1
|
Yin HY, Wang PJ, Yang DS, Chou JY. Context-Dependent Food Preferences and Comparative Decision-Making in Slime Mold Physarella oblonga. J Basic Microbiol 2025:e70023. [PMID: 40098293 DOI: 10.1002/jobm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Slime molds, despite their unicellular nature, exhibit complex behaviors and problem-solving abilities that have fascinated researchers. They are widely utilized as model organisms in behavioral studies. In this study, we examined the feeding preferences of the acellular slime mold Physarella oblonga when exposed to different yeast species as food sources. Our findings reveal significant preferences shown by P. oblonga for specific yeast strains. When Wickerhamomyces anomalus JYC2560 was another option, P. oblonga significantly favored Hanseniaspora osmophila JYC2504 (p < 0.05). Similarly, when Kazachstania exigua JYC2539 was another choice, P. oblonga exhibited a significant preference for Dekkera bruxellensis JYC2592 (p < 0.05). However, no significant preference was observed in other pair experiments. Further investigations highlighted variations in responses among different slime mold strains. Additionally, introducing a third yeast species as a decoy showed that P. oblonga preferred Hanseniaspora osmophila JYC2504 over Dekkera bruxellensis JYC2592 (p < 0.001), indicating a decoy effect. The preference can be changed if different yeast strains are used as decoys. Notably, this effect persisted even when the decoy yeast was fed to the slime mold in advance of the choice experiment, suggesting memory retention in slime molds. These findings contribute to our understanding of the intricate interactions between slime molds and their environment, emphasizing the diverse responses observed across different strains.
Collapse
Affiliation(s)
- Hao-Yun Yin
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Pin-Jhu Wang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Dong-Sheng Yang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
2
|
Chen A, Covitz RM, Folsom AA, Mu X, Peck RF, Noh S. Symbiotic T6SS affects horizontal transmission of Paraburkholderia bonniea among Dictyostelium discoideum amoeba hosts. ISME COMMUNICATIONS 2025; 5:ycaf005. [PMID: 40046898 PMCID: PMC11882306 DOI: 10.1093/ismeco/ycaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/09/2025]
Abstract
Three species of Paraburkholderia are able to form facultative symbiotic relationships with the amoeba, Dictyostelium discoideum. These symbiotic Paraburkholderia share a type VI secretion system (T6SS) that is absent in other close relatives. We tested the phenotypic and transcriptional effect of tssH ATPase gene disruption in P. bonniea on its symbiosis with D. discoideum. We hypothesized that the ∆tssH mutant would have a significantly reduced ability to affect host fitness or transmit itself from host to host. We found that the T6SS does not directly affect host fitness. Instead, wildtype P. bonniea had significantly higher rates of horizontal transmission compared to ∆tssH. In addition, we observed significant differences in the range of infection prevalence achieved by wildtype vs. ∆tssH symbionts over multiple host social stages in the absence of opportunities for environmental symbiont acquisition. Successful symbiont transmission significantly contributes to sustained symbiotic association. Therefore, the shared T6SS appears necessary for a long-term evolutionary relationship between D. discoideum and its Paraburkholderia symbionts. The lack of difference in host fitness outcomes was confirmed by indistinguishable host gene expression patterns between hosts infected by wildtype or ∆tssH P. bonniea in an RNA-seq time series. These data also provided insight into how Paraburkholderia symbionts may evade phagocytosis by its amoeba host. Most significantly, cellular oxidant detoxification and lysosomal hydrolase delivery appear to be subject to the push and pull of host-symbiont crosstalk.
Collapse
Affiliation(s)
- Anna Chen
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Rachel M Covitz
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
- School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, United States
| | - Abigail A Folsom
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Xiangxi Mu
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Ronald F Peck
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Suegene Noh
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| |
Collapse
|
3
|
Dinda SK, Hazra S, De A, Datta A, Das L, Pattanayak S, Kumar K, Dey MD, Basu A, Manna D. Amoebae: beyond pathogens- exploring their benefits and future potential. Front Cell Infect Microbiol 2024; 14:1518925. [PMID: 39744153 PMCID: PMC11688213 DOI: 10.3389/fcimb.2024.1518925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like Entamoeba histolytica pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" Naegleria fowleri leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate. Other free-living amoebae, including Acanthamoeba castellanii and Balamuthia mandrillaris, also threaten the human central nervous system. Yet, beyond these dangers, amoebae play critical ecological roles. They function as nature's recyclers, decomposing organic material and nourishing aquatic ecosystems, while also serving as food for various organisms. Moreover, certain amoebae help control plant pathogens and offer insight into human disease, proving valuable as model organisms in biomedical research. This review sheds light on the complex, multifaceted world of amoebae, highlighting their dual role as pathogens and as key contributors to vital ecological processes, as well as their significant impact on research and their promising potential for enhancing human well-being.
Collapse
Affiliation(s)
- Suman Kalyan Dinda
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Shreyasee Hazra
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Anwesha De
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Annurima Datta
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Lipika Das
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Santanu Pattanayak
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Kishor Kumar
- Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, India
| | - Manash Deep Dey
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
4
|
Scott TJ, Queller DC, Strassmann JE. Complex third-party effects in the Dictyostelium-Paraburkholderia symbiosis: prey bacteria that are eaten, carried or left behind. Proc Biol Sci 2024; 291:20241111. [PMID: 39016123 PMCID: PMC11253208 DOI: 10.1098/rspb.2024.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Symbiotic interactions may change depending on third parties like predators or prey. Third-party interactions with prey bacteria are central to the symbiosis between Dictyostelium discoideum social amoeba hosts and Paraburkholderia bacterial symbionts. Symbiosis with inedible Paraburkholderia allows host D. discoideum to carry prey bacteria through the dispersal stage where hosts aggregate and develop into fruiting bodies that disperse spores. Carrying prey bacteria benefits hosts when prey are scarce but harms hosts when prey bacteria are plentiful, possibly because hosts leave some prey bacteria behind while carrying. Thus, understanding benefits and costs in this symbiosis requires measuring how many prey bacteria are eaten, carried and left behind by infected hosts. We found that Paraburkholderia infection makes hosts leave behind both symbionts and prey bacteria. However, the number of prey bacteria left uneaten was too small to explain why infected hosts produced fewer spores than uninfected hosts. Turning to carried bacteria, we found that hosts carry prey bacteria more often after developing in prey-poor environments than in prey-rich ones. This suggests that carriage is actively modified to ensure hosts have prey in the harshest conditions. Our results show that multi-faceted interactions with third parties shape the evolution of symbioses in complex ways.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Biology, Washington University, St. Louis, MO63130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138, USA
| | - David C. Queller
- Department of Biology, Washington University, St. Louis, MO63130, USA
| | | |
Collapse
|
5
|
Noh S, Peck RF, Larson ER, Covitz RM, Chen A, Roy P, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host specificity in Dictyostelium discoideum social amoebas. Evol Lett 2024; 8:437-447. [PMID: 38818420 PMCID: PMC11134466 DOI: 10.1093/evlett/qrae001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 06/01/2024] Open
Abstract
In facultative symbioses, only a fraction of hosts are associated with symbionts. Specific host and symbiont pairings may be the result of host-symbiont coevolution driven by reciprocal selection or priority effects pertaining to which potential symbiont is associated with a host first. Distinguishing between these possibilities is important for understanding the evolutionary forces that affect facultative symbioses. We used the social amoeba, Dictyostelium discoideum, and its symbiont, Paraburkholderia bonniea, to determine whether ongoing coevolution affects which host-symbiont strain pairs naturally cooccur within a facultative symbiosis. Relative to other Paraburkholderia, including another symbiont of D. discoideum, P. bonniea features a reduced genome size that indicates a significant history of coevolution with its host. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness for naturally cooccurring (native) host and symbiont pairings compared to novel pairings. We show for the first time that P. bonniea symbionts can horizontally transmit to new amoeba hosts when hosts aggregate together during the social stage of their life cycle. Here we find evidence for a virulence-transmission trade-off without host specificity. Although symbiont strains were significantly variable in virulence and horizontal transmission rate, hosts and symbionts responded similarly to associations in native and novel pairings. We go on to identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in virulence. We conclude that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead appears to represent a stable facultative symbiosis in which naturally cooccurring P. bonniea host and symbiont pairings are the result of priority effects.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, ME, United States
| | - Ron F Peck
- Biology Department, Colby College, Waterville, ME, United States
| | - Emily R Larson
- Biology Department, Colby College, Waterville, ME, United States
| | - Rachel M Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Anna Chen
- Biology Department, Colby College, Waterville, ME, United States
| | - Prachee Roy
- Biology Department, Colby College, Waterville, ME, United States
| | - Marisa C Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States
| | - Robert A Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
6
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Larsen TJ, Jahan I, Brock DA, Strassmann JE, Queller DC. Reduced social function in experimentally evolved Dictyostelium discoideum implies selection for social conflict in nature. Proc Biol Sci 2023; 290:20231722. [PMID: 38113942 PMCID: PMC10730294 DOI: 10.1098/rspb.2023.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Many microbes interact with one another, but the difficulty of directly observing these interactions in nature makes interpreting their adaptive value complicated. The social amoeba Dictyostelium discoideum forms aggregates wherein some cells are sacrificed for the benefit of others. Within chimaeric aggregates containing multiple unrelated lineages, cheaters can gain an advantage by undercontributing, but the extent to which wild D. discoideum has adapted to cheat is not fully clear. In this study, we experimentally evolved D. discoideum in an environment where there were no selective pressures to cheat or resist cheating in chimaeras. Dictyostelium discoideum lines grown in this environment evolved reduced competitiveness within chimaeric aggregates and reduced ability to migrate during the slug stage. By contrast, we did not observe a reduction in cell number, a trait for which selection was not relaxed. The observed loss of traits that our laboratory conditions had made irrelevant suggests that these traits were adaptations driven and maintained by selective pressures D. discoideum faces in its natural environment. Our results suggest that D. discoideum faces social conflict in nature, and illustrate a general approach that could be applied to searching for social or non-social adaptations in other microbes.
Collapse
Affiliation(s)
- Tyler J. Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Israt Jahan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Scott TJ, Larsen TJ, Brock DA, Uhm SYS, Queller DC, Strassmann JE. Symbiotic bacteria, immune-like sentinel cells, and the response to pathogens in a social amoeba. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230727. [PMID: 37593719 PMCID: PMC10427822 DOI: 10.1098/rsos.230727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Some endosymbionts living within a host must modulate their hosts' immune systems in order to infect and persist. We studied the effect of a bacterial endosymbiont on a facultatively multicellular social amoeba host. Aggregates of the amoeba Dictyostelium discoideum contain a subpopulation of sentinel cells that function akin to the immune systems of more conventional multicellular organisms. Sentinel cells sequester and discard toxins from D. discoideum aggregates and may play a central role in defence against pathogens. We measured the number and functionality of sentinel cells in aggregates of D. discoideum infected by bacterial endosymbionts in the genus Paraburkholderia. Infected D. discoideum produced fewer and less functional sentinel cells, suggesting that Paraburkholderia may interfere with its host's immune system. Despite impaired sentinel cells, however, infected D. discoideum were less sensitive to ethidium bromide toxicity, suggesting that Paraburkholderia may also have a protective effect on its host. By contrast, D. discoideum infected by Paraburkholderia did not show differences in their sensitivity to two non-symbiotic pathogens. Our results expand previous work on yet another aspect of the complicated relationship between D. discoideum and Paraburkholderia, which has considerable potential as a model for the study of symbiosis.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tyler J. Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - So Yeon Stacey Uhm
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Noh S, Larson ER, Covitz RM, Chen A, Mazumder PR, Peck RF, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host strain specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528903. [PMID: 36824889 PMCID: PMC9949114 DOI: 10.1101/2023.02.16.528903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In facultative symbioses, only a fraction of hosts are associated with a symbiont. Understanding why specific host and symbiont strains are associated can inform us of the evolutionary forces affecting facultative symbioses. Possibilities include ongoing host-symbiont coevolution driven by reciprocal selection, or priority effects that are neutral in respect to the host-symbiont interaction. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness estimates for naturally co-occurring (native) host and symbiont combinations compared to nonnative combinations. We used the Dictyostelium discoideum - Paraburkholderia bonniea system to test this hypothesis. P. bonniea features a reduced genome size relative to another Paraburkholderia symbiont of D. discoideum, indicating a significant history of coevolution with its host. Facultative symbionts may experience continued genome reduction if coevolution is ongoing, or their genome size may have reached a stable state if the symbiosis has also stabilized. Our work demonstrates that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead represents a stable facultative symbiosis. Specifically associated host and symbiont strains in this system are the result of priority effects, and presently unassociated hosts are simply uncolonized. We find evidence for a virulence-transmission trade-off without host strain specificity, and identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in benevolence.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, Maine, USA
| | | | - Rachel M. Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Anna Chen
- Biology Department, Colby College, Waterville, Maine, USA
| | | | - Ron F. Peck
- Biology Department, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Robert A. Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Mather RV, Larsen TJ, Brock DA, Queller DC, Strassmann JE. Paraburkholderia symbionts isolated from Dictyostelium discoideum induce bacterial carriage in other Dictyostelium species. Proc Biol Sci 2023; 290:20230977. [PMID: 37464760 PMCID: PMC10354463 DOI: 10.1098/rspb.2023.0977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
The social amoeba Dictyostelium discoideum engages in a complex relationship with bacterial endosymbionts in the genus Paraburkholderia, which can benefit their host by imbuing it with the ability to carry prey bacteria throughout its life cycle. The relationship between D. discoideum and Paraburkholderia has been shown to take place across many strains and a large geographical area, but little is known about Paraburkholderia's potential interaction with other dictyostelid species. We explore the ability of three Paraburkholderia species to stably infect and induce bacterial carriage in other dictyostelid hosts. We found that all three Paraburkholderia species successfully infected and induced carriage in seven species of Dictyostelium hosts. While the overall behaviour was qualitatively similar to that previously observed in infections of D. discoideum, differences in the outcomes of different host/symbiont combinations suggest a degree of specialization between partners. Paraburkholderia was unable to maintain a stable association with the more distantly related host Polysphondylium violaceum. Our results suggest that the mechanisms and evolutionary history of Paraburkholderia's symbiotic relationships may be general within Dictyostelium hosts, but not so general that it can associate with hosts of other genera. Our work further develops an emerging model system for the study of symbiosis in microbes.
Collapse
Affiliation(s)
- Rory Vu Mather
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
- Harvard Medical School, Boston, MA 02115-6027, USA
| | - Tyler J. Larsen
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | - David C. Queller
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| |
Collapse
|
11
|
Medina JM, Queller DC, Strassmann JE, Garcia JR. The social amoeba Dictyostelium discoideum rescues Paraburkholderia hayleyella, but not P. agricolaris, from interspecific competition. FEMS Microbiol Ecol 2023; 99:fiad055. [PMID: 37226596 PMCID: PMC10243984 DOI: 10.1093/femsec/fiad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023] Open
Abstract
Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host.
Collapse
Affiliation(s)
- James M Medina
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, One Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Justine R Garcia
- Department of Biology, New Mexico Highlands University, 1005 Diamond Ave, Las Vegas, NM 87701, USA
| |
Collapse
|
12
|
Wang Z, Huang W, Mai Y, Tian Y, Wu B, Wang C, Yan Q, He Z, Shu L. Environmental stress promotes the persistence of facultative bacterial symbionts in amoebae. Ecol Evol 2023; 13:e9899. [PMID: 36937064 PMCID: PMC10019945 DOI: 10.1002/ece3.9899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Amoebae are one major group of protists that are widely found in natural and engineered environments. They are a significant threat to human health not only because many of them are pathogenic but also due to their unique role as an environmental shelter for pathogens. However, one unsolved issue in the amoeba-bacteria relationship is why so many bacteria live within amoeba hosts while they can also live independently in the environments. By using a facultative amoeba- Paraburkholderia bacteria system, this study shows that facultative bacteria have higher survival rates within amoebae under various environmental stressors. In addition, bacteria survive longer within the amoeba spore than in free living. This study demonstrates that environmental stress can promote the persistence of facultative bacterial symbionts in amoebae. Furthermore, environmental stress may potentially select and produce more amoeba-resisting bacteria, which may increase the biosafety risk related to amoebae and their intracellular bacteria.
Collapse
Affiliation(s)
- Zihe Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Wei Huang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Yingwen Mai
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Yuehui Tian
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Bo Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for BiocontrolSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
13
|
Noh S, Capodanno BJ, Xu S, Hamilton MC, Strassmann JE, Queller DC. Reduced and Nonreduced Genomes in Paraburkholderia Symbionts of Social Amoebas. mSystems 2022; 7:e0056222. [PMID: 36098425 PMCID: PMC9601139 DOI: 10.1128/msystems.00562-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a predatory soil protist frequently used for studying host-pathogen interactions. A subset of D. discoideum strains isolated from soil persistently carry symbiotic Paraburkholderia, recently formally described as P. agricolaris, P. bonniea, and P. hayleyella. The three facultative symbiont species of D. discoideum present a unique opportunity to study a naturally occurring symbiosis in a laboratory model protist. There is a large difference in genome size between P. agricolaris (8.7 million base pairs [Mbp]) versus P. hayleyella and P. bonniea (4.1 Mbp). We took a comparative genomics approach and compared the three genomes of D. discoideum symbionts to 12 additional Paraburkholderia genomes to test for genome evolution patterns that frequently accompany host adaptation. Overall, P. agricolaris is difficult to distinguish from other Paraburkholderia based on its genome size and content, but the reduced genomes of P. bonniea and P. hayleyella display characteristics indicative of genome streamlining rather than deterioration during adaptation to their protist hosts. In addition, D. discoideum-symbiont genomes have increased secretion system and motility genes that may mediate interactions with their host. Specifically, adjacent BurBor-like type 3 and T6SS-5-like type 6 secretion system operons shared among all three D. discoideum-symbiont genomes may be important for host interaction. Horizontal transfer of these secretion system operons within the amoeba host environment may have contributed to the unique ability of these symbionts to establish and maintain a symbiotic relationship with D. discoideum. IMPORTANCE Protists are a diverse group of typically single cell eukaryotes. Bacteria and archaea that form long-term symbiotic relationships with protists may evolve in additional ways than those in relationships with multicellular eukaryotes such as plants, animals, or fungi. Social amoebas are a predatory soil protist sometimes found with symbiotic bacteria living inside their cells. They present a unique opportunity to explore a naturally occurring symbiosis in a protist frequently used for studying host-pathogen interactions. We show that one amoeba-symbiont species is similar to other related bacteria in genome size and content, while the two reduced-genome-symbiont species show characteristics of genome streamlining rather than deterioration during adaptation to their host. We also identify sets of genes present in all three amoeba-symbiont genomes that are potentially used for host-symbiont interactions. Because the amoeba symbionts are distantly related, the amoeba host environment may be where these genes were shared among symbionts.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Benjamin J. Capodanno
- Department of Biology, Colby College, Waterville, Maine, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Songtao Xu
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- Department of Biology, Colby College, Waterville, Maine, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Klein M, Stewart JD, Porter SS, Weedon JT, Kiers ET. Evolution of manipulative microbial behaviors in the rhizosphere. Evol Appl 2022; 15:1521-1536. [PMID: 36330300 PMCID: PMC9624083 DOI: 10.1111/eva.13333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.
Collapse
Affiliation(s)
- Malin Klein
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Justin D. Stewart
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - James T. Weedon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Scott TJ, Queller DC, Strassmann JE. Context dependence in the symbiosis between
Dictyostelium discoideum
and
Paraburkholderia. Evol Lett 2022; 6:245-254. [PMID: 35784451 PMCID: PMC9233174 DOI: 10.1002/evl3.281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Trey J. Scott
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| | - David C. Queller
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| | - Joan E. Strassmann
- Department of Biology Washington University in St. Louis St. Louis Missouri 63130
| |
Collapse
|
16
|
Itabangi H, Sephton-Clark PCS, Tamayo DP, Zhou X, Starling GP, Mahamoud Z, Insua I, Probert M, Correia J, Moynihan PJ, Gebremariam T, Gu Y, Ibrahim AS, Brown GD, King JS, Ballou ER, Voelz K. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr Biol 2022; 32:1115-1130.e6. [PMID: 35134329 PMCID: PMC8926845 DOI: 10.1016/j.cub.2022.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.
Collapse
Affiliation(s)
- Herbert Itabangi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy C S Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Diana P Tamayo
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Xin Zhou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina P Starling
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zamzam Mahamoud
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ignacio Insua
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Probert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Teclegiorgis Gebremariam
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ashraf S Ibrahim
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Jason S King
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
17
|
Larsen T, Jefferson C, Bartley A, Strassmann JE, Queller DC. Inference of symbiotic adaptations in nature using experimental evolution. Evolution 2021; 75:945-955. [PMID: 33590884 DOI: 10.1111/evo.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/30/2021] [Indexed: 11/27/2022]
Abstract
Microbes must adapt to the presence of other species, but it can be difficult to recreate the natural context for these interactions in the laboratory. We describe a method for inferring the existence of symbiotic adaptations by experimentally evolving microbes that would normally interact in an artificial environment without access to other species. By looking for changes in the fitness effects microbes adapted to isolation have on their partners, we can infer the existence of ancestral adaptations that were lost during experimental evolution. The direction and magnitude of trait changes can offer useful insight as to whether the microbes have historically been selected to help or harm one another in nature. We apply our method to the complex symbiosis between the social amoeba Dictyostelium discoideum and two intracellular bacterial endosymbionts, Paraburkholderia agricolaris and Paraburkholderia hayleyella. Our results suggest P. hayleyella-but not P. agricolaris-has generally been selected to attenuate its virulence in nature, and that D. discoideum has evolved to antagonistically limit the growth of Paraburkholderia. The approach demonstrated here can be a powerful tool for studying adaptations in microbes, particularly when the specific natural context in which the adaptations evolved is unknown or hard to reproduce.
Collapse
Affiliation(s)
- Tyler Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Cara Jefferson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Anthony Bartley
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| |
Collapse
|
18
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
19
|
Paraburkholderia Symbionts Display Variable Infection Patterns That Are Not Predictive of Amoeba Host Outcomes. Genes (Basel) 2020; 11:genes11060674. [PMID: 32575747 PMCID: PMC7349545 DOI: 10.3390/genes11060674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Symbiotic interactions exist within a parasitism to mutualism continuum that is influenced, among others, by genes and context. Dynamics of intracellular invasion, replication, and prevalence may underscore both host survivability and symbiont stability. More infectious symbionts might exert higher corresponding costs to hosts, which could ultimately disadvantage both partners. Here, we quantify infection patterns of diverse Paraburkholderia symbiont genotypes in their amoeba host Dictyostelium discoideum and probe the relationship between these patterns and host outcomes. We exposed D. discoideum to thirteen strains of Paraburkholderia each belonging to one of the three symbiont species found to naturally infect D. discoideum: Paraburkholderia agricolaris, Paraburkholderia hayleyella, and Paraburkholderia bonniea. We quantified the infection prevalence and intracellular density of fluorescently labeled symbionts along with the final host population size using flow cytometry and confocal microscopy. We find that infection phenotypes vary across symbiont strains. Symbionts belonging to the same species generally display similar infection patterns but are interestingly distinct when it comes to host outcomes. This results in final infection loads that do not strongly correlate to final host outcomes, suggesting other genetic factors that are not a direct cause or consequence of symbiont abundance impact host fitness.
Collapse
|