1
|
Miller CA, Gazeau F, Lebrun A, Alliouane S, Urrutti P, Schlegel RW, Gattuso J, Comeau S. Summer primary production of Arctic kelp communities is more affected by duration than magnitude of simulated marine heatwaves. Ecol Evol 2024; 14:e70183. [PMID: 39355104 PMCID: PMC11439588 DOI: 10.1002/ece3.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 10/03/2024] Open
Abstract
Fjord systems in the Norwegian Arctic are experiencing an increasing frequency and magnitude of marine heatwaves. These episodic heat stress events can have varying degrees of acute impacts on primary production and nutrient uptake of mixed kelp communities, as well as modifying the biogeochemical cycling in nearshore systems where vast areas of kelp create structural habitat. To assess the impact of future marine heatwaves on kelp communities, we conducted a 23 day mesocosm experiment exposing mixed kelp communities to warming and heatwave scenarios projected for the year 2100. Three treatments were considered: a constant warming (+1.8°C from the control), a medium magnitude and long duration heatwave event (+2.8°C from the control for 13 days), and two short-term, more intense, heatwaves(5 day long scenarios with temperature peaks at +3.9°C from the control). The results show that both marine heatwave treatments reduced net community production, whereas the constant warm temperature treatment displayed no difference from the control. The long marine heatwave scenario resulted in reduced accumulated net community production, indicating that prolonged exposure had a greater severity than two high magnitude, short-term heatwave events. We estimated an 11°C temperature threshold at which negative effects to primary production appeared present. We highlight that marine heatwaves can induce sublethal effects on kelp communities by depressing net community production. These results are placed in the context of potential physiological resilience of kelp communities and implications of reduced net community production to future Arctic fjord environmental conditions.
Collapse
Affiliation(s)
- Cale A. Miller
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
- Present address:
Department of Earth SciencesGeosciences, Utrecht UniversityUtrechtThe Netherlands
| | - Frédéric Gazeau
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
| | - Anaïs Lebrun
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
| | - Samir Alliouane
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
| | - Pierre Urrutti
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
| | - Robert W. Schlegel
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
| | - Jean‐Pierre Gattuso
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
- Institute for Sustainable Development and International Relations, Sciences PoParisFrance
| | - Steeve Comeau
- CNRS, Laboratoire d'Océanographie de VillefrancheSorbonne UniversitéVillefranche‐sur‐MerFrance
| |
Collapse
|
2
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
3
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA. Urchin grazing of kelp gametophytes in warming oceans. JOURNAL OF PHYCOLOGY 2023; 59:838-855. [PMID: 37432133 DOI: 10.1111/jpy.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer-gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.
Collapse
Affiliation(s)
- Reina J Veenhof
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Curtis Champion
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
4
|
Eger AM, Marzinelli EM, Christie H, Fagerli CW, Fujita D, Gonzalez AP, Hong SW, Kim JH, Lee LC, McHugh TA, Nishihara GN, Tatsumi M, Steinberg PD, Vergés A. Global kelp forest restoration: past lessons, present status, and future directions. Biol Rev Camb Philos Soc 2022; 97:1449-1475. [PMID: 35255531 PMCID: PMC9543053 DOI: 10.1111/brv.12850] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.
Collapse
Affiliation(s)
- Aaron M. Eger
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
| | - Ezequiel M. Marzinelli
- The University of Sydney, School of Life and Environmental SciencesSydneyNSW2006Australia
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Hartvig Christie
- Norwegian Institute for Water ResearchØkernveien 94Oslo0579Norway
| | | | - Daisuke Fujita
- University of Tokyo Marine Science and Technology, School of Marine Bioresources, Applied PhycologyKonan, Minato‐kuTokyo108‐8477Japan
| | - Alejandra P. Gonzalez
- Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileLas Palmeras 3425, ÑuñoaSantiagoChile
| | - Seok Woo Hong
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Jeong Ha Kim
- Department of Biological SciencesSungkyunkwan UniversitySuwon2066South Korea
| | - Lynn C. Lee
- Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site60 Second Beach Road, SkidegateHaida GwaiiBCV0T 1S1Canada
- Canada & School of Environmental Sciences, University of Victoria3800 Finnerty RoadVictoriaBCV8P 5C2Canada
| | - Tristin Anoush McHugh
- Reef Check Foundation, Long Marine Laboratory115 McAllister RoadSanta CruzCA95060U.S.A.
- Present address:
The Nature Conservancy830 S StreetSacramentoCA95811U.S.A.
| | - Gregory N. Nishihara
- Organization for Marine Science and TechnologyInstitute for East China Sea Research, Nagasaki University1551‐7 Taira‐machiNagasaki City851‐2213Japan
| | - Masayuki Tatsumi
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTAS7004Australia
| | - Peter D. Steinberg
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| | - Adriana Vergés
- Centre for Marine Science and Innovation & Ecology and Evolution Research Centre, School of Biological, Earth and Environmental SciencesThe University of New South WalesSydneyNSW2052
- Sydney Institute of Marine Science19 Chowder Bay RdMosmanNSW2088Australia
| |
Collapse
|
5
|
Kouba A, Oficialdegui FJ, Cuthbert RN, Kourantidou M, South J, Tricarico E, Gozlan RE, Courchamp F, Haubrock PJ. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152325. [PMID: 34971690 DOI: 10.1016/j.scitotenv.2021.152325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans - crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans.
Collapse
Affiliation(s)
- Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | | | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany; Queen's University Belfast, School of Biological Sciences, Belfast, Northern Ireland, UK
| | - Melina Kourantidou
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg, Denmark
| | - Josie South
- Centre for Invasion Biology, South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, South Africa; South African Institute for Aquatic Biodiversity (SAIAB), DSI/NRF Research Chair in Inland Fisheries and Freshwater Ecology, Makhanda, South Africa
| | - Elena Tricarico
- University of Florence, Department of Biology, Sesto Fiorentino, FI, Italy
| | | | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany.
| |
Collapse
|
6
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
7
|
Leclerc JC, de Bettignies T, de Bettignies F, Christie H, Franco JN, Leroux C, Davoult D, Pedersen MF, Filbee-Dexter K, Wernberg T. Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes. Oecologia 2021; 196:441-453. [PMID: 34009471 DOI: 10.1007/s00442-021-04936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .,Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| | - Thibaut de Bettignies
- UMS Patrimoine Naturel (PATRINAT), AFB-CNRS-MNHN, CP41, 36 rue Geoffroy Saint-Hilaire, 75005, Paris, France.,School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Hartvig Christie
- Marine Biology Section, Norwegian Institute for Water Research, Oslo, Norway
| | - João N Franco
- CIIMAR, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.,MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Cédric Leroux
- Sorbonne Université, CNRS, FR 2424, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Morten F Pedersen
- Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark
| | - Karen Filbee-Dexter
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.,Benthic Communities Research Group, Institute of Marine Research, His, Norway
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.,Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark.,Benthic Communities Research Group, Institute of Marine Research, His, Norway
| |
Collapse
|
8
|
Discrete steps of successional pathways differ in kelp forest and urchin barren communities. COMMUNITY ECOL 2021. [DOI: 10.1007/s42974-020-00035-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Norderhaug KM, Nedreaas K, Huserbråten M, Moland E. Depletion of coastal predatory fish sub-stocks coincided with the largest sea urchin grazing event observed in the NE Atlantic. AMBIO 2021; 50:163-173. [PMID: 32720251 PMCID: PMC7708581 DOI: 10.1007/s13280-020-01362-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this contribution, we propose fishery driven predator release as the cause for the largest grazing event ever observed in the NE Atlantic. Based on the evolving appreciation of limits to population connectivity, published and previously unpublished data, we discuss whether overfishing caused a grazer bloom of the sea urchin (Strongylocentrotus droebachiensis) resulting in overgrazing of more than 2000 km2 kelp (Laminaria hyperborea) forest along Norwegian and Russian coasts during the 1970 s. We show that coastal fisheries likely depleted predatory coastal fish stocks through modernization of fishing methods and fleet. These fish were important predators on urchins and the reduction coincided with the urchin bloom. From this circumstantial evidence, we hypothesize that coastal predatory fish were important in regulating sea urchins, and that a local population dynamics perspective is necessary in management of coastal ecosystems.
Collapse
Affiliation(s)
- Kjell Magnus Norderhaug
- Institute of Marine Research IMR, Norway, Nye Flødevigveien 20, 4817 His, Norway
- University of Oslo Norway, Oslo, Norway
| | - Kjell Nedreaas
- Institute of Marine Research, Norway, Nordnesgaten 33, 5005 Bergen, Norway
| | - Mats Huserbråten
- Institute of Marine Research, Norway, Nordnesgaten 50, 5005 Bergen, Norway
| | - Even Moland
- Institute of Marine Research, Norway, Nye Flødevigveien 20, 4817 His, Norway
- Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway
| |
Collapse
|
10
|
Krause-Jensen D, Archambault P, Assis J, Bartsch I, Bischof K, Filbee-Dexter K, Dunton KH, Maximova O, Ragnarsdóttir SB, Sejr MK, Simakova U, Spiridonov V, Wegeberg S, Winding MHS, Duarte CM. Imprint of Climate Change on Pan-Arctic Marine Vegetation. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.617324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Arctic climate is changing rapidly. The warming and resultant longer open water periods suggest a potential for expansion of marine vegetation along the vast Arctic coastline. We compiled and reviewed the scattered time series on Arctic marine vegetation and explored trends for macroalgae and eelgrass (Zostera marina). We identified a total of 38 sites, distributed between Arctic coastal regions in Alaska, Canada, Greenland, Iceland, Norway/Svalbard, and Russia, having time series extending into the 21st Century. The majority of these exhibited increase in abundance, productivity or species richness, and/or expansion of geographical distribution limits, several time series showed no significant trend. Only four time series displayed a negative trend, largely due to urchin grazing or increased turbidity. Overall, the observations support with medium confidence (i.e., 5–8 in 10 chance of being correct, adopting the IPCC confidence scale) the prediction that macrophytes are expanding in the Arctic. Species distribution modeling was challenged by limited observations and lack of information on substrate, but suggested a current (2000–2017) potential pan-Arctic brown macroalgal distribution area of 655,111 km2(140,433 km2intertidal, 514,679 km2subtidal), representing an increase of about 45% for subtidal- and 8% for intertidal macroalgae since 1940–1950, and associated polar migration rates averaging 18–23 km decade–1. Adjusting the potential macroalgal distribution area by the fraction of shores represented by cliffs halves the estimate (340,658 km2). Warming and reduced sea ice cover along the Arctic coastlines are expected to stimulate further expansion of marine vegetation from boreal latitudes. The changes likely affect the functioning of coastal Arctic ecosystems because of the vegetation’s roles as habitat, and for carbon and nutrient cycling and storage. We encourage a pan-Arctic science- and management agenda to incorporate marine vegetation into a coherent understanding of Arctic changes by quantifying distribution and status beyond the scattered studies now available to develop sustainable management strategies for these important ecosystems.
Collapse
|
11
|
Salloum PM, de Villemereuil P, Santure AW, Waters JM, Lavery SD. Hitchhiking consequences for genetic and morphological patterns: the influence of kelp-rafting on a brooding chiton. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
Onithochiton neglectus is a morphologically variable, brooding chiton inhabiting coastal reefs throughout New Zealand and its Sub-Antarctic Islands. Southern O. neglectus populations are typically associated with buoyant kelp (Durvillaea spp.) and are potentially connected via kelp-rafting. Northern O. neglectus populations are less likely to raft, due to lower numbers of Durvillaea in northern New Zealand. To test for the impact of kelp-rafting on the spatial distribution of variation in O. neglectus, we undertook a combined analysis of morphological and genetic variation across the range of the species. Geometric morphometrics were used to assess shell shape. We detected a northern vs. southern split in shell shape, corresponding to the frequency of the O. neglectus/Durvillaea spp. association. To assess O. neglectus genetic patterns across New Zealand, we estimated phylogenetic trees with nuclear (ITS) and mitochondrial (COI and 16S) markers, which revealed distinct northern and southern lineages, and an additional lineage in central New Zealand. Neither the morphological nor genetic groups match existing O. neglectus subspecies, but are concordant with the patterns of association of O. neglectus with Durvillaea. We suggest that shell shape may be linked to O. neglectus’ regionally variable ecological association with kelp holdfasts.
Collapse
Affiliation(s)
- P M Salloum
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - P de Villemereuil
- EPHE PSL University, Institut de Systématique, Evolution et Biodiversité, UMR 7205, CNRS, MNHN, Sorbonne Université, Paris, France
| | - A W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J M Waters
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - S D Lavery
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, Warkworth, New Zealand
| |
Collapse
|
12
|
Filbee-Dexter K, Pedersen MF, Fredriksen S, Norderhaug KM, Rinde E, Kristiansen T, Albretsen J, Wernberg T. Carbon export is facilitated by sea urchins transforming kelp detritus. Oecologia 2020; 192:213-225. [PMID: 31828530 DOI: 10.1007/s00442-019-04571-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/02/2019] [Indexed: 12/01/2022]
Abstract
With the increasing imperative for societies to act to curb climate change by increasing carbon stores and sinks, it has become critical to understand how organic carbon is produced, released, transformed, transported, and sequestered within and across ecosystems. In freshwater and open-ocean systems, shredders play a significant and well-known role in transforming and mobilizing carbon, but their role in the carbon cycle of coastal ecosystems is largely unknown. Marine plants such as kelps produce vast amounts of detritus, which can be captured and consumed by shedders as it traverses the seafloor. We measured capture and consumption rates of kelp detritus by sea urchins across four sampling periods and over a range of kelp detritus production rates and sea urchin densities, in northern Norway. When sea urchin densities exceeded 4 m-2, the sea urchins captured and consumed a high percentage (ca. 80%) of kelp detritus on shallow reefs. We calculated that between 1.3 and 10.8 kg of kelp m-2 are shredded annually from these reefs. We used a hydrodynamic dispersal model to show that transformation of kelp blades to sea urchin feces increased its export distance fourfold. Our findings show that sea urchins can accelerate and extend the export of carbon to neighboring areas. This collector-shredder pathway could represent a significant flow of small particulate carbon from kelp forests to deep-sea areas, where it can subsidize benthic communities or contribute to the global carbon sink.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- Institute of Marine Research, His, Norway.
- Norwegian Institute for Water Research, Oslo, Norway.
| | | | - Stein Fredriksen
- Institute of Marine Research, His, Norway
- University of Olso, Oslo, Norway
| | | | - Eli Rinde
- Norwegian Institute for Water Research, Oslo, Norway
| | | | | | - Thomas Wernberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- UWA Oceans Institute, School of Biological Sciences, University of Western Australia, Crawley, Australia
| |
Collapse
|