1
|
Šantrůček J, Kubásek J, Janová J, ŠantrůčKOvá H, Altman J, Tumajer J, Hrádková M, Cienciala E. Response of leaf internal CO 2 concentration and intrinsic water-use efficiency in Norway spruce to century-long gradual CO 2 elevation. PHOTOSYNTHETICA 2025; 63:51-63. [PMID: 40270907 PMCID: PMC12012425 DOI: 10.32615/ps.2025.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/10/2025] [Indexed: 04/25/2025]
Abstract
The strategies of Norway spruce [Picea abies (L.) Karst.] to increasing atmospheric CO2 concentration (C a) are not entirely clear. Here, we reconstructed centennial trajectories of leaf internal CO2 concentration (C i) and intrinsic water-use efficiency (WUEi) from the amount of 13C in tree-ring cellulose. We collected 57 cores across elevations, soil, and atmospheric conditions in central Europe. Generally, WUEi and C i increased over the last 100 years and the C i/C a ratio remained almost constant. However, two groups were distinguished. The first group showed a quasi-linear response to C a and the sensitivity of C i to C a (s = dC i/dC a) ranged from 0 to 1. Trees in the second group showed nonmonotonic responses with extremes during the peak of industrial air pollution in the 1980s and s increase from -1 to +1.6. Our study shows a marked attenuation of the rise in WUEi during the 20th century leading to invariant WUEi in recent decades.
Collapse
Affiliation(s)
- J. Šantrůček
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Kubásek
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Janová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - H. ŠantrůčKOvá
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - J. Altman
- Institute of Botany, AS CR, Zámek 1, 252 43 Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6 – Suchdol, Czech Republic
| | - J. Tumajer
- IFER – Institute of Forest Ecosystem Research, Čs. armády 655, 254 01 Jílové u Prahy, Czech Republic
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic
| | - M. Hrádková
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Botany, AS CR, Zámek 1, 252 43 Průhonice, Czech Republic
| | - E. Cienciala
- IFER – Institute of Forest Ecosystem Research, Čs. armády 655, 254 01 Jílové u Prahy, Czech Republic
| |
Collapse
|
2
|
Schulz KA, Barry AM, Kenefic LS, Wason JW. Contrasting survival strategies for seedlings of two northern conifer species to extreme droughts and floods. TREE PHYSIOLOGY 2024; 44:tpae117. [PMID: 39244705 DOI: 10.1093/treephys/tpae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Lowland northern white-cedar (Thuja occidentalis L.) forests are increasingly exposed to extreme droughts and floods that cause tree mortality. However, it is not clear the extent to which these events may differentially affect regeneration of cedar and its increasingly common associate, balsam fir (Abies balsamea (L.) Mill.). To test this, we measured how seedlings of cedar and fir were able to avoid, resist and recover from experimental drought and flood treatments of different lengths (8 to 66 days). Overall, we found that cedar exhibited a strategy of stress resistance and growth recovery (resilience) from moderate drought and flood stress. Fir, on the other hand, appears to be adapted to avoid drought and flood stress and exhibited overall lower growth resilience. In drought treatments, we found evidence of different stomatal behaviors. Cedar used available water quickly and therefore experienced more drought stress than fir, but cedar was able to survive at water potentials > 3 MPa below key hydraulic thresholds. On the other hand, fir employed a more conservative water-use strategy and therefore avoided extremely low water potential. In response to flood treatments, cedar survival was higher and only reached 50% if exposed to 23.1 days of flooding in contrast to only 7.4 days to reach 50% mortality for fir. In both droughts and floods, many stressed cedar were able to maintain partially brown canopies and often survived the stress, albeit with reduced growth, suggesting a strategy of resistance and resilience. In contrast, fir that experienced drought or flood stress had a threshold-type responses and they either had full live canopies with little effect on growth or they died suggesting reliance on a strategy of drought avoidance. Combined with increasingly variable precipitation regimes, seasonal flooding and complex microtopography that can provide safe sites in these forests, these results inform conservation and management of lowland cedar stands.
Collapse
Affiliation(s)
- Katlyn A Schulz
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Alexandra M Barry
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, ME 04469, USA
| | - Laura S Kenefic
- US Forest Service, Northern Research Station, 54 Government Road, Bradley, ME 04411, USA
| | - Jay W Wason
- University of Maine, School of Forest Resources, 5755 Nutting Hall, Orono, ME 04469, USA
| |
Collapse
|
3
|
Vicente-Serrano SM, Juez C, Potopová V, Boincean B, Murphy C, Domínguez-Castro F, Eklundh L, Peña-Angulo D, Noguera I, Jin H, Conradt T, Garcia-Herrera R, Garrido-Perez JM, Barriopedro D, Gutiérrez JM, Iturbide M, Lorenzo-Lacruz J, Kenawy AE. Drought risk in Moldova under global warming and possible crop adaptation strategies. Ann N Y Acad Sci 2024; 1538:144-161. [PMID: 39086254 DOI: 10.1111/nyas.15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study analyzes the relationship between drought processes and crop yields in Moldova, together with the effects of possible future climate change on crops. The severity of drought is analyzed over time in Moldova using the Standard Precipitation Index, the Standardized Precipitation Evapotranspiration Index, and their relationship with crop yields. In addition, rainfall variability and its relationship with crop yields are examined using spectral analysis and squared wavelet coherence. Observed station data (1950-2020 and 1850-2020), ERA5 reanalysis data (1950-2020), and climate model simulations (period 1970-2100) are used. Crop yield data (maize, sunflower, grape), data from experimental plots (wheat), and the Enhanced Vegetation Index from Moderate Resolution Imaging Spectroradiometer satellites were also used. Results show that although the severity of meteorological droughts has decreased in the last 170 years, the impact of precipitation deficits on different crop yields has increased, concurrent with a sharp increase in temperature, which negatively affected crop yields. Annual crops are now more vulnerable to natural rainfall variability and, in years characterized by rainfall deficits, the possibility of reductions in crop yield increases due to sharp increases in temperature. Projections reveal a pessimistic outlook in the absence of adaptation, highlighting the urgency of developing new agricultural management strategies.
Collapse
Affiliation(s)
- Sergio M Vicente-Serrano
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Carmelo Juez
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Vera Potopová
- Department of Agroecology and Crop Production Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Boris Boincean
- Selectia Research Institute of Field Crops, Balti, Moldova
| | - Conor Murphy
- Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Ireland
| | - Fernando Domínguez-Castro
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Lars Eklundh
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | | | - Ivan Noguera
- Centre of Ecology and Hydrology (CEH), Wallingford, UK
| | - Hongxiao Jin
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Tobias Conradt
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Ricardo Garcia-Herrera
- Departamento de Ciencias de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Manuel Garrido-Perez
- Departamento de Ciencias de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Madrid, Spain
| | - David Barriopedro
- Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Madrid, Spain
| | - Jose M Gutiérrez
- Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas (IFCA-CSIC), Santander, Spain
| | - Maialen Iturbide
- Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas (IFCA-CSIC), Santander, Spain
| | - Jorge Lorenzo-Lacruz
- Department of Human Sciences, Area of Physical Geography, University of La Rioja, Logroño, Spain
| | - Ahmed El Kenawy
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
- Department of Geography, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Konic J, Heiling C, Haeler E, Chakraborty D, Lapin K, Schueler S. The potential of non-native tree species to provide major ecosystem services in Austrian forests. FRONTIERS IN PLANT SCIENCE 2024; 15:1402601. [PMID: 39011308 PMCID: PMC11246965 DOI: 10.3389/fpls.2024.1402601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Forestry is facing an unprecedented challenging time. Due to climate change, major tree species, which until recently fulfilled major ecosystem services, are being lost and it is often unclear if forest conversion with other native or non-native tree species (NNT) are able to maintain or restore the endangered ecosystem services. Using data from the Austrian Forest Inventory, we analysed the current and future (2081-2100, RCP 4.5 and RCP 8.5) productivity of forests, as well as their protective function (avalanches and rockfall). Five different species change scenarios were considered for the replacement of a tree species failing in the future. We used seven native tree species (Picea abies, Abies alba, Pinus sylvestris, Larix decidua, Fagus sylvatica, Quercus robur and Quercus petraea) and nine NNT (Pseudotsuga menziesii, Abies grandis, Thuja plicata, Pinus radiata, Pinus contorta, Robinia pseudoacacia, Quercus rubra, Fraxinus pennsylvanica and Juglans nigra). The results show that no adaptation would lead to a loss of productivity and a decrease in tree species richness. The combined use of native and NNT is more favorable than purely using native species in terms of productivity and tree species richness. The impact of the different species change scenarios can vary greatly between the different environmental zones of Austria (Alpine south, Continental and Pannonian). The Pannonian zone would benefit from the use of NNT in terms of timber production. For the protection against avalanches or rockfall in alpine regions, NNT would not be an advantage, and it is more important if broadleaved or coniferous trees are used. Depending on whether timber production, protective function or tree species richness are considered, different tree species or species change scenarios can be recommended. Especially in protective forests, other aspects are essential compared to commercial forests. Our results provide a basis for forest owners/managers in three European environmental zones to make decisions on a sustainable selection of tree species to plant in the face of climate change.
Collapse
Affiliation(s)
- Julia Konic
- Department for Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Carina Heiling
- Department for Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Elena Haeler
- Department for Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Debojyoti Chakraborty
- Department for Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Katharina Lapin
- Department of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Vienna, Austria
| | - Silvio Schueler
- Department for Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests (BFW), Vienna, Austria
| |
Collapse
|
5
|
Denney DA, Patel P, Anderson JT. Elevated [CO 2] and temperature augment gas exchange and shift the fitness landscape in a montane forb. THE NEW PHYTOLOGIST 2024; 243:58-71. [PMID: 38655662 DOI: 10.1111/nph.19765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and temperature. These factors could interact to influence plant physiology and performance. Alternatively, increased [CO2] may offset costs associated with elevated temperatures. Furthermore, the interaction between elevated temperature and [CO2] may differentially affect populations from along an elevational gradient and disrupt local adaptation. We conducted a multifactorial growth chamber experiment to examine the interactive effects of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta (Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether increased [CO2] would enhance photosynthesis across accessions, and whether warmer conditions would depress the fitness of high-elevation accessions owing to steep reductions in temperature with increasing elevation in this system. Elevational clines in [CO2] are not as evident, making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2]. This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water use efficiency across all accessions. However, these instantaneous responses to treatments did not translate to changes in fitness. Instead, increased temperatures reduced the probability of reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift the adaptive landscape, favoring lower elevation accessions for the probability of survival and fecundity. Our results suggest that elevated temperatures and [CO2] associated with climate change could have severe negative consequences, especially for high-elevation populations.
Collapse
Affiliation(s)
- Derek A Denney
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Pratik Patel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
Lecomte X, Bugalho MN, Catry FX, Fernandes PM, Cera A, Caldeira MC. Ungulates mitigate the effects of drought and shrub encroachment on the fire hazard of Mediterranean oak woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2971. [PMID: 38581136 DOI: 10.1002/eap.2971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/16/2023] [Accepted: 01/31/2024] [Indexed: 04/08/2024]
Abstract
Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.
Collapse
Affiliation(s)
- Xavier Lecomte
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Miguel N Bugalho
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Filipe X Catry
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Paulo M Fernandes
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- ForestWISE-Collaborative Laboratory for Integrated Forest and Fire Management, Vila Real, Portugal
| | - Andreu Cera
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Center, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
7
|
Duan H, Shao C, Zhao N, Wang D, Resco de Dios V, Tissue DT. The role of leaf superoxide dismutase and proline on intra-specific photosynthesis recovery of Schima superba following drought. Sci Rep 2024; 14:8824. [PMID: 38627563 PMCID: PMC11021533 DOI: 10.1038/s41598-024-59467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Changchang Shao
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Defu Wang
- Research Center of Sichuan Old Revolutionary Areas Development, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Víctor Resco de Dios
- Department of Crop and Forest Sciences, University of Lleida, 25198, Lleida, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
8
|
Khudykh TA, Belokopytova LV, Yang B, Kholdaenko YA, Babushkina EA, Vaganov EA. New Methods in Digital Wood Anatomy: The Use of Pixel-Contrast Densitometry with Example of Angiosperm Shrubs in Southern Siberia. BIOLOGY 2024; 13:223. [PMID: 38666835 PMCID: PMC11048334 DOI: 10.3390/biology13040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
This methodological study describes the adaptation of a new method in digital wood anatomy, pixel-contrast densitometry, for angiosperm species. The new method was tested on eight species of shrubs and small trees in Southern Siberia, whose wood structure varies from ring-porous to diffuse-porous, with different spatial organizations of vessels. A two-step transformation of wood cross-section photographs by smoothing and Otsu's classification algorithm was proposed to separate images into cell wall areas and empty spaces within (lumen) and between cells. Good synchronicity between measurements within the ring allowed us to create profiles of wood porosity (proportion of empty spaces) describing the growth ring structure and capturing inter-annual differences between rings. For longer-lived species, 14-32-year series from at least ten specimens were measured. Their analysis revealed that maximum (for all wood types), mean, and minimum porosity (for diffuse-porous wood) in the ring have common external signals, mostly independent of ring width, i.e., they can be used as ecological indicators. Further research directions include a comparison of this method with other approaches in densitometry, clarification of sample processing, and the extraction of ecologically meaningful data from wood structures.
Collapse
Affiliation(s)
- Timofey A. Khudykh
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.A.K.); (Y.A.K.); (E.A.B.); (E.A.V.)
| | - Liliana V. Belokopytova
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.A.K.); (Y.A.K.); (E.A.B.); (E.A.V.)
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia
| | - Bao Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Yulia A. Kholdaenko
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.A.K.); (Y.A.K.); (E.A.B.); (E.A.V.)
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia
| | - Elena A. Babushkina
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.A.K.); (Y.A.K.); (E.A.B.); (E.A.V.)
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (T.A.K.); (Y.A.K.); (E.A.B.); (E.A.V.)
- Department of Dendroecology, V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
9
|
Gajendiran K, Kandasamy S, Narayanan M. Influences of wildfire on the forest ecosystem and climate change: A comprehensive study. ENVIRONMENTAL RESEARCH 2024; 240:117537. [PMID: 37914016 DOI: 10.1016/j.envres.2023.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Wildfires have complex impacts on forests, including changes in vegetation, threats to biodiversity, and emissions of greenhouse gases like carbon dioxide, which exacerbate climate change. The influence of wildfires on animal habitats is particularly noteworthy, as they can lead to significant changes in native environments. The extent of these alterations in species and habitats plays a crucial role in shaping forest ecology. Drought, disease, insect infestations, overgrazing, or their combined effects can amplify the negative effects on specific plant genera and entire ecosystems. In addition to the immediate consequences of plant mortality and altered community dynamics, forest fires have far-reaching implications. They often increase flowering and seed production, further influencing ecological communities. However, one concerning trend is the decline in the diversity of forest biological species within fire-affected areas. Beyond their ecological impacts, wildfires emit substantial quantities of greenhouse gases and fine particulates into the atmosphere, triggering profound changes in climate patterns and contributing to global warming. As vegetation burns during these fires, the carbon stored within is released, rendering large forest fires detrimental to biodiversity and the emission of CO2, a significant contributor to global warming. Measuring the global impact of wildfires on ecological communities and greenhouse gas emissions has become increasingly vital. These research endeavors shed light on the intricate relationships and feedback loops linking wildfires, ecosystem inhabitants, and the evolving climate landscape.
Collapse
Affiliation(s)
- Kandasamy Gajendiran
- Department of Microbiology, M.G.R. College of Arts and Science, Hosur, Krishnagiri, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore, 641004, India
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
10
|
Ampornpitak R, Nathalang A, Tor-ngern P. Water-use characteristics of Syzygium antisepticum and Adinandra integerrima in a secondary forest of Khao Yai National Park in Thailand with implications for environmental management. PeerJ 2023; 11:e16525. [PMID: 38050611 PMCID: PMC10693818 DOI: 10.7717/peerj.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Background Southeast Asia has experienced widespread deforestation and change in land use. Consequently, many reforestation projects have been initiated in this region. However, it is imperative to carefully choose the tree species for planting, especially in light of the increasing climate variability and the potential alteration of plantation on the watershed water balance. Thus, the information regarding water-use characteristics of various tree species and sizes is critical in the tree species selection for reforestation. Methods We estimated tree water use (T) of dominant species including Syzygium antisepticum and Adinandra integerrima, hereafter Sa and Ai, respectively, in a secondary tropical forest in Khao Yai National Park, Thailand, using sap flow data, and compared T between species and size classes. Additionally, we evaluated the responses of T of both species in each size class to environmental factors including soil moisture and vapor pressure deficit (VPD). Results Results showed consistently higher T in Sa compared to Ai across ranges of VPD and soil moisture. Under low soil moisture, T of Sa responded to VPD, following a saturating exponential pattern while Ai maintained T across different VPD levels, irrespective of tree size. No responses of T to VPD were observed in either species when soil water was moderate. When soil moisture was high, T of both species significantly increased and saturated at high VPD, albeit the responses were less sensitive in large trees. Our results imply that Ai may be suitable for reforestation in water-limited areas where droughts frequently occur to minimize reforestation impact on water availability to downstream ecosystems. In contrast, Sa should be planted in regions with abundant and reliable water resources. However, a mixed species plantation should be generally considered to increase forest resilience to increasing climate variation.
Collapse
Affiliation(s)
- Ratchanon Ampornpitak
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pantana Tor-ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Solé-Medina A, Ramírez-Valiente JA. Common garden experiments reveal acquisitive strategies for responding to drought in seedlings of forest tree species: a commentary on 'Clinal variations in seedling traits and responses to water availability correspond to seed-source environmental gradients in a foundational dryland tree species'. ANNALS OF BOTANY 2023; 132:i-ii. [PMID: 37703333 PMCID: PMC10583190 DOI: 10.1093/aob/mcad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
This article comments on:
Georgia L. Vasey, Alexandra K. Urza, Jeanne C. Chambers, Elizabeth G. Pringle and Peter J. Weisberg. Clinal variations in seedling traits and responses to water availability correspond to seed-source environmental gradients in a foundational dryland tree species, Annals of Botany, Volume 132, Issue 2, 25 July 2023, Pages 203–216, https://doi.org/10.1093/aob/mcad041
Collapse
Affiliation(s)
- Aida Solé-Medina
- Department of Forest Ecology & Genetics, Forest Research Centre (ICIFOR-INIA, CSIC), Ctra. de la Coruña km 7.5, Madrid, 28040, Spain
| | - José Alberto Ramírez-Valiente
- Ecological and Forestry Applications Research Centre, CREAF, Campus de Bellaterra (UAB) 10 Edifici C, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
12
|
Mkala EM, Mwanzia V, Nzei J, Oluoch WA, Ngarega BK, Wanga VO, Oulo MA, Ngarega BK, Munyao F, Kilingo FM, Rono P, Waswa EN, Mutinda ES, Ochieng CO, Mwachala G, Hu GW, Wang QF, Katunge JK, Victoire CI. Predicting the potential impacts of climate change on the endangered endemic annonaceae species in east africa. Heliyon 2023; 9:e17405. [PMID: 37416643 PMCID: PMC10320037 DOI: 10.1016/j.heliyon.2023.e17405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Globally, endemic species and natural habitats have been significantly impacted by climate change, and further considerable impacts are predicted. Therefore, understanding how endemic species are impacted by climate change can aid in advancing the necessary conservation initiatives. The use of niche modeling is becoming a popular topic in biological conservation to forecast changes in species distributions under various climate change scenarios. This study used the Australian Community Climate and Earth System Simulator version 1 (ACCESS-CM2) general circulation model of coupled model intercomparison project phase 6 (CMIP6) to model the current distribution of suitable habitat for the four threatened Annonaceae species endemic to East Africa (EA), to determine the impact of climate change on their suitable habitat in the years 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Two shared socio-economic pathways (SSPs) SSP370 and SSP585 were used to project the contraction and expansion of suitable habitats for Uvariodendron kirkii, Uvaria kirkii, Uvariodendron dzomboense and Asteranthe asterias endemic to Kenya and Tanzania in EA. The current distribution for all four species is highly influenced by precipitation, temperature, and environmental factors (population, potential evapotranspiration, and aridity index). Although the loss of the original suitable habitat is anticipated to be significant, appropriate habitat expansion and contraction are projections for all species. More than 70% and 40% of the original habitats of Uvariodendron dzombense and Uvariodendron kirkii are predicted to be destroyed by climate change, respectively. Based on our research, we suggest that areas that are expected to shrink owing to climate change be classified as important protection zones for the preservation of Annonaceae species.
Collapse
Affiliation(s)
- Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Virginia Mwanzia
- Lukenya University, Athi River, P.O Box 90-90128, Mtito Andei, Kenya
| | - Johh Nzei
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Wyclife Agumba Oluoch
- Center for Development Research – ZEF, University of Bonn, Genscherallee 3, 53113, Bonn, Germany
| | - Boniface K. Ngarega
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Vincent Okello Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Milicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Boniface K. Ngarega
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Fredrick Munyao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Flory Mkangombe Kilingo
- UNEP-TONGJI Institute of Environmental Science and Sustainable Development (IESD), Tongji University, Siping Road 1239, Shanghai, 200092, PR China
| | - Penninah Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Clintone Onyango Ochieng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Geoffrey Mwachala
- East African Herbarium, National Museums of Kenya, P. O. Box 451660-0100, Nairobi, Kenya
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| | - Jacinta Kaweze Katunge
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Calmina Izabayo Victoire
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| |
Collapse
|
13
|
Identifying stable and overlapping habitats for a predator (common leopard) and prey species (Himalayan grey goral & Himalayan grey langur) in northern Pakistan. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
14
|
Mapitov NB, Belokopytova LV, Zhirnova DF, Abilova SB, Ualiyeva RM, Bitkeyeva AA, Babushkina EA, Vaganov EA. Factors Limiting Radial Growth of Conifers on Their Semiarid Borders across Kazakhstan. BIOLOGY 2023; 12:biology12040604. [PMID: 37106804 PMCID: PMC10135724 DOI: 10.3390/biology12040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
The forests of Central Asia are biodiversity hotspots at risk from rapid climate change, but they are understudied in terms of the climate-growth relationships of trees. This classical dendroclimatic case study was performed for six conifer forest stands near their semiarid boundaries across Kazakhstan: (1-3) Pinus sylvestris L., temperate forest steppes; (4-5) Picea schrenkiana Fisch. & C.A. Mey, foothills, the Western Tien Shan, southeast; (6) Juniperus seravschanica Kom., montane zone, the Western Tien Shan, southern subtropics. Due to large distances, correlations between local tree-ring width (TRW) chronologies are significant only within species (pine, 0.19-0.50; spruce, 0.55). The most stable climatic response is negative correlations of TRW with maximum temperatures of the previous (from -0.37 to -0.50) and current (from -0.17 to -0.44) growing season. The strength of the positive response to annual precipitation (0.10-0.48) and Standardized Precipitation Evapotranspiration Index (0.15-0.49) depends on local aridity. The timeframe of climatic responses shifts to earlier months north-to-south. For years with maximum and minimum TRW, differences in seasonal maximal temperatures (by ~1-3 °C) and precipitation (by ~12-83%) were also found. Heat stress being the primary factor limiting conifer growth across Kazakhstan, we suggest experiments there on heat protection measures in plantations and for urban trees, alongside broadening the coverage of the dendroclimatic net with accents on the impact of habitat conditions and climate-induced long-term growth dynamics.
Collapse
Affiliation(s)
- Nariman B Mapitov
- Department of Biology and Ecology, Toraighyrov University, Pavlodar 140008, Kazakhstan
| | | | - Dina F Zhirnova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia
| | - Sholpan B Abilova
- Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan
| | - Rimma M Ualiyeva
- Department of Biology and Ecology, Toraighyrov University, Pavlodar 140008, Kazakhstan
| | - Aliya A Bitkeyeva
- Department of Biology and Ecology, Toraighyrov University, Pavlodar 140008, Kazakhstan
| | - Elena A Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia
| | - Eugene A Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Dendroecology, V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
15
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
16
|
Zhu LW, Zhao P. Climate-driven sapwood-specific hydraulic conductivity and the Huber value but not leaf-specific hydraulic conductivity on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159334. [PMID: 36220474 DOI: 10.1016/j.scitotenv.2022.159334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Efficient water transport is crucial for plant growth and survival. Plant hydraulic conductivity varies between functional groups and biomes and is strongly influenced by changing environmental conditions. However, correlations of conductivity-related hydraulic traits with climatic variables are not fully understood, preventing clarification of plant form and function under climate change scenarios. By compiling leaf-specific hydraulic conductivity (KL), sapwood-specific hydraulic conductivity (Ks), and Huber values (Hv, sapwood area to leaf area ratio) along with climatic variables including mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) for 428 species across a wide range of plant functional types (PFTs) and biomes at a global scale, we found greater variability of KL within PFTs and biomes than across PFTs and biomes. Interaction effects between PFTs and biomes on KL and Ks were found. The interaction between MAT and MAP played a significant role in Ks and Hv (t = 3.89, P < 0.001 for Ks and t = -5.77, P < 0.001 for Hv). With increasing AI, Ks increased and Hv decreased. KL was not influenced by the investigated climatic variables. Our study provides a better understanding of the dynamics of hydraulic structure and function across functional groups and biomes and of the abiotic drivers of their large-scale variations.
Collapse
Affiliation(s)
- Li-Wei Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ping Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
17
|
Shen Z, Xin L. Characterizing Carbon Emissions and the Associations with Socio-Economic Development in Chinese Cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13786. [PMID: 36360669 PMCID: PMC9659212 DOI: 10.3390/ijerph192113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Reducing carbon emissions in cities is crucial for addressing climate change, while the city-level emissions of different compositions and their relationships with socio-economic features remain largely unknown in China. Here, we explored the city-level emission pattern from the industrial, transportation, and household sectors and the emission intensity, as well as their associations with socio-economic features in China, using the up-to-date (2020) CO2 emissions based on 0.1° grid (10 × 10 km) emission data. The results show that: (1) CO2 emissions from the industrial sector were considerably dominant (78%), followed by indirect (10%), transportation (8%), and household (2%) emissions on the national scale; (2) combining total emissions with emission intensity, high emission-high intensity cities, which are the most noteworthy regions, were concentrated in the North, while low emission-low intensity types mainly occurred in the South-West; (3) cities with a higher GDP tend to emit more CO2, while higher-income cities tend to emit less CO2, especially from the household sector. Cities with a developed economy, as indicated by GDP and income, would have low emissions per GDP, representing a high emission efficiency. Reducing the proportion of the secondary sector of the economy could significantly decrease CO2 emissions, especially for industrial cities. Therefore, the carbon reduction policy in China should focus on the industrial cities in the North with high emission-high intensity performance. Increasing the income and proportion of the tertiary industry and encouraging compact cities can effectively reduce the total emissions during the economic development and urbanization process.
Collapse
Affiliation(s)
- Zijie Shen
- School of Economics & Management, Fuzhou University, No. 2 Wulongjiangbei Avenue, Minhou Country, Fuzhou 350116, China
| | - Liguo Xin
- School of Management, Shandong University, 27 Shanda Nanlu, Jinan 250100, China
| |
Collapse
|
18
|
Oberleitner F, Hartmann H, Hasibeder R, Huang J, Losso A, Mayr S, Oberhuber W, Wieser G, Bahn M. Amplifying effects of recurrent drought on the dynamics of tree growth and water use in a subalpine forest. PLANT, CELL & ENVIRONMENT 2022; 45:2617-2635. [PMID: 35610775 DOI: 10.1111/pce.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in our understanding of drought impacts on tree functioning, we lack knowledge about the dynamic responses of mature trees to recurrent drought stress. At a subalpine forest site, we assessed the effects of three years of recurrent experimental summer drought on tree growth and water relations of Larix decidua Mill. and Picea abies (L. Karst.), two common European conifers representative for contrasting water-use strategies. We combined dendrometer and xylem sap flow measurements with analyses of xylem anatomy and non-structural carbohydrates and their carbon-isotope composition. Recurrent drought increased the effects of soil moisture limitation on growth and xylogenesis, and to a lesser extent on xylem sap flow. P. abies showed stronger growth responses to recurrent drought, reduced starch concentrations in branches and increased water-use efficiency when compared to L. decidua. Despite comparatively larger maximum tree water deficits than in P. abies, xylem formation of L. decidua was less affected by drought, suggesting a stronger capacity of rehydration or lower cambial turgor thresholds for growth. Our study shows that recurrent drought progressively increases impacts on mature trees of both species, which suggests that in a future climate increasing drought frequency could impose strong legacies on carbon and water dynamics of treeline species.
Collapse
Affiliation(s)
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Roland Hasibeder
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jianbei Huang
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Walter Oberhuber
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Gerhard Wieser
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Department of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Innsbruck, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Yousefzadeh H, Amirchakhmaghi N, Naseri B, Shafizadeh F, Kozlowski G, Walas Ł. The impact of climate change on the future geographical distribution range of the endemic relict tree Gleditsia caspica (Fabaceae) in Hyrcanian forests. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Variability in frost occurrence under climate change and consequent risk of damage to trees of western Quebec, Canada. Sci Rep 2022; 12:7220. [PMID: 35508611 PMCID: PMC9068889 DOI: 10.1038/s41598-022-11105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Climate change affects timings, frequency, and intensity of frost events in northern ecosystems. However, our understanding of the impacts that frost will have on growth and survival of plants is still limited. When projecting the occurrence of frost, the internal variability and the different underlying physical formulations are two major sources of uncertainty of climate models. We use 50 climate simulations produced by a single-initial large climate ensemble and five climate simulations produced by different pairs of global and regional climate models based on the concentration pathway (RCP 8.5) over a latitudinal transect covering the temperate and boreal ecosystems of western Quebec, Canada, during 1955–2099 to provide a first-order estimate of the relative importance of these two sources of uncertainty on the occurrence of frost, i.e. when air temperature is < 0 °C, and their potential damage to trees. The variation in the date of the last spring frost was larger by 21 days (from 46 to 25 days) for the 50 climate simulations compared to the 5 different pairs of climate models. When considering these two sources of uncertainty in an eco-physiological model simulating the timings of budbreak for trees of northern environment, results show that 20% of climate simulations expect that trees will be exposed to frost even in 2090. Thus, frost damage to trees remains likely under global warming.
Collapse
|
21
|
Fernández de Simón B, Cadahía E, Aranda I. Aerial and underground organs display specific metabolic strategies to cope with water stress under rising atmospheric CO 2 in Fagus sylvatica L. PHYSIOLOGIA PLANTARUM 2022; 174:e13711. [PMID: 35570621 PMCID: PMC9321914 DOI: 10.1111/ppl.13711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Beech is known to be a moderately drought-sensitive tree species, and future increases in atmospheric concentrations of CO2 ([CO2 ]) could influence its ecological interactions, also with changes at the metabolic level. The metabolome of leaves and roots of drought-stressed beech seedlings grown under two different [CO2 ] (400 (aCO2 ) and 800 (eCO2 ) ppm) was analyzed together with gas exchange parameters and water status. Water stress estimated from predawn leaf water potential (Ψpd ) was similar under both [CO2 ], although eCO2 had a positive impact on net photosynthesis and intrinsic water use efficiency. The aerial and underground organs showed different metabolomes. Leaves mainly stored C metabolites, while those of N and P accumulated differentially in roots. Drought triggered the proline and N-rich amino acids biosynthesis in roots through the activation of arginine and proline pathways. Besides the TCA cycle, polyols and soluble sugar biosynthesis were activated in roots, with no clear pattern seen in the leaves, prioritizing the root functioning as metabolites sink. eCO2 slightly altered this metabolic acclimation to drought, reflecting mitigation of its effect. The leaves showed only minor changes, investing C surplus in secondary metabolites and malic acid. The TCA cycle metabolites and osmotically active substances increased in roots, but many other metabolites decreased as if the water stress was dampened. Above- and belowground plant metabolomes were differentially affected by two drivers of climate change, water scarcity and high [CO2 ], showing different chemical responsiveness that could modulate the tree adaptation to future climatic scenarios.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Estrella Cadahía
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Ismael Aranda
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| |
Collapse
|
22
|
Saunders A, Drew DM. Stomatal responses of Eucalyptus spp. under drought can be predicted with a gain-risk optimization model. TREE PHYSIOLOGY 2022; 42:815-830. [PMID: 34791492 DOI: 10.1093/treephys/tpab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The frequency and severity of drought events are expected to increase due to climate change, with optimal environmental conditions for forestry likely to shift. Modeling plant responses to a changing climate is therefore vital. We tested the process-based gain-risk model to predict stomatal responses to drought of two Eucalyptus hybrids. The process-based gain-risk model has the advantage that all the parameters used within the model are based on measurable plant traits. The gain-risk model proposes that plants optimize photosynthetic gain while minimizing a hydraulic cost. Previous versions of the model used hydraulic risk as a cost function; however, they did not account for delayed or reduced hydraulic recovery rates from embolism post-drought. Hydraulic recovery has been seen in many species, however it is still unclear how this inclusion of a partial or delayed hydraulic recovery would affect the predictive power of the gain-risk model. Many hydraulic parameters required by the model are also difficult to measure and are not freely available. We therefore tested a simplified gain-risk model that includes a delayed or reduced hydraulic recovery component post-drought. The simplified gain-risk model performed well at predicting stomatal responses in both Eucalyptus grandis × camaldulensis (GC) and Eucalyptus urophylla × grandis (UG). In this study two distinct strategies were seen between GC and UG, with GC being more resistant to embolism formation, however it could not recover hydraulic conductance compared with UG. The inclusion of a delayed or reduced hydraulic recovery component slightly improved model predictions for GC, however not for UG, which can be related to UG being able to recover lost hydraulic conductance and therefore can maintain stomatal conductance regardless of hydraulic risk. Even though the gain-risk model shows promise in predicting plant responses, more information is needed regarding hydraulic recovery after drought.
Collapse
Affiliation(s)
- Alta Saunders
- Department of Forest and Wood Science, Stellenbosch University, Paul Sauer Building, Bosman St, Stellenbosch Central, Stellenbosch, 7599, South Africa
| | - David M Drew
- Department of Forest and Wood Science, Stellenbosch University, Paul Sauer Building, Bosman St, Stellenbosch Central, Stellenbosch, 7599, South Africa
| |
Collapse
|
23
|
Estimation of China’s Contribution to Global Greening over the Past Three Decades. LAND 2022. [DOI: 10.3390/land11030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
China’s contribution to global greening is regulated by increasing atmospheric CO2 concentrations, climate change, and land use. Based on TRENDY project data, this study identified that the shifts in China’s contribution to the global leaf area index (LAI) trend strongly reduced during the warming hiatus, translating from 13.42 ± 26.45% during 1982–1998 into 7.91 ± 25.45% during 1999–2012. First, significant negative sensitivities of LAI to enhanced vapor pressure deficit (VPD), when only considering the climate effect derived from TRENDY models in China, were found to have shifted substantially after the late 1990s. However, globally, LAI had positive rather than negative responses to enhanced VPD. These opposing shifts in the response of LAI to enhanced VPD reduced the national contribution to global vegetation greening. Second, shifts in land-use change and their effects on the LAI trends in the two periods in China were accompanied by major changes in land cover and land management intensity, including forestry. Consequently, the contribution of land use in China reduced by −47.68% during the warming hiatus period, as compared with the warming period. Such a shift in the impact of land-use change on LAI simulated by ecosystem models might result from the models’ lack of consideration of conserving and expanding forests with the goal of mitigating climate change for China. Our results highlight the need for ecosystem models to reproduce the enhanced negative impact on global LAI and consider the shifts in man-made adaptation policies (e.g., forest management) to improve terrestrial ecosystem models in the future.
Collapse
|
24
|
Castañeda-Murillo CC, Rojas-Ortiz JG, Sánchez-Reinoso AD, Chávez-Arias CC, Restrepo-Díaz H. Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants. Heliyon 2022; 8:e08977. [PMID: 35243095 PMCID: PMC8873547 DOI: 10.1016/j.heliyon.2022.e08977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 02/14/2022] [Indexed: 01/03/2023] Open
Abstract
The use of agronomic alternatives such as plant hormone sprays has been considered a tool to mitigate drought stress. This research aimed to evaluate the use of foliar brassinosteroid analogue DI-31 (BRs) sprays on plant growth, leaf exchange and chlorophyll a fluorescence parameters, and biochemical variables in lulo (Solanum quitoense L. cv. septentrionale) seedlings grown under drought stress conditions. Seedlings were grown in plastic pots (3 L) using a mix between peat and sand (1:1 v/v) as substrate. Lulo plants were subjected to drought stress by suppressing 100% of the water needs at 30–37 and 73–80 days after transplanting (DAT). Foliar BRs analogue (DI-31) sprays were carried out at four different rates (0, 1, 2, 4, or 8 mL of analogue per liter) at different times (30, 33, 44, 60, 73, and 76 DAT). Drought stress caused a reduction in the Fv/Fm ratio, leaf gas exchange properties, total biomass, and relative water content. Foliar DI-31 sprays enhanced leaf photosynthesis in well-watered (WW) (∼10.7 μmol m−2 s−1) or water-stressed plants (WS) (∼6.1 μmol m−2 s−1) when lulo plants were treated at a dose of 4 and 8 mL·L−1 compared to their respective controls (0 mL·L−1 for WW: 8.83 μmol m−2 s−1 and WS: 2.01 μmol m−2 s−1). Also, DI-31 sprays enhanced the photochemical efficiency of PSII, and plant growth. They also increased the concentration of photosynthetic pigments (TChl and Cx + c) and reduced lipid peroxidation of membranes (MDA) under drought conditions. The results allow us to suggest that the use of DI-31 at a dose of 4 or 8 mL·L−1 can be a tool for managing water stress conditions caused by low water availability in the soil in lulo-producing areas to face situations of moderate water deficit at different times of the year.
Collapse
|
25
|
Lauriks F, Salomón RL, De Roo L, Steppe K. Leaf and tree responses of young European aspen trees to elevated atmospheric CO2 concentration vary over the season. TREE PHYSIOLOGY 2021; 41:1877-1892. [PMID: 33824983 DOI: 10.1093/treephys/tpab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Elevated atmospheric CO2 concentration (eCO2) commonly stimulates net leaf assimilation, decreases stomatal conductance and has no clear effect on leaf respiration. However, effects of eCO2 on whole-tree functioning and its seasonal dynamics remain far more uncertain. To evaluate temporal and spatial variability in eCO2 effects, 1-year-old European aspen trees were grown in two treatment chambers under ambient (aCO2, 400 p.p.m.) and elevated (eCO2, 700 p.p.m.) CO2 concentrations during an early (spring 2019) and late (autumn 2018) seasonal experiment. Leaf (net carbon assimilation, stomatal conductance and leaf respiration) and whole-tree (stem growth, sap flow and stem CO2 efflux) responses to eCO2 were measured. Under eCO2, carbon assimilation was stimulated during the early (1.63-fold) and late (1.26-fold) seasonal experiments. Stimulation of carbon assimilation changed over time with largest increases observed in spring when stem volumetric growth was highest, followed by late season down-regulation, when stem volumetric growth ceased. The neutral eCO2 effect on stomatal conductance and leaf respiration measured at leaf level paralleled the unresponsive canopy conductance (derived from sap flow measurements) and stem CO2 efflux measured at tree level. Our results highlight that seasonality in carbon demand for tree growth substantially affects the magnitude of the response to eCO2 at both leaf and whole-tree level.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Abate E, Azzarà M, Trifilò P. When Water Availability Is Low, Two Mediterranean Salvia Species Rely on Root Hydraulics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1888. [PMID: 34579421 PMCID: PMC8472023 DOI: 10.3390/plants10091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Increase in severity and frequency of drought events is altering plant community composition, exposing biomes to a higher risk of biodiversity losses. This is exacerbated in the most fragile areas as Mediterranean biome. Thus, identifying plant traits for forecasting species with a high risk of drought-driven mortality is particularly urgent. In the present study, we investigated the drought resistance strategy of two Mediterranean native species: Salvia ceratophylloides Ard. (Sc) and Salvia officinalis L. (So) by considering the impact of drought-driven water content decline on plant hydraulics. Well-watered samples of Sc displayed higher leaf and stemsaturated water content and lower shoot biomass than So samples, but similar root biomass. In response to drought, Sc showed a conservative water use strategy, as the prompt stomatal closure and leaves shedding suggested. A drought-tolerant mechanism was confirmed in So samples. Nevertheless, Sc and So showed similar drought-driven plant hydraulic conductance (Kplant) recover ability. Root hydraulic traits played a key role to reach this goal. Relative water content as well as loss of cell rehydration capability and membrane damages, especially of stem and root, were good proxies of drought-driven Kplant decline.
Collapse
Affiliation(s)
| | | | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.A.); (M.A.)
| |
Collapse
|
27
|
Continent-wide synthesis of the long-term population dynamics of quaking aspen in the face of accelerating human impacts. Oecologia 2021; 197:25-42. [PMID: 34365517 DOI: 10.1007/s00442-021-05013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In recent decades, climate change has disrupted forest functioning by promoting large-scale mortality events, declines in productivity and reduced regeneration. Understanding the temporal dynamics and spatial extent of these changes is critical given the essential ecosystem services provided by forests. As the most widespread tree species in North America, quaking aspen (Populus tremuloides) is well suited for studying the dynamics of tree populations during a period of unprecedented climate change. Synthesizing continent-wide data, we show that mortality rates of mature aspen stems have increased over the past two-to-three decades, while relative gains in aspen basal area have decreased during the same period. Patterns were pervasive across multiple stand size classes and composition types in western North America biomes, suggesting that trends in demographic rates were not simply a reflection of stand development and succession. Our review of the literature revealed that increased aspen mortality and reduced growth rates were most often associated with hotter, drier conditions, whereas reduced recruitment was most often associated with herbivory. Furthermore, interactions between climate and competition, as well as climate and insect herbivory, had important, context-dependent effects on mortality and growth, respectively. Our analyses of aspen across its entire geographic range indicate that this important tree species is experiencing substantial increases in mortality and decreases in population growth rates across multiple biomes. If such trends are not accompanied by increased recruitment, we expect that the reduced dominance of aspen in forests will lead to major declines in the many essential ecosystem services it provides.
Collapse
|
28
|
Valero-Galván J, González-Fernández R, Jorrin-Novo JV. Interspecific Variation between the American Quercus virginiana and Mediterranean Quercus Species in Terms of Seed Nutritional Composition, Phytochemical Content, and Antioxidant Activity. Molecules 2021; 26:molecules26082351. [PMID: 33919481 PMCID: PMC8072902 DOI: 10.3390/molecules26082351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate a complete nutritional composition in the seeds Quercus virginiana to compare this nutritional composition with three Mediterranean Quercus species. We analyzed the seed morphometry, proximate composition, phytochemicals, and antioxidant capacity. The seed of Q. virginiana presented the smaller seed size and weight, while Q. suber presented the highest values. Moreover, Q. virginiana seeds showed the highest amounts of sugar and total lipids, digestibility, energy, palmitic acid, and stearic acid. On the other hand, Q. virginiana seeds showed the lowest values of linoleic acid. Moreover, Q. coccifera seeds presented the highest total phenolics and flavonoids contents and antioxidant activity. The clustering analysis revealed a significant similarity in seed morphometry and nutritional composition between the Mediterranean Q. ilex and Q. suber, grouping with the American Q. virginiana, but to a considerable distance; by contrast, the Mediterranean Q. coccifera was the most distant in the clustering analysis. The content of phenolics and flavonoids and digestibility value were the variables that contributed to the separation to a greater extent in the clustering of the four species. The nutritional and biological activity assessment of plant seed may be considered as an essential mission to find new sustainable sources and novel chemical agents. In this sense, Quercus seeds may be an alternative and a competitive food source for the agri-food industry.
Collapse
Affiliation(s)
- José Valero-Galván
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua C.P. 32310, Mexico
| | - Raquel González-Fernández
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua C.P. 32310, Mexico
| | - Jesús V Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics, and Systems Biology, Department of Biochemistry and Molecular Biology, ETSAM, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
29
|
Climate change and biological invasion as additional threats to an imperiled palm. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Nardini A, Petruzzellis F, Marusig D, Tomasella M, Natale S, Altobelli A, Calligaris C, Floriddia G, Cucchi F, Forte E, Zini L. Water 'on the rocks': a summer drink for thirsty trees? THE NEW PHYTOLOGIST 2021; 229:199-212. [PMID: 32772381 DOI: 10.1111/nph.16859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.
Collapse
Affiliation(s)
- Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Daniel Marusig
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
- Dipartimento di Scienze delle Produzioni Vegetali Sostenibili, Università Cattolica del Sacro Cuore, Via E. Parmense 84, Piacenza, 29122, Italia
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Sara Natale
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Alfredo Altobelli
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italia
| | - Chiara Calligaris
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Gabriele Floriddia
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Franco Cucchi
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Emanuele Forte
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| | - Luca Zini
- Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, Trieste, 34128, Italia
| |
Collapse
|
31
|
Arab L, Seegmueller S, Dannenmann M, Eiblmeier M, Albasher G, Alfarraj S, Rennenberg H. Foliar traits of sessile oak (Quercus petraea Liebl) seedlings are largely determined by site properties rather than seed origin. TREE PHYSIOLOGY 2020; 40:1648-1667. [PMID: 32705139 DOI: 10.1093/treephys/tpaa094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Due to climate change, sessile oak (Quercus petraea) seedlings experience an increasing risk of drought during regeneration of forest stands by management practices. The present study was aimed at elucidating the potential of sessile oak seedlings originating from sites with different aridity and nitrogen (N) supply to acclimate to contrasting water availability. For this purpose, a free-air cross-exchange experiment was conducted between a dry and a humid forest stand with high and low soil N contents, respectively, during two consecutive years differing in aridity before harvest. Almost all structural and physiological foliar traits analyzed did not differ consistently between seed origins during both years, when cultivated at the same site. As an exception, the arid provenance upregulated foliar ascorbate contents under drought, whereas the humid provenance accumulated the phenolic antioxidants vescalagin and castalagin (VC) under favorable weather conditions and consumed VC upon drought. Apparently, differences in long-term aridity at the forest sites resulted in only few genetically fixed differences in foliar traits between the provenances. However, structural and physiological traits strongly responded to soil N contents and weather conditions before harvest. Foliar N contents and their partitioning were mostly determined by the differences in soil N availability at the sites, but still were modulated by weather conditions before harvest. In the first year, differences in aridity before harvest resulted in differences between most foliar traits. In the second year, when weather conditions at both sites were considerably similar and more arid compared to the first year, differences in foliar traits were almost negligible. This pattern was observed irrespective of seed origin. These results support the view that leaves of sessile oak seedlings generally possess a high plasticity to cope with extreme differences in aridity by immediate acclimation responses that are even better developed in plants of arid origin.
Collapse
Affiliation(s)
- Leila Arab
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Stefan Seegmueller
- Zentralstelle der Forstverwaltung, Forschungsanstalt für Waldökologie und Forstwirtschaft, Hauptstraße 16, 67705 Trippstadt, Germany
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany
| | - Monika Eiblmeier
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Ghada Albasher
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
| | - Saleh Alfarraj
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| |
Collapse
|
32
|
Alves RDFB, Menezes-Silva PE, Sousa LF, Loram-Lourenço L, Silva MLF, Almeida SES, Silva FG, Perez de Souza L, Fernie AR, Farnese FS. Evidence of drought memory in Dipteryx alata indicates differential acclimation of plants to savanna conditions. Sci Rep 2020; 10:16455. [PMID: 33020558 PMCID: PMC7536413 DOI: 10.1038/s41598-020-73423-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
The remarkable phytogeographic characteristics of the Brazilian savanna (Cerrado) resulted in a vegetation domain composed of plants with high structural and functional diversity to tolerate climate extremes. Here we used a key Cerrado species (Dipteryx alata) to evaluate if species of this domain present a mechanism of stress memory, responding more quickly and efficiently when exposed to recurrent drought episodes. The exposure of D. alata seedlings to drought resulted in several changes, mainly in physiological and biochemical traits, and these changes differed substantially when the water deficit was imposed as an isolated event or when the plants were subjected to drought cycles, suggesting the existence of a drought memory mechanism. Plants submitted to recurrent drought events were able to maintain essential processes for plant survival when compared to those submitted to drought for the first time. This differential acclimation to drought was the result of orchestrated changes in several metabolic pathways, involving differential carbon allocation for defense responses and the reprogramming and coordination of primary, secondary and antioxidant metabolism. The stress memory in D. alata is probably linked the evolutionary history of the species and reflects the environment in which it evolved.
Collapse
Affiliation(s)
| | | | - Leticia F Sousa
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | | | - Maria L F Silva
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | - Sabrina E S Almeida
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | - Fabiano G Silva
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil
| | | | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, 14476, Potsdam-Gölm, Germany
| | - Fernanda S Farnese
- Instituto Federal Goiano, Campus Rio Verde, Rio Verde, GO, 75.901-970, Brazil.
| |
Collapse
|
33
|
Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, Spichal L, Zatloukal M, Vankova R. Heat Acclimation and Inhibition of Cytokinin Degradation Positively Affect Heat Stress Tolerance of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:87. [PMID: 32133021 PMCID: PMC7040172 DOI: 10.3389/fpls.2020.00087] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
In order to pinpoint phytohormone changes associated with enhanced heat stress tolerance, the complex phytohormone profiles [cytokinins, auxin, abscisic acid (ABA), jasmonic acid (JA), salicylic acid and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were compared in Arabidopsis thaliana after direct heat shock (45°C, 3 h) and in heat-stressed pre-acclimated plants (1 h at 37°C followed by 2 h at optimal temperature 20°C). Organ-specific responses were followed in shoot apices, leaves, and roots immediately after heat shock and after 24-h recovery at 20°C. The stress strength was evaluated via membrane ion leakage and the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and antioxidant enzymes [superoxide dismutases, guaiacol peroxidases (POD), catalases, ascorbate peroxidases (APX)]. Heat acclimation diminished negative effects of heat stress, especially in apices and roots, no significant differences being observed in leaves. Low NOX1-3 activities indicated diminished production of reactive oxygen species. Higher activity of APX, POD1, and the occurrence of POD3-4 reflected acclimation-stimulated readiness of the antioxidant system. Acclimation diminished heat shock-induced changes of ABA, JA, cytokinin, and auxin levels in apices. Excess of ABA catabolites suggested an early stress response. The strong up-regulation of ABA and ACC in roots indicated defense boost in roots of acclimated plants compared to the non-acclimated ones. To evaluate the possibility to enhance stress tolerance by cytokinin pool modulation, INCYDE-F, an inhibitor of cytokinin oxidase/dehydrogenase, was applied. As cytokinin effects on stress tolerance may depend on timing of their regulation, INCYDE was applied at several time-points. In combination with acclimation, INCYDE treatment had a slight positive effect on heat stress tolerance, mainly when applied after 2-h period of the optimal temperature. INCYDE increased contents of cytokinins trans-zeatin and cis-zeatin in roots and auxin in all tissues after heat shock. INCYDE also helped to suppress the content of ABA in leaves, and ethylene in apices and roots. INCYDE application to non-acclimated plants (applied before or after heat shock) strengthened negative stress effects, probably by delaying of the repair processes. In conclusion, pre-treatment with moderately elevated temperature enhanced heat stress tolerance and accelerated recovery after stress. Inhibition of cytokinin degradation by INCYDE slightly improved recovery of acclimated plants.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Sylva Prerostova,
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Barbara Kramna
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Spichal
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Marek Zatloukal
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|