1
|
Ward MR, Burridge CP, McCammon S, Smolenski A, Hurd CL, Visch W. Applications of environmental DNA monitoring for seaweed reproductive phenology: A case study with giant kelp (Macrocystis pyrifera). JOURNAL OF PHYCOLOGY 2025. [PMID: 40103189 DOI: 10.1111/jpy.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Monitoring the seasonal reproductive cycles of seaweeds is crucial for effective population and ecosystem management, as well as mariculture seedstock collection. Traditional methods, such as visual monitoring by SCUBA diving or snorkeling, are costly, labor-intensive, and limited in temporal and spatial coverage. This study explores substituting these methods with environmental DNA (eDNA) techniques for giant kelp (Macrocystis pyrifera, order Laminariales). This laboratory study aimed to determine the minimum detectable concentration of zoospores and sporophyte tissue needed for detecting the reproductive phenology of M. pyrifera and to assess the ability and sensitivity to discriminate between life stages. The study involved syringe-filtering seawater samples through 0.45-μm pore-size filters before quantitative polymerase chain reaction (qPCR) analysis with species-specific primers. There was a strong positive correlation between zoospore concentration and eDNA copies per μL (ρ = 0.982, p < 0.001), and a weak correlation for sporophyte wet weight (ρ = 0.367, p = 0.134). There was a significant difference between zoospore and zoospore + sporophyte treatments (p = 0.010), indicating the substantial influence of sporophyte tissue on detected eDNA quantity. Sporophyte tissue obscures the zoospore signal, especially at lower zoospore concentrations (<37 zoospores · mL-1), highlighting that eDNA analysis is suitable for monitoring reproductive peaks and broader patterns in seasonal reproduction cycles of giant kelp when zoospore concentrations are high.
Collapse
Affiliation(s)
- Madeline R Ward
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Sharee McCammon
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Adam Smolenski
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Wouter Visch
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Meinita MDN, Harwanto D, Choi JS. A concise review of the bioactivity and pharmacological properties of the genus Codium (Bryopsidales, Chlorophyta). JOURNAL OF APPLIED PHYCOLOGY 2022; 34:2827-2845. [PMID: 36259048 PMCID: PMC9559154 DOI: 10.1007/s10811-022-02842-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The genus Codium is one of the most important genera of marine green macroalgae. Its distribution is widespread worldwide and it has a high degree of diversity in species and characteristics. This genus plays an important ecological role in marine ecosystems as it is a primary producer. However, some species in the genus Codium are invasive species and may disturb the functioning of the ecosystem. Economically, Codium has promising potential as a source of diverse nutritional and pharmacological compounds. Codium is edible, has a high nutrient value, and is rich in bioactive compounds. Hence, some species of Codium have been consumed as food and used as herbal medicines in some Asian countries. In recent decades, studies of the bioactivity and pharmacological properties of the genus Codium have attracted the attention of scientists. This review aims to identify gaps in studies analyzing Codium that have been conducted in the past three decades by assessing published research articles on its bioactivity and pharmacological properties. Compounds obtained from Codium have demonstrated significant biological activities, such as immunostimulatory, anticoagulant, anticancer, anti-inflammatory, antioxidant, antiviral, antibacterial, antifungal, antitumor, anti-angiogenic, osteoprotective, and anti-obesity activities. This review provides information that can be used as a future guideline for sustainably utilizing the genus Codium.
Collapse
Affiliation(s)
- Maria Dyah Nur Meinita
- Seafood Research Center, Industry Academy Cooperation Foundation (IACF), Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan, 49277 Korea
- Faculty of Fisheries and Marine Science, Jenderal Soedirman University, Purwokerto, 53123 Indonesia
- Center for Maritime Bioscience Studies, Jenderal Soedirman University, Purwokerto, 53123 Indonesia
| | - Dicky Harwanto
- Seafood Research Center, Industry Academy Cooperation Foundation (IACF), Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan, 49277 Korea
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275 Indonesia
| | - Jae-Suk Choi
- Seafood Research Center, Industry Academy Cooperation Foundation (IACF), Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan, 49277 Korea
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, 53064 Gyeongsangnam-do Korea
| |
Collapse
|
3
|
Banerjee P, Stewart KA, Dey G, Antognazza CM, Sharma RK, Maity JP, Saha S, Doi H, de Vere N, Chan MWY, Lin PY, Chao HC, Chen CY. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AOB PLANTS 2022; 14:plac031. [PMID: 35990516 PMCID: PMC9389569 DOI: 10.1093/aobpla/plac031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Kathryn A Stewart
- Institute of Environmental Science, Leiden University, 2333 CC Leiden, The Netherlands
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Caterina M Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Santanu Saha
- Post Graduate Department of Botany, Bidhannagar College, Salt Lake City, Kolkata 700064, India
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Natasha de Vere
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K
| | - Michael W Y Chan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | |
Collapse
|
4
|
Zhao B, van Bodegom PM, Trimbos K. The particle size distribution of environmental DNA varies with species and degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149175. [PMID: 34303977 DOI: 10.1016/j.scitotenv.2021.149175] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) analysis is frequently used as a non-invasive method to investigate species and biodiversity in ecosystems. However, such eDNA may represent both organisms currently present as well as species that released their DNA some point in the past, thereby representing a mix of current and historic biodiversity. This may lead to a false-positive detection of organisms' presence. As the eDNA particle size distribution (PSD) changes along with the decay process, it may facilitate solving the above problem. Here, we set up tank experiments with snails, zebrafish and daphnids, respectively, to monitor the change in eDNA PSD and eDNA degradation through time after removing organisms. We found that zebrafish eDNA decays more slowly for larger particle sizes. Across all species tested, the percentage of large size ranges tended to increase over time while the smaller sizes showed relatively fast decay rates. As a result, PSD changed consistently with eDNA decay, although initial PSD varied between species. In combination, we propose that eDNA PSD can be used to assess the current prevalence of organisms at an eDNA sampling location while avoiding false-positives on the presence of species. Our findings expand the applicability of eDNA for monitoring target species in freshwater ecosystems.
Collapse
Affiliation(s)
- Beilun Zhao
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, Netherlands.
| | - Peter M van Bodegom
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, Netherlands
| | - Krijn Trimbos
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, Netherlands
| |
Collapse
|
5
|
Banerjee P, Dey G, Antognazza CM, Sharma RK, Maity JP, Chan MWY, Huang YH, Lin PY, Chao HC, Lu CM, Chen CY. Reinforcement of Environmental DNA Based Methods ( Sensu Stricto) in Biodiversity Monitoring and Conservation: A Review. BIOLOGY 2021; 10:biology10121223. [PMID: 34943137 PMCID: PMC8698464 DOI: 10.3390/biology10121223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Worldwide biodiversity loss points to a necessity of upgrading to a fast and effective monitoring method that can provide quick conservation action. Newly developed environmental DNA (eDNA) based method found to be more cost-effective, non-invasive, quick, and accurate than traditional monitoring (spot identification, camera trapping). Although the eDNA based methods are proliferating rapidly, as a newly developed branch, it needs more standardization and practitioner adaptation. The present study aims to evaluate the eDNA based methods, and their potential achievements in biodiversity monitoring, and conservation for quick practitioners’ adaption. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community-level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique shows a great promise with its high accuracy and authenticity, and will be applicable alone or alongside other methods in the near future. Abstract Recently developed non-invasive environmental DNA-based (eDNA) techniques have enlightened modern conservation biology, propelling the monitoring/management of natural populations to a more effective and efficient approach, compared to traditional surveys. However, due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines can potentially jeopardize research progression, methodological standardization, and practitioner adoption in several ways. Present investigation reflects the developmental progress of eDNA (sensu stricto) including highlighting the successful case studies in conservation management. The eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve species detection) with a high accuracy and authentication, which gradually upgrading modern conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technology (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy and authentication can be applicable alone or coupled with traditional surveys in conservation biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and function) is essential on a global scale for future management decisions.
Collapse
Affiliation(s)
- Pritam Banerjee
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Gobinda Dey
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Caterina M. Antognazza
- Department of Theoretical and Applied Science, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy;
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Michael W. Y. Chan
- Department of Biomedical Science, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (P.B.); (G.D.); (M.W.Y.C.)
| | - Yi-Hsun Huang
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan;
| | - Hung-Chun Chao
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
| | - Chung-Ming Lu
- Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County, Jiayi 62102, Taiwan;
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, Jiayi 62102, Taiwan; (R.K.S.); (J.P.M.); (Y.-H.H.); (H.-C.C.)
- Correspondence: or ; Tel.: +886-5-2720411 (ext. 66220); Fax: +886-5-2720807
| |
Collapse
|
6
|
Blindow I, Carlsson M, van de Weyer K. Re-Establishment Techniques and Transplantations of Charophytes to Support Threatened Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:1830. [PMID: 34579363 PMCID: PMC8470995 DOI: 10.3390/plants10091830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022]
Abstract
Re-establishment of submerged macrophytes and especially charophyte vegetation is a common aim in lake management. If revegetation does not happen spontaneously, transplantations may be a suitable option. Only rarely have transplantations been used as a tool to support threatened submerged macrophytes and, to a much lesser extent, charophytes. Such actions have to consider species-specific life strategies. K-strategists mainly inhabit permanent habitats, are perennial, have low fertility and poor dispersal ability, but are strong competitors and often form dense vegetation. R-strategists are annual species, inhabit shallow water and/or temporary habitats, and are richly fertile. They disperse easily but are weak competitors. While K-strategists easily can be planted as green biomass taken from another site, rare R-strategists often must be reproduced in cultures before they can be planted on-site. In Sweden, several charophyte species are extremely rare and fail to (re)establish, though apparently suitable habitats are available. Limited dispersal and/or lack of diaspore reservoirs are probable explanations. Transplantations are planned to secure the occurrences of these species in the country. This contribution reviews the knowledge on life forms, dispersal, establishment, and transplantations of submerged macrophytes with focus on charophytes and gives recommendations for the Swedish project.
Collapse
Affiliation(s)
- Irmgard Blindow
- Biological Station of Hiddensee, University of Greifswald, D-18565 Kloster, Germany
| | - Maria Carlsson
- County Administration Jönköpings Län, Hamngatan 4, S-551 86 Jönköping, Sweden
| | | |
Collapse
|
7
|
Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild-Relevance for Biotechnological Applications of this Green Seaweed. Mar Drugs 2020; 18:md18040188. [PMID: 32244516 PMCID: PMC7230330 DOI: 10.3390/md18040188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decades, the use of algae in biotechnology and food industries has experienced an exponential growth. Codium tomentosum is a green macroalgae with high biotechnological potential, due to its rich lipidome, although few studies have addressed it. This study aimed to investigate the seasonal changes in lipid and pigment profiles of C. tomentosum, as well as to screen its antioxidant activity, in order to evaluate its natural plasticity. Samples of C. tomentosum were collected in two different seasons, early-autumn (September/October) and spring (May), in the Portuguese coast (wild samples), and in a land-based integrated multitrophic aquaculture (IMTA) system (IMTA samples). Total lipid extracts were analysed by LC-MS, GC-MS, and HPLC, and antioxidant activity was screened through free radical scavenging potential against DPPH and 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. Wild samples showed a high seasonal variability, modifying their lipidome and pigment profiles according to environmental shifts, while IMTA samples showed a relatively stable composition due to early-stage culturing in controlled conditions. The lipids that contributed the most to seasonal discrimination were glycolipids (monogalactosyl diacylglycerol - MGDG and digalactosyl diacylglycerol - DGDG) and the lyso forms of phospholipids and glycolipids. Lipid extracts showed antioxidant activity ranging from 61 ± 2 to 115 ± 35 µmol Trolox g-1 of lipid extract in DPPH assay and from 532 ± 73 to 927 ± 92 µmol Trolox g-1 of lipid extract in ABTS assay, with a more intense antioxidant activity in wild spring samples. This study revealed that wild specimens of C. tomentosum presented a higher plasticity to cope with seasonal environmental changes, adjusting their lipid, pigment, and bioactivity profiles, while IMTA samples, cultured under controlled conditions, displayed more stable lipidome and pigment compositions.
Collapse
|