1
|
Scharf I. Search patterns, resource regeneration, and ambush locations impact the competition between active and ambush predators. Ann N Y Acad Sci 2024; 1536:122-134. [PMID: 38861340 DOI: 10.1111/nyas.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Many predators ambush prey rather than pursue them or shift between foraging modes. Active predators typically encounter prey more frequently than ambush predators. I designed a simulation model to examine whether this always holds and how active and ambush predators fare in capturing mobile prey. Prey foraged for clumped resources using area-restricted search, shifting from directional movement before resource encounter to less directional movement afterward. While active predators succeeded more than ambush predators, the advantage of active predators diminished when ambush predators were positioned inside resource patches rather than outside. I investigated the impact of eight treatments and their interactions. For example, regeneration of prey resources increased the difference between ambush predators inside and outside patches, and uncertain prey capture by predators decreased this difference. Several interactions resulted in outcomes different from each factor in isolation. For instance, reducing the directionality level of active predators impacted moderately when applied alone, but when combined with resource regeneration it led to the worst success of active predators against ambush predators inside patches. Ambush predators may not always be inferior to active predators, and one should consider the key traits of the studied system to predict the relative success of these two foraging modes.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
McAlpine-Bellis E, Utsumi KL, Diamond KM, Klein J, Gilbert-Smith S, Garrison GE, Eifler MA, Eifler DA. Movement patterns and habitat use for the sympatric species: Gambelia wislizenii and Aspidoscelis tigris. Ecol Evol 2023; 13:e10422. [PMID: 37575589 PMCID: PMC10413956 DOI: 10.1002/ece3.10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Movement is an important characteristic of an animal's ecology, reflecting the perception of and response to environmental conditions. To effectively search for food, movement patterns likely depend on habitat characteristics and the sensory systems used to find prey. We examined movements associated with foraging for two sympatric species of lizards inhabiting the Great Basin Desert of southeastern Oregon. The two species have largely overlapping diets but find prey via different sensory cues, which link to their differing foraging strategies-the long-nosed leopard lizard, Gambelia wislizenii, is a visually-oriented predator, while the western whiptail, Aspidoscelis tigris, relies more heavily on chemosensory cues to find prey. Using detailed focal observations, we characterized the habitat use and movement paths of each species. We placed markers at the location of focal animals every minute for the duration of each 30-min observation. Afterward, we recorded whether each location was in the open or in vegetation, as well as the movement metrics of step length, path length, net displacement, straightness index, and turn angle, and then made statistical comparisons between the two species. The visual forager spent more time in open areas, moved less frequently over shorter distances, and differed in patterns of plant use compared to the chemosensory forager. Path characteristics of step length and turn angle differed between species. The visual predator moved in a way that was consistent with the notion that they require a clear visual path to stalk prey whereas the movement of the chemosensory predator increased their chances of detecting prey by venturing further into vegetation. Sympatric species can partition limited resources through differences in search behavior and habitat use.
Collapse
Affiliation(s)
| | - Kaera L Utsumi
- Erell Institute Lawrence Kansas USA
- Biodiversity Institute University of Kansas Lawrence Kansas USA
| | | | - Janine Klein
- Department of Anthropology University of California Santa Barbara California USA
| | | | | | - Maria A Eifler
- Erell Institute Lawrence Kansas USA
- Biodiversity Institute University of Kansas Lawrence Kansas USA
| | | |
Collapse
|
3
|
Stadler SR, Brock KM, Bednekoff PA, Foufopoulos J. More and bigger lizards reside on islands with more resources. J Zool (1987) 2022. [DOI: 10.1111/jzo.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S. R. Stadler
- School for Environment and Sustainability University of Michigan, Ann Arbor Ann Arbor MI USA
| | - K. M. Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources University of California, Berkeley Berkeley CA USA
- Museum of Vertebrate Zoology University of California, Berkeley Berkeley CA USA
| | - P. A. Bednekoff
- Department of Biology Eastern Michigan University Ypsilanti MI USA
| | - J. Foufopoulos
- School for Environment and Sustainability University of Michigan, Ann Arbor Ann Arbor MI USA
| |
Collapse
|
4
|
Fraser Franco M, Santostefano F, Kelly CD, Montiglio PO. Studying predator foraging mode and hunting success at the individual level with an online videogame. Behav Ecol 2022. [DOI: 10.1093/beheco/arac063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Predator–prey interactions are important drivers of community and ecosystem dynamics. With an online multiplayer videogame, we propose a novel system to explore within population variation in predator hunting mode, and how predator–prey behavioral interactions affect predator hunting success. We empirically examined how four predator foraging behaviors covary at three hierarchical levels (among environments, among individuals, and within individuals) to assess the structure of predator hunting mode. We also investigated how prey activity affects the foraging behavior and hunting success of predators. Our study supports key findings on predator foraging mode and predator-prey interactions from behavioral ecology. We found that individual predators displayed a diversity of hunting tactics that were conditioned by prey behavior. With prey movement, individual predators specialized either as cursorial or ambush hunters along a continuum of their hunting traits, but also shifted their strategy between encounters. Both types of hunters were generally better against slower moving prey, and they achieved similar prey captures over the sampling period. This suggests that virtual worlds supporting multiplayer online videogames can serve as legitimate systems to advance our knowledge on predator–prey interactions.
Collapse
Affiliation(s)
- Maxime Fraser Franco
- Département des Sciences Biologiques, Groupe de Recherche en Écologie et Évolution des Interactions Biologiques (GREEIB), Université du Québec à Montréal , Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8 , Canada
| | - Francesca Santostefano
- Département des Sciences Biologiques, Groupe de Recherche en Écologie et Évolution des Interactions Biologiques (GREEIB), Université du Québec à Montréal , Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8 , Canada
| | - Clint D Kelly
- Département des Sciences Biologiques, Groupe de Recherche en Écologie et Évolution des Interactions Biologiques (GREEIB), Université du Québec à Montréal , Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8 , Canada
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Groupe de Recherche en Écologie et Évolution des Interactions Biologiques (GREEIB), Université du Québec à Montréal , Case postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8 , Canada
| |
Collapse
|
5
|
Padilla Perez DJ, DeNardo DF, Angilletta Jr MJ. The correlated evolution of foraging mode and reproductive effort in lizards. Proc Biol Sci 2022; 289:20220180. [PMID: 35673871 PMCID: PMC9174732 DOI: 10.1098/rspb.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Life-history theory suggests that the optimal reproductive effort of an organism is affected by factors such as energy acquisition and predation risk. The observation that some organisms actively search for their prey and others ambush them creates the expectation of different energy needs and predation risk associated with each foraging behaviour, the so-called 'foraging-mode paradigm'. Although this paradigm has been around for decades, the empirical evidence consists of conflicting results derived from competing models based on different mechanisms. For instance, models within the foraging-mode paradigm suggest that widely foraging females have evolved low reproductive effort, because a heavy reproductive load decreases their ability to escape from predators. By contrast, a long-standing prediction of evolutionary theory indicates that organisms subject to high extrinsic mortality, should invest more in reproduction. Here, we present the first partial evidence that widely foraging species have evolved greater reproductive effort than have sit-and-wait species, which we attribute to a larger body size and greater mortality among mobile foragers. According to our findings, we propose a theoretical model that could explain the observed pattern in lizards, suggesting ways for evolutionary ecologists to test mechanistic hypotheses at the intraspecific level.
Collapse
Affiliation(s)
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
6
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
7
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
De Meester G, Sfendouraki-Basakarou A, Pafilis P, Van Damme R. Dealing with the unexpected: the effect of environmental variability on behavioural flexibility in a Mediterranean lizard. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract
Harsh and variable environments have been hypothesized to both drive and constrain the evolution towards higher cognitive abilities and behavioural flexibility. In this study, we compared the cognitive abilities of island and mainland Aegean wall lizards (Podarcis erhardii), which were expected to live in respectively a more variable and a more stable habitat. We used four proxies of behavioural flexibility: a neophobia assay, a problem-solving test and a spatial + reversal learning task. Surprisingly, the two populations did not differ in neophobia or problem-solving. Insular lizards, however, outperformed mainland conspecifics in an initial spatial learning task, but were less successful during the subsequent reversal learning. Our results thus seem to indicate that the effect of environmental variability on cognition is complex, as it may favour some, but not all aspects of behavioural flexibility.
Collapse
Affiliation(s)
- Gilles De Meester
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Alkyoni Sfendouraki-Basakarou
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis Pafilis
- Department of Biology, Section of Zoology and Marine Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Raoul Van Damme
- Department of Biology, Functional Morphology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Brock KM, Baeckens S, Donihue CM, Martín J, Pafilis P, Edwards DL. Trait differences among discrete morphs of a color polymorphic lizard, Podarcis erhardii. PeerJ 2020; 8:e10284. [PMID: 33194436 PMCID: PMC7649010 DOI: 10.7717/peerj.10284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Color polymorphism defies evolutionary expectations as striking phenotypic variation is maintained within a single species. Color and other traits mediate social interactions, and stable polymorphism within a population is hypothesized to be related to correlational selection of other phenotypic traits among color morphs. Here, we report on a previously unknown throat color polymorphism in the Aegean Wall Lizard (Podarcis erhardii) and examine morph-correlated differences in traits important to social behavior and communication: maximum bite force capacity and chemical signal profile. We find that both sexes of P. erhardii have three color morphs: orange, yellow, and white. Moreover, orange males are significantly larger and tend to bite harder than yellow and white males. Although the established color polymorphism only partially matches the observed intraspecific variation in chemical signal signatures, the chemical profile of the secretions of orange males is significantly divergent from that of white males. Our findings suggest that morph colors are related to differences in traits that are crucial for social interactions and competitive ability, illustrating the need to look beyond color when studying polymorphism evolution.
Collapse
Affiliation(s)
- Kinsey M Brock
- Department of Life & Environmental Sciences, School of Natural Sciences, University of California, Merced, Merced, CA, United States of America.,Quantitative and Systems Biology Graduate Group, School of Natural Sciences, University of California, Merced, Merced, CA, United States of America
| | - Simon Baeckens
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium.,Department of Biology, Macquarie University, Sydney, Australia
| | - Colin M Donihue
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States of America
| | - José Martín
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Panayiotis Pafilis
- Department of Zoology and Marine Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece.,Zoological Museum, National and Kapodistrian University of Athens, Athens, Greece
| | - Danielle L Edwards
- Department of Life & Environmental Sciences, School of Natural Sciences, University of California, Merced, Merced, CA, United States of America
| |
Collapse
|
10
|
Wirsing AJ, Heithaus MR, Brown JS, Kotler BP, Schmitz OJ. The context dependence of non-consumptive predator effects. Ecol Lett 2020; 24:113-129. [PMID: 32990363 DOI: 10.1111/ele.13614] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
Non-consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator-induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti-predator behaviours, we conceptualise the multi-stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey-specific patterns of evasion success ('evasion landscapes') as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non-consumptive predator-prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context-dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.
Collapse
Affiliation(s)
- Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA, 98195, USA
| | - Michael R Heithaus
- Department of Biological Sciences, Marine Sciences Program, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33613, USA
| | - Burt P Kotler
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet, Ben-Gurion, 84990, Israel
| | - Oswald J Schmitz
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
11
|
Donihue CM, Herrel A, Martín J, Foufopoulos J, Pafilis P, Baeckens S. Rapid and repeated divergence of animal chemical signals in an island introduction experiment. J Anim Ecol 2020; 89:1458-1467. [DOI: 10.1111/1365-2656.13205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Colin M. Donihue
- Department of Biology Washington University St. Louis MI USA
- Département Adaptations du Vivant UMR 7179 CNRS/MNHN Paris France
| | - Anthony Herrel
- Département Adaptations du Vivant UMR 7179 CNRS/MNHN Paris France
- Department of Biology University of Antwerp Wilrijk Belgium
- Department of Biology, Evolutionary Morphology of Vertebrates Ghent University Ghent Belgium
| | - José Martín
- Department of Evolutionary Ecology Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Johannes Foufopoulos
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| | - Panayiotis Pafilis
- Department of Biology National and Kapodistrian University of Athens Athens Greece
| | - Simon Baeckens
- Department of Biology University of Antwerp Wilrijk Belgium
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| |
Collapse
|
12
|
Utsumi K, Kusaka C, Pedersen R, Staley C, Dunlap L, Smith SG, Eifler MA, Eifler DA. Habitat-Dependent Search Behavior in the Colorado Checkered Whiptail (Aspidoscelis neotesselata). WEST N AM NATURALIST 2020. [DOI: 10.3398/064.080.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Carina Kusaka
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523
| | - Rachael Pedersen
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523
| | - Catherine Staley
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523
| | - Lisa Dunlap
- Undergraduate Mathematics Program, University of California, Berkeley, CA 94702
| | | | | | | |
Collapse
|
13
|
Durso AM, Smith GD, Hudson SB, French SS. Stoichiometric and stable isotope ratios of wild lizards in an urban landscape vary with reproduction, physiology, space and time. CONSERVATION PHYSIOLOGY 2020; 8:coaa001. [PMID: 32082575 PMCID: PMC7019090 DOI: 10.1093/conphys/coaa001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Spatial and temporal variation in stoichiometric and stable isotope ratios of animals contains ecological information that we are just beginning to understand. In both field and lab studies, stoichiometric or isotopic ratios are related to physiological mechanisms underlying nutrition or stress. Conservation and ecosystem ecology may be informed by isotopic data that can be rapidly and non-lethally collected from wild animals, especially where human activity leaves an isotopic signature (e.g. via introduction of chemical fertilizers, ornamental or other non-native plants or organic detritus). We examined spatial and temporal variation in stoichiometric and stable isotope ratios of the toes of Uta stansburiana (side-blotched lizards) living in urban and rural areas in and around St. George, Utah. We found substantial spatial and temporal variation as well as context-dependent co-variation with reproductive physiological parameters, although certain key predictions such as the relationship between δ15N and body condition were not supported. We suggest that landscape change through urbanization can have profound effects on wild animal physiology and that stoichiometric and stable isotope ratios can provide unique insights into the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Andrew M Durso
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan UT 84321 USA
- Department of Biological Sciences, Florida Gulf Coast University, 10501 FGCU Blvd S, Fort Myers, FL 33965 USA
| | - Geoffrey D Smith
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan UT 84321 USA
- Biological Sciences Department, Dixie State University, 225 S. University Avenue, St. George, UT 84770 USA
| | - Spencer B Hudson
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan UT 84321 USA
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, 5305 Old Main Hill, Logan UT 84321 USA
| |
Collapse
|
14
|
French SS, Webb AC, Hudson SB, Virgin EE. Town and Country Reptiles: A Review of Reptilian Responses to Urbanization. Integr Comp Biol 2019; 58:948-966. [PMID: 29873730 DOI: 10.1093/icb/icy052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of the world population is now inhabiting urban areas, and with staggering population growth, urbanization is also increasing. While the work studying the effects of changing landscapes and specific urban pressures on wildlife is beginning to amass, the majority of this work focuses on avian or mammalian species. However, the effects of urbanization likely vary substantially across taxonomic groups due to differences in habitat requirements and life history. The current article aims first to broaden the review of urban effects across reptilian species; second, to summarize the responses of reptilian fauna to specific urban features; and third, to assess the directionality of individual and population level responses to urbanization in reptile species. Based on our findings, urban research in reptilian taxa is lacking in the following areas: (1) investigating interactive or additive urban factors, (2) measuring multiple morphological, behavioral, and physiological endpoints within an animal, (3) linking individual to population-level responses, and (4) testing genetic/genomic differences across an urban environment as evidence for selective pressures.
Collapse
Affiliation(s)
- Susannah S French
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Alison C Webb
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT 84322, USA and Ecology Center, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
15
|
Abstract
Human-driven rapid environmental changes such as urbanization challenge the persistence of animal populations worldwide. A major aim of research in urban ecology is to unravel which traits allow animals to successfully deal with these new selective pressures. Since behavior largely determines how animals interact with the environment, it is expected to be an important factor determining their success in urban environments. However, behavior is a complex trait and fully understanding how it contributes to urban success is not straightforward: different behaviors may help animals deal with urbanization at different levels of biological organization. For instance, at the species level, urban exploiters often share behaviors that allow them to successfully forage and reproduce in urban areas. However, these behaviors are not necessarily the same that differentiate urban populations from populations of the same species in less disturbed environments. In addition, individual-level studies are essential to identify which mechanisms favor survival and reproduction in urbanized settings. Yet, longitudinal, mid-to-long-term studies of animal behavior at the individual level have largely been limited by logistic challenges. Here, I suggest that research programs in urban behavioral ecology should consider studying behavior at species-, population-, and individual-levels to achieve an integrative understanding of how animal behavior governs urban success. I use recent research carried out in Anolis lizards as an example to illustrate recent progress in behavioral urban ecology. Finally, I suggest some avenues of research at the individual level that could bring insight toward an integrative perspective of the role of behavior in urbanization. Integrative research programs in urban behavioral ecology will provide valuable insight to design management measures to maximize biodiversity and preserve ecosystem services.
Collapse
Affiliation(s)
- Oriol Lapiedra
- Organismic and Evolutionary Biology (OEB), Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.,Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Edifici C Campus de Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
16
|
Schell CJ. Urban Evolutionary Ecology and the Potential Benefits of Implementing Genomics. J Hered 2018; 109:138-151. [DOI: 10.1093/jhered/esy001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023] Open
|
17
|
Schmitz O. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions. F1000Res 2017; 6:1767. [PMID: 29043073 PMCID: PMC5621104 DOI: 10.12688/f1000research.11813.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts.
Collapse
Affiliation(s)
- Oswald Schmitz
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT, 06515, USA
| |
Collapse
|
18
|
Schmitz OJ, Miller JRB, Trainor AM, Abrahms B. Toward a community ecology of landscapes: predicting multiple predator-prey interactions across geographic space. Ecology 2017; 98:2281-2292. [DOI: 10.1002/ecy.1916] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Oswald J. Schmitz
- School of Forestry and Environmental Studies; Yale University; 370 Prospect Street New Haven Connecticut 06511 USA
| | - Jennifer R. B. Miller
- Department of Environmental Science, Policy and Management; University of California Berkeley; Berkeley California 94720 USA
- Panthera; 8 West 40th Street, 18th Floor New York New York 10018 USA
| | - Anne M. Trainor
- The Nature Conservancy, Africa Program; 820G Rieveschl Hall Cincinnati Ohio 45221 USA
| | - Briana Abrahms
- Department of Environmental Science, Policy and Management; University of California Berkeley; Berkeley California 94720 USA
- Institute of Marine Sciences; University of California Santa Cruz; Santa Cruz California 95060 USA
| |
Collapse
|