficiency disrupted renal monociliated cells, MCCs and led to aberrant basal body positioning. We reported that emx2 regulates prostaglandin biosynthesis in ciliogenesis and renal fate changes through key factors including ppargc1a, ptgs1 and PGE2. Our findings reveal essential roles of emx2 in tissue cilia development, and identify emx2 as a critical regulator of prostaglandin biosynthesis during renal development and ciliogenesis, providing insights relevant for future treatments of ciliopathies.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John-Michael Rodriguez
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah M. Wesselman
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
3
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
4
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
5
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron and collecting duct progenitor growth and fate resulting in fibrocystic kidney disease. Development 2023; 150:dev201976. [PMID: 37982452 PMCID: PMC10753588 DOI: 10.1242/dev.201976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Chidera Agwu
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Kyuhwan Shim
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Sanjay Jain
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University in St Louis, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Dubaic M, Peskova L, Hampl M, Weissova K, Celiker C, Shylo NA, Hruba E, Kavkova M, Zikmund T, Weatherbee SD, Kaiser J, Barta T, Buchtova M. Role of ciliopathy protein TMEM107 in eye development: insights from a mouse model and retinal organoid. Life Sci Alliance 2023; 6:e202302073. [PMID: 37863656 PMCID: PMC10589122 DOI: 10.26508/lsa.202302073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.
Collapse
Affiliation(s)
- Marija Dubaic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Peskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamila Weissova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Natalia A Shylo
- Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eva Hruba
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Kavkova
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Scott D Weatherbee
- Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
- Biology Department, Fairfield University, Fairfield, CT, USA
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Barta
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Ka HI, Cho M, Kwon SH, Mun SH, Han S, Kim MJ, Yang Y. IK is essentially involved in ciliogenesis as an upstream regulator of oral-facial-digital syndrome ciliopathy gene, ofd1. Cell Biosci 2023; 13:195. [PMID: 37898820 PMCID: PMC10612314 DOI: 10.1186/s13578-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The cilia are microtubule-based organelles that protrude from the cell surface. Abnormalities in cilia result in various ciliopathies, including polycystic kidney disease (PKD), Bardet-Biedl syndrome (BBS), and oral-facial-digital syndrome type I (OFD1), which show genetic defects associated with cilia formation. Although an increasing number of human diseases is attributed to ciliary defects, the functions or regulatory mechanisms of several ciliopathy genes remain unclear. Because multi ciliated cells (MCCs) are especially deep in vivo, studying ciliogenesis is challenging. Here, we demonstrate that ik is essential for ciliogenesis in vivo. RESULTS In the absence of ik, zebrafish embryos showed various ciliopathy phenotypes, such as body curvature, abnormal otoliths, and cyst formation in the kidney. RNA sequencing analysis revealed that ik positively regulated ofd1 expression required for cilium assembly. In fact, depletion of ik resulted in the downregulation of ofd1 expression with ciliary defects, and these ciliary defects in ik mutants were rescued by restoring ofd1 expression. Interestingly, ik affected ciliogenesis particularly in the proximal tubule but not in the distal tubule in the kidney. CONCLUSIONS This study demonstrates the role of ik in ciliogenesis in vivo for the first time. Loss of ik in zebrafish embryos displays various ciliopathy phenotypes with abnormal ciliary morphology in ciliary tissues. Our findings on the ik-ofd1 axis provide new insights into the biological function of ik in clinical ciliopathy studies in humans.
Collapse
Affiliation(s)
- Hye In Ka
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Mina Cho
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, 02841, South Korea
| | - Se Hwan Mun
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Min Jung Kim
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| | - Young Yang
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04312, South Korea.
- Chronic and Metabolic Diseases Research Center, Sookmyung Women's University, Seoul, 04312, South Korea.
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04312, South Korea.
| |
Collapse
|
8
|
Wang J, Zhou P, Zhu L, Guan H, Gou J, Liu X. Maternal protein deficiency alters primary cilia length in renal tubular and impairs kidney development in fetal rat. Front Nutr 2023; 10:1156029. [PMID: 37485393 PMCID: PMC10358357 DOI: 10.3389/fnut.2023.1156029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intrauterine malnutrition impairs embryo kidney development and leads to kidney disease and hypertension in adulthood, yet the underlying mechanism remains unclear. Methods With a maternal protein restriction (MPR) rat model, we investigated the critical ciliogenesis factors and β-catenin pathway in FGR fetal kidneys and analyzed the impact of aberrant primary cilia on renal tubular epithelium. Results The data showed decreased nephron number and renal tubular dysgenesis in FGR fetus. FGR fetus showed deregulated expression of ciliogenesis factors including upregulation of IFT88 and downregulation of DYNLT1, accompanied with cilia elongation in renal tubular epithelial cells. Wnt7b, the key ligand for Wnt/β-catenin signaling, was downregulated and nuclear translocation of β-catenin was decreased. The proapoptotic protein was upregulated. In vitro study with HK-2 cells showed that overexpression of IFT88 lengthened the cilia, inhibited β-catenin signaling. Besides, IFT88 overexpression suppressed cell proliferation, activated autophagy, and induced cell apoptosis. Inhibition of autophagy partly restored the cilia length and cell viability. Likewise, knockdown of DYNLT1 led to cilia elongation, suppressed cell proliferation, and promoted apoptosis in HK-2 cell. However, the cilia elongation induced by DYNLT1 knockdown was not autophagy-dependent, but associated with reactive oxygen species (ROS) accumulation. Discussion We elucidated that intrauterine protein malnutrition led to deregulation of ciliogenesis factors and cilia elongation in renal tubular epithelial, inhibited β-catenin signaling, and induced cell apoptosis and ultimately, compromised kidney development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pei Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangliang Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Gou
- Department of Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron progenitor cell renewal and fate resulting in fibrocystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535568. [PMID: 37066373 PMCID: PMC10104032 DOI: 10.1101/2023.04.04.535568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mutations that disrupt centrosome structure or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet, it remains unclear how mutations in proteins essential for centrosome biogenesis impact embryonic kidney development. Here, we examined the consequences of conditional deletion of a ciliopathy gene, Cep120 , in the two nephron progenitor niches of the embryonic kidney. Cep120 loss led to reduced abundance of both metanephric mesenchyme and ureteric bud progenitor populations. This was due to a combination of delayed mitosis, increased apoptosis, and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis, and decline in filtration function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in pathways essential for branching morphogenesis, cystogenesis and fibrosis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney development, and identifies new therapeutic targets for renal centrosomopathies. Highlights Defective centrosome biogenesis in nephron progenitors causes:Reduced abundance of metanephric mesenchyme and premature differentiation into tubular structuresAbnormal branching morphogenesis leading to reduced nephron endowment and smaller kidneysChanges in cell-autonomous and paracrine signaling that drive cystogenesis and fibrosisUnique cellular and developmental defects when compared to Pkd1 knockout models.
Collapse
|
10
|
Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol 2023; 11:jdb11010014. [PMID: 36976103 PMCID: PMC10052950 DOI: 10.3390/jdb11010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeline Petrikas
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
11
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
12
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
13
|
Shylo NA, Smith SE, Price AJ, Guo F, McClain M, Trainor PA. Morphological changes and two Nodal paralogs drive left-right asymmetry in the squamate veiled chameleon ( C. calyptratus). Front Cell Dev Biol 2023; 11:1132166. [PMID: 37113765 PMCID: PMC10126504 DOI: 10.3389/fcell.2023.1132166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/23/2023] [Indexed: 04/29/2023] Open
Abstract
The ancestral mode of left-right (L-R) patterning involves cilia in the L-R organizer. However, the mechanisms regulating L-R patterning in non-avian reptiles remains an enigma, since most squamate embryos are undergoing organogenesis at oviposition. In contrast, veiled chameleon (Chamaeleo calyptratus) embryos are pre-gastrula at oviposition, making them an excellent organism for studying L-R patterning evolution. Here we show that veiled chameleon embryos lack motile cilia at the time of L-R asymmetry establishment. Thus, the loss of motile cilia in the L-R organizers is a synapomorphy of all reptiles. Furthermore, in contrast to avians, geckos and turtles, which have one Nodal gene, veiled chameleon exhibits expression of two paralogs of Nodal in the left lateral plate mesoderm, albeit in non-identical patterns. Using live imaging, we observed asymmetric morphological changes that precede, and likely trigger, asymmetric expression of the Nodal cascade. Thus, veiled chameleons are a new and unique model for studying the evolution of L-R patterning.
Collapse
Affiliation(s)
- Natalia A. Shylo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sarah E. Smith
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO, United States
- *Correspondence: Paul A. Trainor,
| |
Collapse
|
14
|
Wesselman HM, Gatz AE, Wingert RA. Visualizing multiciliated cells in the zebrafish. Methods Cell Biol 2023; 175:129-161. [PMID: 36967138 DOI: 10.1016/bs.mcb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ciliated cells serve vital functions in the body ranging from mechano- and chemo-sensing to fluid propulsion. Specialized cells with bundles dozens to hundreds of motile cilia known as multiciliated cells (MCCs) are essential as well, where they direct fluid movement in locations such as the respiratory, central nervous and reproductive systems. Intriguingly, the appearance of MCCs has been noted in the kidney in several disease conditions, but knowledge about their contributions to the pathobiology of these states has remained a mystery. As the mechanisms contributing to ciliopathic diseases are not yet fully understood, animal models serve as valuable tools for studying cilia development and how alterations in ciliated cell function impacts disease progression. Like other vertebrates, the zebrafish, Danio rerio, has numerous ciliated tissues. Among these, the embryonic kidney (or pronephros) is comprised of both monociliated cells and MCCs and therefore provides a setting to investigate both ciliated cell fate choice and ciliogenesis. Considering the zebrafish nephron resembles the segmentation and function of human nephrons, the zebrafish provide a tractable model for studying conserved ciliogenesis pathways in vivo. In this chapter, we provide an overview of ciliated cells with a special focus on MCCs, and present a suite of methods that can be used to visualize ciliated cells and their features in the developing zebrafish. Further, these methods enable precise quantification of ciliated cell number and various cilia-related characteristics.
Collapse
|
15
|
Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in Understanding the Genetic Mechanisms of Zebrafish Renal Multiciliated Cell Development. J Dev Biol 2022; 11:1. [PMID: 36648903 PMCID: PMC9844391 DOI: 10.3390/jdb11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface. In humans and other vertebrates, possession of a single cilium structure enables an assortment of cellular processes ranging from mechanosensation to fluid propulsion and locomotion. Interestingly, cells can possess a single cilium or many more, where so-called multiciliated cells (MCCs) possess apical membrane complexes with several dozen or even hundreds of motile cilia that beat in a coordinated fashion. Development of MCCs is, therefore, integral to control fluid flow and/or cellular movement in various physiological processes. As such, MCC dysfunction is associated with numerous pathological states. Understanding MCC ontogeny can be used to address congenital birth defects as well as acquired disease conditions. Today, researchers used both in vitro and in vivo experimental models to address our knowledge gaps about MCC specification and differentiation. In this review, we summarize recent discoveries from our lab and others that have illuminated new insights regarding the genetic pathways that direct MCC ontogeny in the embryonic kidney using the power of the zebrafish animal model.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Weaver NE, Healy A, Wingert RA. gldc Is Essential for Renal Progenitor Patterning during Kidney Development. Biomedicines 2022; 10:biomedicines10123220. [PMID: 36551976 PMCID: PMC9776136 DOI: 10.3390/biomedicines10123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The glycine cleavage system (GCS) is a complex located on the mitochondrial membrane that is responsible for regulating glycine levels and contributing one-carbon units to folate metabolism. Congenital mutations in GCS components, such as glycine decarboxylase (gldc), cause an elevation in glycine levels and the rare disease, nonketotic hyperglycinemia (NKH). NKH patients suffer from pleiotropic symptoms including seizures, lethargy, mental retardation, and early death. Therefore, it is imperative to fully elucidate the pathological effects of gldc dysfunction and glycine accumulation during development. Here, we describe a zebrafish model of gldc deficiency that recapitulates phenotypes seen in humans and mice. gldc deficient embryos displayed impaired fluid homeostasis suggesting renal abnormalities, as well as aberrant craniofacial morphology and neural development defects. Whole mount in situ hybridization (WISH) revealed that gldc transcripts were highly expressed in the embryonic kidney, as seen in mouse and human repository data, and that formation of several nephron segments was disrupted in gldc deficient embryos, including proximal and distal tubule populations. These kidney defects were caused by alterations in renal progenitor populations, revealing that the proper function of Gldc is essential for the patterning of this organ. Additionally, further analysis of the urogenital tract revealed altered collecting duct and cloaca morphology in gldc deficient embryos. Finally, to gain insight into the molecular mechanisms underlying these disruptions, we examined the effects of exogenous glycine treatment and observed analogous renal and cloacal defects. Taken together, these studies indicate for the first time that gldc function serves an essential role in regulating renal progenitor development by modulating glycine levels.
Collapse
|
17
|
Rorot W. Counting with Cilia: The Role of Morphological Computation in Basal Cognition Research. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1581. [PMID: 36359671 PMCID: PMC9689127 DOI: 10.3390/e24111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
"Morphological computation" is an increasingly important concept in robotics, artificial intelligence, and philosophy of the mind. It is used to understand how the body contributes to cognition and control of behavior. Its understanding in terms of "offloading" computation from the brain to the body has been criticized as misleading, and it has been suggested that the use of the concept conflates three classes of distinct processes. In fact, these criticisms implicitly hang on accepting a semantic definition of what constitutes computation. Here, I argue that an alternative, mechanistic view on computation offers a significantly different understanding of what morphological computation is. These theoretical considerations are then used to analyze the existing research program in developmental biology, which understands morphogenesis, the process of development of shape in biological systems, as a computational process. This important line of research shows that cognition and intelligence can be found across all scales of life, as the proponents of the basal cognition research program propose. Hence, clarifying the connection between morphological computation and morphogenesis allows for strengthening the role of the former concept in this emerging research field.
Collapse
Affiliation(s)
- Wiktor Rorot
- Human Interactivity and Language Lab, Faculty of Psychology, University of Warsaw, 00-927 Warszawa, Poland
| |
Collapse
|
18
|
Ruiter FAA, Morgan FLC, Roumans N, Schumacher A, Slaats GG, Moroni L, LaPointe VLS, Baker MB. Soft, Dynamic Hydrogel Confinement Improves Kidney Organoid Lumen Morphology and Reduces Epithelial-Mesenchymal Transition in Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200543. [PMID: 35567354 PMCID: PMC9284132 DOI: 10.1002/advs.202200543] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Indexed: 06/10/2023]
Abstract
Pluripotent stem cell-derived kidney organoids offer a promising solution to renal failure, yet current organoid protocols often lead to off-target cells and phenotypic alterations, preventing maturity. Here, various dynamic hydrogel architectures are created, conferring a controlled and biomimetic environment for organoid encapsulation. How hydrogel stiffness and stress relaxation affect renal phenotype and undesired fibrotic markers are investigated. The authors observe that stiff hydrogel encapsulation leads to an absence of certain renal cell types and signs of an epithelial-mesenchymal transition (EMT), whereas encapsulation in soft, stress-relaxing hydrogels leads to all major renal segments, fewer fibrosis or EMT associated proteins, apical proximal tubule polarization, and primary cilia formation, representing a significant improvement over current approaches to culture kidney organoids. The findings show that engineering hydrogel mechanics and dynamics have a decided benefit for organoid culture. These structure-property-function relationships can enable the rational design of materials, bringing us closer to functional engraftments and disease-modeling applications.
Collapse
Affiliation(s)
- Floor A. A. Ruiter
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Cell Biology‐Inspired Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| | - Francis L. C. Morgan
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| | - Nadia Roumans
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Cell Biology‐Inspired Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| | - Anika Schumacher
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Cell Biology‐Inspired Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| | - Gisela G. Slaats
- Department II of Internal Medicine and Center for Molecular Medicine CologneUniversity of Cologne, Faculty of Medicine and University Hospital CologneCologne50937Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneFaculty of Medicine and University Hospital CologneCologne50931Germany
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| | - Vanessa L. S. LaPointe
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Cell Biology‐Inspired Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| | - Matthew B. Baker
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue EngineeringMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERthe Netherlands
| |
Collapse
|
19
|
Visualizing multiciliated cells in the zebrafish. Methods Cell Biol 2022. [DOI: 10.1016/bs.mcb.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
21
|
NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA. Nat Commun 2021; 12:3292. [PMID: 34078910 PMCID: PMC8172835 DOI: 10.1038/s41467-021-23599-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy regulates primary cilia formation, but the underlying mechanism is not fully understood. In this study, we identify NIMA-related kinase 9 (NEK9) as a GABARAPs-interacting protein and find that NEK9 and its LC3-interacting region (LIR) are required for primary cilia formation. Mutation in the LIR of NEK9 in mice also impairs in vivo cilia formation in the kidneys. Mechanistically, NEK9 interacts with MYH9 (also known as myosin IIA), which has been implicated in inhibiting ciliogenesis through stabilization of the actin network. MYH9 accumulates in NEK9 LIR mutant cells and mice, and depletion of MYH9 restores ciliogenesis in NEK9 LIR mutant cells. These results suggest that NEK9 regulates ciliogenesis by acting as an autophagy adaptor for MYH9. Given that the LIR in NEK9 is conserved only in land vertebrates, the acquisition of the autophagic regulation of the NEK9–MYH9 axis in ciliogenesis may have possible adaptive implications for terrestrial life. Ciliogenesis is a tightly regulated process, although the role of selective autophagy is unclear. Here, the authors show NIMA-related kinase 9 controls actin network stabilization and subsequently ciliogenesis by targeting myosin MYH9 for autophagic degradation via GABARAP interaction.
Collapse
|
22
|
Saini AK, Saini R, Singh S. Autosomal dominant polycystic kidney disease and pioglitazone for its therapy: a comprehensive review with an emphasis on the molecular pathogenesis and pharmacological aspects. Mol Med 2020; 26:128. [PMID: 33308138 PMCID: PMC7731470 DOI: 10.1186/s10020-020-00246-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited chronic kidney disorder (CKD) that is characterized by the development of numerous fluid-filled cysts in kidneys. It is caused either due to the mutations in the PKD1 or PKD2 gene that encodes polycystin-1 and polycystin-2, respectively. This condition progresses into end-stage renal disorder if the renal or extra-renal clinical manifestations remain untreated. Several clinical trials with a variety of drugs have failed, and the only Food and Drugs Administration (FDA) approved drug to treat ADPKD to date is tolvaptan that works by antagonizing the vasopressin-2 receptor (V2R). The pathology of ADPKD is complex and involves the malfunction of different signaling pathways like cAMP, Hedgehog, and MAPK/ERK pathway owing to the mutated product that is polycystin-1 or 2. A measured yet substantial number of preclinical studies have found pioglitazone to decrease the cystic burden and improve the renal function in ADPKD. The peroxisome proliferator-activated receptor-gamma is found on the epithelial cells of renal collecting tubule and when it gets agonized by pioglitazone, confers efficacy in ADPKD treatment through multiple mechanisms. There is only one clinical trial (ongoing) wherein it is being assessed for its benefits and risk in patients with ADPKD, and is expected to get approval from the regulatory body owing to its promising therapeutic effects. This article would encompass the updated information on the epidemiology, pathophysiology of ADPKD, different mechanisms of action of pioglitazone in the treatment of ADPKD with preclinical and clinical shreds of evidence, and related safety updates.
Collapse
Affiliation(s)
- Aryendu Kumar Saini
- Department of Pharmacy, Chaudhary Sughar Singh College of Pharmacy, Etawah, Uttar Pradesh, India.
| | - Rakesh Saini
- Department of Pharmacy, Chaudhary Sughar Singh College of Pharmacy, Etawah, Uttar Pradesh, India
| | - Shubham Singh
- Department of Pharmacy, Shri Ram Lakhan Tiwari College of Pharmacy, Etawah, Uttar Pradesh, India
| |
Collapse
|
23
|
Chambers JM, Addiego A, Flores-Mireles AL, Wingert RA. Ppargc1a Controls Ciliated Cell Development by Regulating Prostaglandin Biosynthesis. Cell Rep 2020; 33:108370. [PMID: 33176142 PMCID: PMC7731726 DOI: 10.1016/j.celrep.2020.108370] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cilia are microtubule-based organelles that function in a multitude of physiological contexts to perform chemosensing, mechanosensing, and fluid propulsion. The process of ciliogenesis is highly regulated, and disruptions result in disease states termed ciliopathies. Here, we report that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (ppargc1a) is essential for ciliogenesis in nodal, mono-, and multiciliated cells (MCCs) and for discernment of renal tubule ciliated cell fate during embryogenesis. ppargc1a performs these functions by affecting prostaglandin signaling, whereby cilia formation and renal MCC fate are restored with prostaglandin E2 (PGE2) treatment in ppargc1a-deficient animals. Genetic disruption of ppargc1a specifically reduces expression of the prostanoid biosynthesis gene prostaglandin-endoperoxide synthase 1 (ptgs1), and suboptimal knockdown of both genes shows this synergistic effect. Furthermore, ptgs1 overexpression rescues ciliogenesis and renal MCCs in ppargc1a-deficient embryos. These findings position Ppargc1a as a key genetic regulator of prostaglandin signaling during ciliated cell ontogeny.
Collapse
Affiliation(s)
- Joseph M Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Amanda Addiego
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
24
|
Kitamura E, Cowell JK, Chang CS, Hawthorn L. Variant profiles of genes mapping to chromosome 16q loss in Wilms tumors reveals link to cilia-related genes and pathways. Genes Cancer 2020; 11:137-153. [PMID: 33488951 PMCID: PMC7805536 DOI: 10.18632/genesandcancer.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Wilms tumor is the most common pediatric renal tumor and the fourth most common malignancy in children. Chromosome 16q deletion(del) or loss of heterozygosity (LOH) has been correlated with recurrence and overall poor prognosis, such that patients with 16qLOH and 1p allelic loss are treated with more aggressive chemotherapeutic regimens. Methods: In the present study, we have compared the variant profiles of Wilms tumors with and without 16q del/LOH using both data available from the TARGET database (42 samples) and tumors procured from our legacy collection (8 samples). Exome-Seq data was analyzed for tumor specific variants mapping to 16q. Whole exome analysis was also performed. An unbiased approach for somatic variant analysis was used to detect tumor-specific, somatic variants. Results: Of the 72 genes mapping to 16q, 42% were cilia-related genes and 28% of these were found to carry somatic variants specific to those tumors with 16qdel/LOH. Whole exome analyses further revealed that 30% of cilia-related genes across the genome carried alterations in tumors both with and without 16qdel/LOH. Additional pathway analyses revealed that many cilia-related pathway members also carried deleterious variant in these tumors including Sonic Hedgehog (SHh), Wnt, and Notch signaling pathways. Conclusions: The data suggest that cilia-related genes and pathways are compromised in Wilms tumors. The genes on chromosome 16q that carry deleterious variants in cilia-related genes may account for the more aggressive nature of tumors with 16q del/LOH.
Collapse
Affiliation(s)
- Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - John K. Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|
25
|
Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 2020; 8:1832844. [PMID: 33092489 PMCID: PMC7714473 DOI: 10.1080/21688370.2020.1832844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The kidney is a complex organ that performs essential functions such as blood filtration and fluid homeostasis, among others. Recent years have heralded significant advancements in our knowledge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate renal development with a focus on nephrogenesis, the process of generating the epithelialized functional units of the kidney. These steps begin with intermediate mesoderm specification and proceed all the way to the terminally differentiated nephron cell, with many detailed stages in between. The establishment of nephron architecture with proper cellular barriers is vital throughout these processes. Continuously striving to gain further insights into nephrogenesis can ultimately lead to a better understanding and potential treatments for developmental maladies such as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
Collapse
Affiliation(s)
- Joseph M. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
26
|
Panchapakesan U, Pollock C. The primary cilia in diabetic kidney disease: A tubulocentric view? Int J Biochem Cell Biol 2020; 122:105718. [PMID: 32070746 DOI: 10.1016/j.biocel.2020.105718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
Diabetic kidney disease is growing exponentially. This review aims to discuss alternate therapeutic approaches beyond the glomerulocentric view and to consider a novel tubulocentric approach with focus on the primary cilia. Renin-angiotensin-aldosterone system blockade to decrease glomerular capillary pressure and prevent albuminuria has been the mainstay of treatment for diabetic and non-diabetic proteinuric kidney disease. Landmark clinical trials have also shown cardiorenal benefit with sodium-glucose linked co-transporter 2 inhibitors and glucagon-like peptide 1 receptor analogues in patients with type 2 diabetes. Effective renoprotective drugs seem to have a common mechanistic mode of reducing glomerular hyperfiltration/hypertension. In the tubules, primary cilia act as "antennae" to detect mechanosensory changes such as glomerular hyperfiltration and trgger intracellular signalling pathways. They are also implicated in obesity and metabolic disorders linked to diabetes. To conclude, primary cilia of the kidney tubules offer a novel therapeutic target and may complement the current glomerulocentric approaches.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW,2065, Australia
| |
Collapse
|
27
|
Abstract
The vertebrate kidney is comprised of functional units known as nephrons. Defects in nephron development or activity are a common feature of kidney disease. Current medical treatments are unable to ameliorate the dire consequences of nephron deficit or injury. Although there have been tremendous advancements in our understanding of nephron ontogeny and the response to damage, many significant knowledge gaps still remain. The zebrafish embryo kidney, or pronephros, is an ideal model for many renal development and regeneration studies because it is comprised of nephrons that share conserved features with the nephron units that comprise the mammalian metanephric kidney. In this chapter, we provide an overview about the benefits of using the zebrafish pronephros to study the mechanisms underlying nephrogenesis as well as epithelial repair and regeneration. We subsequently detail methods for the spatiotemporal assessment of gene and protein expression in zebrafish embryos that can be used to extend the understanding of nephron development and disease, and thereby create new opportunities to identify therapeutic strategies for regenerative medicine.
Collapse
|
28
|
Chambers BE, Gerlach GF, Clark EG, Chen KH, Levesque AE, Leshchiner I, Goessling W, Wingert RA. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development 2019; 146:dev.172387. [PMID: 31160420 DOI: 10.1242/dev.172387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Renal functional units known as nephrons undergo patterning events during development that create a segmental array of cellular compartments with discrete physiological identities. Here, from a forward genetic screen using zebrafish, we report the discovery that transcription factor AP-2 alpha (tfap2a) coordinates a gene regulatory network that activates the terminal differentiation program of distal segments in the pronephros. We found that tfap2a acts downstream of Iroquois homeobox 3b (irx3b), a distal lineage transcription factor, to operate a circuit consisting of tfap2b, irx1a and genes encoding solute transporters that dictate the specialized metabolic functions of distal nephron segments. Interestingly, this regulatory node is distinct from other checkpoints of differentiation, such as polarity establishment and ciliogenesis. Thus, our studies reveal insights into the genetic control of differentiation, where tfap2a is essential for regulating a suite of segment transporter traits at the final tier of zebrafish pronephros ontogeny. These findings have relevance for understanding renal birth defects, as well as efforts to recapitulate nephrogenesis in vivo to facilitate drug discovery and regenerative therapies.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Karen H Chen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anna E Levesque
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Chambers BE, Wingert RA. Nephron repair: powered by anaerobic energy metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S28. [PMID: 31032308 DOI: 10.21037/atm.2019.01.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
30
|
Iroquois transcription factor irx2a is required for multiciliated and transporter cell fate decisions during zebrafish pronephros development. Sci Rep 2019; 9:6454. [PMID: 31015532 PMCID: PMC6478698 DOI: 10.1038/s41598-019-42943-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
The genetic regulation of nephron patterning during kidney organogenesis remains poorly understood. Nephron tubules in zebrafish are composed of segment populations that have unique absorptive and secretory roles, as well as multiciliated cells (MCCs) that govern fluid flow. Here, we report that the transcription factor iroquois 2a (irx2a) is requisite for zebrafish nephrogenesis. irx2a transcripts localized to the developing pronephros and maturing MCCs, and loss of function altered formation of two segment populations and reduced MCC number. Interestingly, irx2a deficient embryos had reduced expression of an essential MCC gene ets variant 5a (etv5a), and were rescued by etv5a overexpression, supporting the conclusion that etv5a acts downstream of irx2a to control MCC ontogeny. Finally, we found that retinoic acid (RA) signaling affects the irx2a expression domain in renal progenitors, positioning irx2a downstream of RA. In sum, this work reveals new roles for irx2a during nephrogenesis, identifying irx2a as a crucial connection between RA signaling, segmentation, and the control of etv5a mediated MCC formation. Further investigation of the genetic players involved in these events will enhance our understanding of the molecular pathways that govern renal development, which can be used help create therapeutics to treat congenital and acquired kidney diseases.
Collapse
|
31
|
Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proc Natl Acad Sci U S A 2019; 116:8409-8418. [PMID: 30948642 PMCID: PMC6486750 DOI: 10.1073/pnas.1813492116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) have core roles in organ formation and function, where they control fluid flow and particle displacement. MCCs direct fluid movement in the brain and spinal cord, clearance of respiratory mucus, and ovum transport from the ovary to the uterus. Deficiencies in MCC functionality lead to hydrocephalus, chronic respiratory infections, and infertility. Prostaglandins are lipids that are used to coordinate cellular functions. Here, we discovered that prostaglandin signaling is required for MCC development in the embryonic zebrafish kidney. Understanding renal MCC genesis can lend insights into the puzzling origins of MCCs in several chronic kidney diseases, where it is unclear whether MCCs are a cause or phenotypic outcome of the condition. Multiciliated cells (MCCs) are specialized epithelia with apical bundles of motile cilia that direct fluid flow. MCC dysfunction is associated with human diseases of the respiratory, reproductive, and central nervous systems. Further, the appearance of renal MCCs has been cataloged in several kidney conditions, where their function is unknown. Despite their pivotal health importance, many aspects of MCC development remain poorly understood. Here, we utilized a chemical screen to identify molecules that affect MCC ontogeny in the zebrafish embryo kidney, and found prostaglandin signaling is essential both for renal MCC progenitor formation and terminal differentiation. Moreover, we show that prostaglandin activity is required downstream of the transcription factor ets variant 5a (etv5a) during MCC fate choice, where modulating prostaglandin E2 (PGE2) levels rescued MCC number. The discovery that prostaglandin signaling mediates renal MCC development has broad implications for other tissues, and could provide insight into a multitude of pathological states.
Collapse
|
32
|
Reilly ML, Stokman MF, Magry V, Jeanpierre C, Alves M, Paydar M, Hellinga J, Delous M, Pouly D, Failler M, Martinovic J, Loeuillet L, Leroy B, Tantau J, Roume J, Gregory-Evans CY, Shan X, Filges I, Allingham JS, Kwok BH, Saunier S, Giles RH, Benmerah A. Loss-of-function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum Mol Genet 2019; 28:778-795. [PMID: 30388224 PMCID: PMC6381319 DOI: 10.1093/hmg/ddy381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Diderot University, Department of Life Sciences, Paris, France
| | - Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, JE Utrecht, Netherlands
| | - Virginie Magry
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Cecile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marine Alves
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Jacqueline Hellinga
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Daniel Pouly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marion Failler
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Antoine Béclère Hospital, AP-HP, Clamart, France
- INSERM U-788, Génétique/Neurogénétique, 94270 Le Kremlin-Bicêtre, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker–Enfants Malades, AP-HP, Paris, France
| | - Brigitte Leroy
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Julia Tantau
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Joelle Roume
- Service de Génétique, Centre hospitalier intercommunal de Poissy, 78100 Saint Germain en Laye, France
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xianghong Shan
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
33
|
Nishimura Y, Kasahara K, Shiromizu T, Watanabe M, Inagaki M. Primary Cilia as Signaling Hubs in Health and Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801138. [PMID: 30643718 PMCID: PMC6325590 DOI: 10.1002/advs.201801138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Primary cilia detect extracellular cues and transduce these signals into cells to regulate proliferation, migration, and differentiation. Here, the function of primary cilia as signaling hubs of growth factors and morphogens is in focus. First, the molecular mechanisms regulating the assembly and disassembly of primary cilia are described. Then, the role of primary cilia in mediating growth factor and morphogen signaling to maintain human health and the potential mechanisms by which defects in these pathways contribute to human diseases, such as ciliopathy, obesity, and cancer are described. Furthermore, a novel signaling pathway by which certain growth factors stimulate cell proliferation through suppression of ciliogenesis is also described, suggesting novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Takashi Shiromizu
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncologic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
34
|
Morales EE, Handa N, Drummond BE, Chambers JM, Marra AN, Addiego A, Wingert RA. Homeogene emx1 is required for nephron distal segment development in zebrafish. Sci Rep 2018; 8:18038. [PMID: 30575756 PMCID: PMC6303317 DOI: 10.1038/s41598-018-36061-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023] Open
Abstract
Vertebrate kidneys contain nephron functional units where specialized epithelial cell types are organized into segments with discrete physiological roles. Many gaps remain in our understanding of how segment regions develop. Here, we report that the transcription factor empty spiracles homeobox gene 1 (emx1) is a novel nephron segment regulator during embryonic kidney development in zebrafish. emx1 loss of function altered the domains of distal segments without changes in cell turnover or traits like size and morphology, indicating that emx1 directs distal segment fates during nephrogenesis. In exploring how emx1 influences nephron patterning, we found that retinoic acid (RA), a morphogen that induces proximal and represses distal segments, negatively regulates emx1 expression. Next, through a series of genetic studies, we found that emx1 acts downstream of a cascade involving mecom and tbx2b, which encode essential distal segment transcription factors. Finally, we determined that emx1 regulates the expression domains of irx3b and irx1a to control distal segmentation, and sim1a to control corpuscle of Stannius formation. Taken together, our work reveals for the first time that emx1 is a key component of the pronephros segmentation network, which has implications for understanding the genetic regulatory cascades that orchestrate vertebrate nephron patterning.
Collapse
Affiliation(s)
- Elvin E Morales
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nicole Handa
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Joseph M Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Amanda Addiego
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
35
|
Chambers JM, Poureetezadi SJ, Addiego A, Lahne M, Wingert RA. ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny. eLife 2018; 7:40266. [PMID: 30475208 PMCID: PMC6279350 DOI: 10.7554/elife.40266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Nephron segmentation involves a concert of genetic and molecular signals that are not fully understood. Through a chemical screen, we discovered that alteration of peroxisome proliferator-activated receptor (PPAR) signaling disrupts nephron segmentation in the zebrafish embryonic kidney (Poureetezadi et al., 2016). Here, we show that the PPAR co-activator ppargc1a directs renal progenitor fate. ppargc1a mutants form a small distal late (DL) segment and an expanded proximal straight tubule (PST) segment. ppargc1a promotes DL fate by regulating the transcription factor tbx2b, and restricts expression of the transcription factor sim1a to inhibit PST fate. Interestingly, sim1a restricts ppargc1a expression to promote the PST, and PST development is fully restored in ppargc1a/sim1a-deficient embryos, suggesting Ppargc1a and Sim1a counterbalance each other in an antagonistic fashion to delineate the PST segment boundary during nephrogenesis. Taken together, our data reveal new roles for Ppargc1a during development, which have implications for understanding renal birth defects.
Collapse
Affiliation(s)
- Joseph M Chambers
- Department of Biological Sciences, University of Notre Dame, Indiana, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Indiana, United States.,Center for Zebrafish Research, University of Notre Dame, Indiana, United States
| | - Shahram Jevin Poureetezadi
- Department of Biological Sciences, University of Notre Dame, Indiana, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Indiana, United States.,Center for Zebrafish Research, University of Notre Dame, Indiana, United States
| | - Amanda Addiego
- Department of Biological Sciences, University of Notre Dame, Indiana, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Indiana, United States.,Center for Zebrafish Research, University of Notre Dame, Indiana, United States
| | - Manuela Lahne
- Department of Biological Sciences, University of Notre Dame, Indiana, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Indiana, United States.,Center for Zebrafish Research, University of Notre Dame, Indiana, United States
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Indiana, United States.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Indiana, United States.,Center for Zebrafish Research, University of Notre Dame, Indiana, United States
| |
Collapse
|
36
|
Tecilla M, Bielli M, Origgi FC. Polycystic Kidney-like Disease in a Red-ear Slider Turtle (Trachemys scripta elegans). J Comp Pathol 2018; 164:44-47. [PMID: 30360912 DOI: 10.1016/j.jcpa.2018.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022]
Abstract
A 14-year-old red-ear slider turtle (Trachemys scripta elegans) with no history of pre-existing clinical disease died and was referred for necropsy examination. Grossly, oesophageal prolapse, bilateral renal cysts and a paraduodenal cystic mass were detected. Tissues were processed routinely for histology and immunohistochemistry (IHC) with primary antibodies specific for Wilm's tumour suppressor gene-1 (WT-1), insulin, glucagon and pancytokeratins. Microscopically, renal medullary cysts and medullary atrophy resembled the changes associated with polycystic kidney disease (PKD). The cysts of the paraduodenal mass were lined by ciliated epithelial cells resembling embryonal cells and were intensely positive for glucagon and insulin by IHC. There was no cytokeratin expression in either lesion. WT-1 expression in the paraduodenal mass was cytoplasmic and appeared non-specific. Lesions were consistent with renal PKD-like disease and a pancreatic cystic hamartoma.
Collapse
Affiliation(s)
- M Tecilla
- University of Milan, Department of Veterinary Medicine, Via Celoria 10, Milan, Italy.
| | - M Bielli
- Private Practitioner, Viale Buonarroti Michelangelo 20/A, 28100 Novara, Italy
| | - F C Origgi
- Universität Bern, Centre for Fish and Wildlife Health-FIWI, Department of Infectious Diseases and Pathobiology, Länggassstrasse 122, Bern, Switzerland
| |
Collapse
|
37
|
Marra AN, Ulrich M, White A, Springer M, Wingert RA. Visualizing Multiciliated Cells in the Zebrafish Through a Combined Protocol of Whole Mount Fluorescent In Situ Hybridization and Immunofluorescence. J Vis Exp 2017. [PMID: 29286368 PMCID: PMC5755421 DOI: 10.3791/56261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In recent years, the zebrafish embryo has emerged as a popular model to study developmental biology due to traits such as ex utero embryo development and optical transparency. In particular, the zebrafish embryo has become an important organism to study vertebrate kidney organogenesis as well as multiciliated cell (MCC) development. To visualize MCCs in the embryonic zebrafish kidney, we have developed a combined protocol of whole-mount fluorescent in situ hybridization (FISH) and whole mount immunofluorescence (IF) that enables high resolution imaging. This manuscript describes our technique for co-localizing RNA transcripts and protein as a tool to better understand the regulation of developmental programs through the expression of various lineage factors.
Collapse
Affiliation(s)
- Amanda N Marra
- Department of Biological Sciences, University of Notre Dame
| | - Marisa Ulrich
- Department of Biological Sciences, University of Notre Dame
| | - Audra White
- Department of Biological Sciences, University of Notre Dame
| | | | | |
Collapse
|
38
|
Kroeger PT, Drummond BE, Miceli R, McKernan M, Gerlach GF, Marra AN, Fox A, McCampbell KK, Leshchiner I, Rodriguez-Mari A, BreMiller R, Thummel R, Davidson AJ, Postlethwait J, Goessling W, Wingert RA. The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Dev Biol 2017; 428:148-163. [PMID: 28579318 DOI: 10.1016/j.ydbio.2017.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
Abstract
The zebrafish kidney is conserved with other vertebrates, making it an excellent genetic model to study renal development. The kidney collects metabolic waste using a blood filter with specialized epithelial cells known as podocytes. Podocyte formation is poorly understood but relevant to many kidney diseases, as podocyte injury leads to progressive scarring and organ failure. zeppelin (zep) was isolated in a forward screen for kidney mutants and identified as a homozygous recessive lethal allele that causes reduced podocyte numbers, deficient filtration, and fluid imbalance. Interestingly, zep mutants had a larger interrenal gland, the teleostean counterpart of the mammalian adrenal gland, which suggested a fate switch with the related podocyte lineage since cell proliferation and cell death were unchanged within the shared progenitor field from which these two identities arise. Cloning of zep by whole genome sequencing (WGS) identified a splicing mutation in breast cancer 2, early onset (brca2)/fancd1, which was confirmed by sequencing of individual fish. Several independent brca2 morpholinos (MOs) phenocopied zep, causing edema, reduced podocyte number, and increased interrenal cell number. Complementation analysis between zep and brca2ZM_00057434 -/- zebrafish, which have an insertional mutation, revealed that the interrenal lineage was expanded. Importantly, overexpression of brca2 rescued podocyte formation in zep mutants, providing critical evidence that the brca2 lesion encoded by zep specifically disrupts the balance of nephrogenesis. Taken together, these data suggest for the first time that brca2/fancd1 is essential for vertebrate kidney ontogeny. Thus, our findings impart novel insights into the genetic components that impact renal development, and because BRCA2/FANCD1 mutations in humans cause Fanconi anemia and several common cancers, this work has identified a new zebrafish model to further study brca2/fancd1 in disease.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel Miceli
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael McKernan
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Annemarie Fox
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kristen K McCampbell
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ignaty Leshchiner
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | | | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ryan Thummel
- Departments of Anatomy and Cell Biology and Opthamology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, NZ
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Genetics and Gastroenterology Division, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
39
|
Zacchia M, Di Iorio V, Trepiccione F, Caterino M, Capasso G. The Kidney in Bardet-Biedl Syndrome: Possible Pathogenesis of Urine Concentrating Defect. KIDNEY DISEASES 2017; 3:57-65. [PMID: 28868293 DOI: 10.1159/000475500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/05/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The ciliopathies are a growing number of disorders caused by mutations in genes involved in the function of the primary cilium. Bardet-Biedl syndrome (BBS) belongs to this group of disorders. In this setting, kidney dysfunction is highly variable, and urine concentrating defect, a common feature of multiple ciliopathies, has been described as the most frequent defect. Here we review the mechanism of urine concentration and describe the possible mechanism underling this defect in ciliopathies and especially BBS, based on the current body of literature. SUMMARY Active Na+ absorption along the thick ascending limb of the loop of Henle (TAL) is critical for generating the corticomedullary osmotic gradient, and the countercurrent anatomical arrangement of the 2 branches of the loop of Henle enhances this gradient. The vasa recta, paralleling the loop of Henle, operate into the countercurrent mechanism, minimizing washout of solutes from the interstitium. Final water reabsorption is mediated by the aquaporin 2 (AQP2) water channels along the distal nephron, and it is under hormonal control. Several studies demonstrated that hyposthenuria in BBS patients relies on kidney resistance to desmopressin, suggesting a renal origin. We recently showed that the majority of hyposthenuric BBS patients have also a defect regarding maximal urine dilution. Independent studies showed that BBS10 deficiency caused AQP2 mistrafficking in vitro; accordingly, we demonstrated impaired urinary AQP2 excretion in BBS patients with combined concentrating and diluting defect. Whether receptor signaling pathways or downstream events cause AQP2 deregulation is still unclear. In addition, reduced urinary uromodulin excretion in BBS patients opens the possibility that TAL dysfunction may also play a pathogenic role. KEY MESSAGE Impaired water handling in BBS is associated with AQP2 mistrafficking. The potential role of additional factors, such as the dissipation of the medullary osmotic gradient due to TAL dysfunction and/or structural anomalies, remains to be elucidated.
Collapse
Affiliation(s)
- Miriam Zacchia
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical, and Dental Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Francesco Trepiccione
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Marianna Caterino
- Department of Molecular Biology and Medical Biotechnologies, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
40
|
Drummond BE, Li Y, Marra AN, Cheng CN, Wingert RA. The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish. Dev Biol 2017; 421:52-66. [PMID: 27840199 PMCID: PMC5955707 DOI: 10.1016/j.ydbio.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
The simplified and genetically conserved zebrafish pronephros is an excellent model to examine the cryptic processes of cell fate decisions during the development of nephron segments as well as the origins of associated endocrine cells that comprise the corpuscles of Stannius (CS). Using whole mount in situ hybridization, we found that transcripts of the zebrafish genes t-box 2a (tbx2a) and t-box 2b (tbx2b), which belong to the T-box family of transcription factors, were expressed in the caudal intermediate mesoderm progenitors that give rise to the distal pronephros and CS. Deficiency of tbx2a, tbx2b or both tbx2a/b reduced the size of the distal late (DL) segment, which was accompanied by a proximal convoluted segment (PCT) expansion. Further, tbx2a/b deficiency led to significantly larger CS clusters. These phenotypes were also observed in embryos with the from beyond (fby)c144 mutation, which encodes a premature stop codon in the tbx2b T-box sequence. Conversely, overexpression of tbx2a and tbx2b in wild-type embryos expanded the DL segment where cells were comingled with the adjacent DE, and also decreased CS cell number, but notably did not alter PCT development-providing independent evidence that tbx2a and tbx2b are each necessary and sufficient to promote DL fate and suppress CS genesis. Epistasis studies indicated that tbx2a acts upstream of tbx2b to regulate the DL and CS fates, and likely has other targets as well. Retinoic acid (RA) addition and inhibition studies revealed that tbx2a and tbx2b are negatively regulated by RA signaling. Interestingly, the CS cell expansion that typifies tbx2a/b deficiency also occurred when blocking Notch signaling with the chemical DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). Ectopic activation of Notch in Tg(hsp70::Gal4; UAS::NICD)(NICD) embryos led to a reduced CS post heat-shock induction. To further examine the link between the tbx2a/b genes and Notch during CS formation, DAPT treatment was used to block Notch activity in tbx2a/b deficient embryos, and tbx2a/b knockdown was performed in NICD transgenic embryos. Both manipulations caused similar CS expansions, indicating that Notch functions upstream of the tbx2a/b genes to suppress CS ontogeny. Taken together, these data reveal for the first time that tbx2a/b mitigate pronephros segmentation downstream of RA, and that interplay between Notch signaling and tbx2a/b regulate CS formation, thus providing several novel insights into the genetic regulatory networks that influence these lineages.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yue Li
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christina N Cheng
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
41
|
Poureetezadi SJ, Cheng CN, Chambers JM, Drummond BE, Wingert RA. Prostaglandin signaling regulates nephron segment patterning of renal progenitors during zebrafish kidney development. eLife 2016; 5. [PMID: 27996936 PMCID: PMC5173325 DOI: 10.7554/elife.17551] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022] Open
Abstract
Kidney formation involves patterning events that induce renal progenitors to form nephrons with an intricate composition of multiple segments. Here, we performed a chemical genetic screen using zebrafish and discovered that prostaglandins, lipid mediators involved in many physiological functions, influenced pronephros segmentation. Modulating levels of prostaglandin E2 (PGE2) or PGB2 restricted distal segment formation and expanded a proximal segment lineage. Perturbation of prostaglandin synthesis by manipulating Cox1 or Cox2 activity altered distal segment formation and was rescued by exogenous PGE2. Disruption of the PGE2 receptors Ptger2a and Ptger4a similarly affected the distal segments. Further, changes in Cox activity or PGE2 levels affected expression of the transcription factors irx3b and sim1a that mitigate pronephros segment patterning. These findings show for the first time that PGE2 is a regulator of nephron formation in the zebrafish embryonic kidney, thus revealing that prostaglandin signaling may have implications for renal birth defects and other diseases. DOI:http://dx.doi.org/10.7554/eLife.17551.001
Collapse
Affiliation(s)
- Shahram Jevin Poureetezadi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, United States.,Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, United States
| | - Christina N Cheng
- Department of Biological Sciences, University of Notre Dame, Notre Dame, United States.,Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, United States
| | - Joseph M Chambers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, United States.,Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, United States
| | - Bridgette E Drummond
- Department of Biological Sciences, University of Notre Dame, Notre Dame, United States.,Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, United States
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, United States.,Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, United States
| |
Collapse
|