1
|
Yates C, King WL, Richards SC, Wilson C, Viddam V, Blakney AJC, Eissenstat DM, Bell TH. Temperate trees locally engineer decomposition and litter-bound microbiomes through differential litter deposits and species-specific soil conditioning. THE NEW PHYTOLOGIST 2024; 243:909-921. [PMID: 38877705 DOI: 10.1111/nph.19900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Leaf decomposition varies widely across temperate forests, shaped by factors like litter quality, climate, soil properties, and decomposers, but forest heterogeneity may mask local tree influences on decomposition and litter-associated microbiomes. We used a 24-yr-old common garden forest to quantify local soil conditioning impacts on decomposition and litter microbiology. We introduced leaf litter bags from 10 tree species (5 arbuscular mycorrhizal; 5 ectomycorrhizal) to soil plots conditioned by all 10 species in a full-factorial design. After 6 months, we assessed litter mass loss, C/N content, and bacterial and fungal composition. We hypothesized that (1) decomposition and litter-associated microbiome composition would be primarily shaped by the mycorrhizal type of litter-producing trees, but (2) modified significantly by underlying soil, based on mycorrhizal type of the conditioning trees. Decomposition and, to a lesser extent, litter-associated microbiome composition, were primarily influenced by the mycorrhizal type of litter-producing trees. Interestingly, however, underlying soils had a significant secondary influence, driven mainly by tree species, not mycorrhizal type. This secondary influence was strongest under trees from the Pinaceae. Temperate trees can locally influence underlying soil to alter decomposition and litter-associated microbiology. Understanding the strength of this effect will help predict biogeochemical responses to forest compositional change.
Collapse
Affiliation(s)
- Caylon Yates
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Biological Sciences, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cullen Wilson
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vedha Viddam
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew J C Blakney
- Department of Physical and Environmental Sciences, University of Toronto - Scarborough, Toronto, ON, M1A 1C4, Canada
| | - David M Eissenstat
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, University Park, PA, 16802, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physical and Environmental Sciences, University of Toronto - Scarborough, Toronto, ON, M1A 1C4, Canada
| |
Collapse
|
2
|
Horning AL, Koury SS, Meachum M, Kuehn KA, Hoeksema JD. Dirt cheap: an experimental test of controls on resource exchange in an ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2023; 237:987-998. [PMID: 36346200 DOI: 10.1111/nph.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.
Collapse
Affiliation(s)
- Amber L Horning
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Stephanie S Koury
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Mariah Meachum
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Kevin A Kuehn
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| |
Collapse
|
3
|
Downie J, Taylor AFS, Iason G, Moore B, Silvertown J, Cavers S, Ennos R. Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine ( Pinus sylvestris L.) seedlings. Ecol Evol 2021; 11:4826-4842. [PMID: 33976851 PMCID: PMC8093658 DOI: 10.1002/ece3.7384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022] Open
Abstract
For successful colonization of host roots, ectomycorrhizal (EM) fungi must overcome host defense systems, and defensive phenotypes have previously been shown to affect the community composition of EM fungi associated with hosts. Secondary metabolites, such as terpenes, form a core part of these defense systems, but it is not yet understood whether variation in these constitutive defenses can result in variation in the colonization of hosts by specific fungal species.We planted seedlings from twelve maternal families of Scots pine (Pinus sylvestris) of known terpene genotype reciprocally in the field in each of six sites. After 3 months, we characterized the mycorrhizal fungal community of each seedling using a combination of morphological categorization and molecular barcoding, and assessed the terpene chemodiversity for a subset of the seedlings. We examined whether parental genotype or terpene chemodiversity affected the diversity or composition of a seedling's mycorrhizal community.While we found that terpene chemodiversity was highly heritable, we found no evidence that parental defensive genotype or a seedling's terpene chemodiversity affected associations with EM fungi. Instead, we found that the location of seedlings, both within and among sites, was the only determinant of the diversity and makeup of EM communities.These results show that while EM community composition varies within Scotland at both large and small scales, variation in constitutive defensive compounds does not determine the EM communities of closely cohabiting pine seedlings. Patchy distributions of EM fungi at small scales may render any genetic variation in associations with different species unrealizable in field conditions. The case for selection on traits mediating associations with specific fungal species may thus be overstated, at least in seedlings.
Collapse
Affiliation(s)
- Jim Downie
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
- Centre for Ecology and HydrologyPenicuikUK
- School of Natural SciencesBangor UniversityWalesUK
| | - Andy F. S. Taylor
- The James Hutton InstituteAberdeenUK
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | | | - Ben Moore
- The James Hutton InstituteAberdeenUK
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Jonathan Silvertown
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | | | - Richard Ennos
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Hughes AR, Moore AFP, Gehring C. Plant response to fungal root endophytes varies by host genotype in the foundation species Spartina alterniflora. AMERICAN JOURNAL OF BOTANY 2020; 107:1645-1653. [PMID: 33252780 DOI: 10.1002/ajb2.1573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Root-associated fungi provide a wide range of functions for their host plants, including nutrient provisioning, pathogen protection, and stress alleviation. In so doing, they can markedly influence host-plant structural and physiological traits, although the degree to which these effects vary within particular plant host species is not well understood. METHODS We conducted a 7-month common-garden inoculation experiment to test the potential effects of a marine fungus (Lulwoana sp.) on the phenotypic traits of different genotypes of the host, the salt marsh plant species Spartina alterniflora. Lulwoana belongs to the dark septate endophytes (DSE), a polyphyletic group of fungi that are commonly found colonizing healthy plant roots, though their ecological role remains unclear. RESULTS We documented significant impacts of Lulwoana on S. alterniflora morphology, biomass, and biomass allocation. For most traits in our study, these impacts varied significantly in direction and/or magnitude across S. alterniflora genotypes. Effects that were consistent across genotype were generally negative. Plant response was not predicted by the percentage of roots colonized, consistent with findings that dark septate endophytes do not necessarily influence plant growth responses through direct contact with roots. CONCLUSIONS The observed changes in stem height, biomass, and biomass allocation have important effects on plant competitive ability, growth, and fitness, suggesting that plant-fungal interactions have community and ecosystem level effects in salt marshes.
Collapse
Affiliation(s)
- A Randall Hughes
- Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Althea F P Moore
- Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Catherine Gehring
- Northern Arizona University Department of Biological Sciences, P.O. Box 5640, Flagstaff, AZ, 86011, USA
| |
Collapse
|
5
|
Downie J, Silvertown J, Cavers S, Ennos R. Heritable genetic variation but no local adaptation in a pine-ectomycorrhizal interaction. MYCORRHIZA 2020; 30:185-195. [PMID: 32078050 PMCID: PMC7228896 DOI: 10.1007/s00572-020-00941-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/12/2020] [Indexed: 06/08/2023]
Abstract
Local adaptation of plants to mycorrhizal fungi helps determine the outcome of mycorrhizal interactions. However, there is comparatively little work exploring the potential for evolution in interactions with ectomycorrhizal fungi, and fewer studies have explored the heritability of mycorrhizal responsiveness, which is required for local adaptation to occur. We set up a reciprocal inoculation experiment using seedlings and soil from four populations of Scots pine (Pinus sylvestris) from Scotland, measuring seedling response to mycorrhizal inoculation after 4 months. We estimated heritability for the response traits and tested for genotype × environment interactions. While we found that ectomycorrhizal responsiveness was highly heritable, we found no evidence that pine populations were locally adapted to fungal communities. Instead, we found a complex suite of interactions between pine population and soil inoculum. Our results suggest that, while Scots pine has the potential to evolve in response to mycorrhizal fungi, evolution in Scotland has not resulted in local adaptation. Long generation times and potential for rapid shifts in fungal communities in response to environmental change may preclude the opportunity for such adaptation in this species, and selection for other factors such as resistance to fungal pathogens may explain the pattern of interactions found.
Collapse
Affiliation(s)
- Jim Downie
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland.
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, Scotland.
| | - Jonathan Silvertown
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland
| | - Stephen Cavers
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, Scotland
| | - Richard Ennos
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|