1
|
Graiff A, Franke K, Karsten U, Liesner D, Gordillo FJL, Iñiguez C. Differential effects of warming on carbon budget, photosynthetic yield and biochemical composition of cold-temperate and Arctic isolates of Laminaria digitata (Phaeophyceae). JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154436. [PMID: 39874621 DOI: 10.1016/j.jplph.2025.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed. Temperature significantly affected growth rates of L. digitata from SPT and HLG, with the highest rates occurring at 10 °C, but growth did not differ between both isolates neither at 10 °C nor at 16 °C. Nevertheless, maximum quantum yield and carbon fixation rate were highest at 4 °C for the Arctic and at 16 °C for the cold-temperate L. digitata. Significantly higher rates of oxygen production and carbon fixation were observed in the cold-temperate relative to the Artic L. digitata at 10 and 16 °C, respectively. Neither temperature nor biogeographic region of origin affected the photosynthetic quotient, and release rates of dissolved or particulate organic carbon. Total carbon and mannitol content were significantly higher in the Arctic compared to the cold-temperate L. digitata at 10 °C, revealing an increased accumulation of storage compounds in the high latitude L. digitata. We conclude that L. digitata from SPT and HLG differ in their sensitivity to increasing temperatures and that the Arctic population from Spitsbergen is likely to benefit from ocean warming, while the temperate population from Helgoland will be negatively affected by further increases in ambient temperature.
Collapse
Affiliation(s)
- Angelika Graiff
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany.
| | - Kiara Franke
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany; Interdisciplinary Faculty, Department of Maritime Systems, University of Rostock, Rostock, Germany
| | - Daniel Liesner
- Functional Ecology, Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Concepción Iñiguez
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| |
Collapse
|
2
|
Bilajac A, Gljušćić E, Smith S, Najdek M, Iveša L. Effects of extreme temperatures and recovery potential of Gongolaria barbata from a coastal lagoon in the northern Adriatic Sea: an ex situ approach. ANNALS OF BOTANY 2024; 134:415-426. [PMID: 38484147 PMCID: PMC11341668 DOI: 10.1093/aob/mcae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/11/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Globally, rising seawater temperatures contribute to the regression of marine macroalgal forests. Along the Istrian coastline (northern Adriatic), an isolated population of Gongolaria barbata persists in a coastal lagoon, representing one of the last marine macroalgal forests in the region. Our objective was to examine the impact of extreme temperatures on the morphology and physiology of G. barbata and test its potential for recovery after simulating marine heatwave (MHW) conditions. METHODS We explored the occurrence of marine heatwaves in southern Istria, adjacent to the study area, in addition to extreme temperatures inside the area itself. Subsequently, we performed a thermotolerance experiment, consisting of a stress and recovery phase, in which we exposed G. barbata thalli to four extreme (28, 30, 32 and 34 °C) and one favourable (18 °C) temperature. We monitored morphological and physiological responses. KEY RESULTS Our findings indicate a significant rise in frequency, duration and intensity of MHWs over decades on the southern Istrian coast. Experimental results show that G. barbata demonstrates potential for both morphological and physiological recovery after exposure to temperatures as high as 32 °C. However, exposure to 34 °C led to thallus decay, with limited ability to regenerate. CONCLUSIONS Our results show that G. barbata has a remarkable resilience to long-term exposure to extreme temperatures ≤32 °C and suggest that short-term exposure to temperatures beyond this, as currently recorded inside the lagoon, do not notably affect the physiology or morphology of local G. barbata. With more MHWs expected in the future, such an adapted population might represent an important donor suitable for future restoration activities along the Istrian coast. These results emphasize the resilience of this unique population, but also warn of the vulnerability of marine macroalgal forests to rising seawater temperatures in rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Andrea Bilajac
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Edi Gljušćić
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Shannen Smith
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Mirjana Najdek
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Ljiljana Iveša
- Ruđer Bošković Institute, Center for Marine Research, G. Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
3
|
Scheschonk L, Nilsen AML, Bischof K, Jueterbock A. Chloroplast DNA methylation in the kelp Saccharina latissima is determined by origin and possibly influenced by cultivation. Evol Appl 2024; 17:e13744. [PMID: 38962361 PMCID: PMC11219511 DOI: 10.1111/eva.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
DNA cytosine methylation is an important epigenetic mechanism in genomic DNA. In most land plants, it is absent in the chloroplast DNA. We detected methylation in the chloroplast DNA of the kelp Saccharina latissima, a non-model macroalgal species of high ecological and economic importance. Since the functional role of the chloroplast methylome is yet largely unknown, this fundamental research assessed the chloroplast DNA cytosine methylation in wild and laboratory raised kelp from different climatic origins (High-Arctic at 79° N, and temperate at 54° N), and in laboratory samples from these origins raised at different temperatures (5, 10 and 15°C). Results suggest genome-wide differences in methylated sites and methylation level between the origins, while rearing temperature had only weak effects on the chloroplast methylome. Our findings point at the importance of matching conditions to origin in restoration and cultivation processes to be valid even on plastid level.
Collapse
Affiliation(s)
| | - Anne M. L. Nilsen
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Kai Bischof
- University of Bremen, Marine Botany & MARUMBremenGermany
| | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| |
Collapse
|
4
|
Reynes L, Fouqueau L, Aurelle D, Mauger S, Destombe C, Valero M. Temporal genomics help in deciphering neutral and adaptive patterns in the contemporary evolution of kelp populations. J Evol Biol 2024; 37:677-692. [PMID: 38629140 DOI: 10.1093/jeb/voae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 06/30/2024]
Abstract
The impact of climate change on populations will be contingent upon their contemporary adaptive evolution. In this study, we investigated the contemporary evolution of 4 populations of the cold-water kelp Laminaria digitata by analyzing their spatial and temporal genomic variations using ddRAD-sequencing. These populations were sampled from the center to the southern margin of its north-eastern Atlantic distribution at 2 time points, spanning at least 2 generations. Through genome scans for local adaptation at a single time point, we identified candidate loci that showed clinal variation correlated with changes in sea surface temperature (SST) along latitudinal gradients. This finding suggests that SST may drive the adaptive response of these kelp populations, although factors such as species' demographic history should also be considered. Additionally, we performed a simulation approach to distinguish the effect of selection from genetic drift in allele frequency changes over time. This enabled the detection of loci in the southernmost population that exhibited temporal differentiation beyond what would be expected from genetic drift alone: these are candidate loci which could have evolved under selection over time. In contrast, we did not detect any outlier locus based on temporal differentiation in the population from the North Sea, which also displayed low and decreasing levels of genetic diversity. The diverse evolutionary scenarios observed among populations can be attributed to variations in the prevalence of selection relative to genetic drift across different environments. Therefore, our study highlights the potential of temporal genomics to offer valuable insights into the contemporary evolution of marine foundation species facing climate change.
Collapse
Affiliation(s)
- Lauric Reynes
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Louise Fouqueau
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Didier Aurelle
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France
| | - Stéphane Mauger
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Christophe Destombe
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| | - Myriam Valero
- IRL 3614, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique de Roscoff, Roscoff 29688, France
| |
Collapse
|
5
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
6
|
Weigel BL, Small SL, Berry HD, Dethier MN. Effects of temperature and nutrients on microscopic stages of the bull kelp (Nereocystis luetkeana, Phaeophyceae). JOURNAL OF PHYCOLOGY 2023; 59:893-907. [PMID: 37497792 DOI: 10.1111/jpy.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10-22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10-14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16-18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.
Collapse
Affiliation(s)
- Brooke L Weigel
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
| | - Sadie L Small
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
| | - Helen D Berry
- Washington State Department of Natural Resources, Olympia, Washington, USA
| | - Megan N Dethier
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington, USA
| |
Collapse
|
7
|
Bringloe TT, Fort A, Inaba M, Sulpice R, Ghriofa CN, Mols‐Mortensen A, Filbee‐Dexter K, Vieira C, Kawai H, Hanyuda T, Krause‐Jensen D, Olesen B, Starko S, Verbruggen H. Whole genome population structure of North Atlantic kelp confirms high-latitude glacial refugia. Mol Ecol 2022; 31:6473-6488. [PMID: 36200326 PMCID: PMC10091776 DOI: 10.1111/mec.16714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Coastal refugia during the Last Glacial Maximum (~21,000 years ago) have been hypothesized at high latitudes in the North Atlantic, suggesting marine populations persisted through cycles of glaciation and are potentially adapted to local environments. Here, whole-genome sequencing was used to test whether North Atlantic marine coastal populations of the kelp Alaria esculenta survived in the area of southwestern Greenland during the Last Glacial Maximum. We present the first annotated genome for A. esculenta and call variant positions in 54 individuals from populations in Atlantic Canada, Greenland, Faroe Islands, Norway and Ireland. Differentiation across populations was reflected in ~1.9 million single nucleotide polymorphisms, which further revealed mixed ancestry in the Faroe Islands individuals between putative Greenlandic and European lineages. Time-calibrated organellar phylogenies suggested Greenlandic populations were established during the last interglacial period more than 100,000 years ago, and that the Faroe Islands population was probably established following the Last Glacial Maximum. Patterns in population statistics, including nucleotide diversity, minor allele frequencies, heterozygosity and linkage disequilibrium decay, nonetheless suggested glaciation reduced Canadian Atlantic and Greenlandic populations to small effective sizes during the most recent glaciation. Functional differentiation was further reflected in exon read coverage, which revealed expansions unique to Greenland in 337 exons representing 162 genes, and a modest degree of exon loss (103 exons from 56 genes). Altogether, our genomic results provide strong evidence that A. esculenta populations were resilient to past climatic fluctuations related to glaciations and that high-latitude populations are potentially already adapted to local conditions as a result.
Collapse
Affiliation(s)
| | - Antoine Fort
- Plant Systems Biology Lab, Ryan Institute, SFI MaREI Centre for Climate, Energy and Marine, School of Natural SciencesNational University of Ireland GalwayGalwayIreland
- Present address:
Department of Life and Physical SciencesAthlone Institute of TechnologyAthloneIreland
| | - Masami Inaba
- Plant Systems Biology Lab, Ryan Institute, SFI MaREI Centre for Climate, Energy and Marine, School of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | - Ronan Sulpice
- Plant Systems Biology Lab, Ryan Institute, SFI MaREI Centre for Climate, Energy and Marine, School of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | - Cliodhna Ní Ghriofa
- Business Development ManagerMarine Innovation Development Centre Páirc Na MaraGalwayIreland
| | | | - Karen Filbee‐Dexter
- School of Biological Sciences and UWA Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Christophe Vieira
- Kobe University Research Center for Inland SeasKobe UniversityKobeJapan
| | - Hiroshi Kawai
- Kobe University Research Center for Inland SeasKobe UniversityKobeJapan
| | - Takeaki Hanyuda
- School of Marine BiosciencesKitasato UniversitySagamiharaJapan
| | - Dorte Krause‐Jensen
- Department of EcoscienceAarhus UniversityAarhusDenmark
- Arctic Research CenterAarhus UniversityAarhusDenmark
| | | | - Samuel Starko
- Department of BiologyUniversity of VictoriaVictoriaCanada
| | - Heroen Verbruggen
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
8
|
Nauer F, Oliveira MC, Plastino EM, Yokoya NS, Fujii MT. Coping with heatwaves: How a key species of seaweed responds to heat stress along its latitudinal gradient. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105620. [PMID: 35472571 DOI: 10.1016/j.marenvres.2022.105620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Marine heatwaves (MHWs) frequency and intensity are increasing around the globe, affecting marine ecosystems' structure and functioning. Understanding how key marine species respond to these short-term extreme events is urgent for predicting damage to coastal ecosystems. Hypnea pseudomusciformis presents distribution in different floristic provinces on the Brazilian coast: tropical, transition and warm-temperate. Here, we evaluate the effects of simulated heatwaves on H. pseudomusciformis populations by measuring the changes in algal growth, pigment content, and photosynthesis. Based on data for the last four decades, we characterized the MHW patterns for each of the three collection sites. Perturbation levels were identified as average intensity heatwave (Δ +2 °C), maximum intensity heatwave (Δ +4 °C) and extreme intensity heatwave (Δ +6 °C), with an average duration of seven days. Based on growth rate data, corroborated with measurements of photosynthesis fluorescence and pigment contents. H. pseudomusciformis populations exhibit distinct tolerance and physiological responses to MHWs. The tropical and transition specimens were affected by Δ + 4 °C and Δ + 6 °C MHW scenarios, while the warm-temperate specimens was the only one to recover in all the MHW scenarios tested. These data are worrisome under a global warming scenario and an increase in MHWs, indicating that tropical and transition specimens of H. pseudomusciformis may be at risk of local extinction. This knowledge will be fundamental in driving any future management intervention or policy change for the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Fabio Nauer
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil.
| | - Mariana Cabral Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Estela Maria Plastino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Nair S Yokoya
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| | - Mutue Toyota Fujii
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| |
Collapse
|
9
|
Umanzor S, Sandoval-Gil J, Sánchez-Barredo M, Ladah LB, Ramírez-García MM, Zertuche-González JA. Short-term stress responses and recovery of giant kelp (Macrocystis pyrifera, Laminariales, Phaeophyceae) juvenile sporophytes to a simulated marine heatwave and nitrate scarcity 1. JOURNAL OF PHYCOLOGY 2021; 57:1604-1618. [PMID: 34124800 DOI: 10.1111/jpy.13189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The frequency of marine heatwaves (MHWs) is increasing due to climate change. Although seaweeds are resilient to environmental changes, an increasing body of evidence shows that rising sea surface temperatures have deleterious effects on temperate kelp species. However, information on the vulnerability of juvenile kelp to these stressors and their population stability is limited. This study summarizes findings on the ability of juvenile sporophytes of Macrocystis pyrifera to survive and recover from simulated MHW conditions (22°C, 5 d) in combination with nitrate limitation (<1 µM) by evaluating photosynthetic capacity, nitrate uptake, tissue composition, bio-optical properties, and oxidative stress of single-blade juvenile sporophytes (<20 cm). Temperature, nitrate availability, and their interaction had significant effects on the physiological status of juvenile sporophytes after the exposure and recovery periods. Overall, as expected, the photosynthetic capacity of juvenile sporophytes decreased with increased temperature and lower nitrate availability. Short-term exposure to simulated MHWs resulted in oxidative damage and reduced growth. The termination of the experimental warming allowed partial recovery to control values, indicating high physiological resilience. However, the interaction of both high temperature and nitrate scarcity induced irreversible damage to their photosynthetic capacity, with an increase in compensation irradiance, highlighting potential limitations in the carbon balance of juvenile sporophytes.
Collapse
Affiliation(s)
- Schery Umanzor
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, 99801, USA
| | - José Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| | - Mariana Sánchez-Barredo
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| | - Lydia B Ladah
- Department of Biological Oceanography, CICESE, Ensenada, Baja California, Mexico
| | - Mary-Mar Ramírez-García
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| | - José Antonio Zertuche-González
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Km 106 Carretera Tijuana-Ensenada, Ensenada, Baja California, CP 22860, Mexico
| |
Collapse
|
10
|
Vranken S, Wernberg T, Scheben A, Severn-Ellis AA, Batley J, Bayer PE, Edwards D, Wheeler D, Coleman MA. Genotype-Environment mismatch of kelp forests under climate change. Mol Ecol 2021; 30:3730-3746. [PMID: 34018645 DOI: 10.1111/mec.15993] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Collapse
Affiliation(s)
- Sofie Vranken
- UWA Oceans Institute, Crawley, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Thomas Wernberg
- UWA Oceans Institute, Crawley, WA, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Institute of Marine Research, His, Norway
| | - Armin Scheben
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Philipp Emanuel Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - David Wheeler
- New South Wales Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Melinda Ann Coleman
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- New South Wales Fisheries, National Marine Science Centre, Coffs Harbour, NSW, Australia
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
11
|
Reynes L, Thibaut T, Mauger S, Blanfuné A, Holon F, Cruaud C, Couloux A, Valero M, Aurelle D. Genomic signatures of clonality in the deep water kelp Laminaria rodriguezii. Mol Ecol 2021; 30:1806-1822. [PMID: 33629449 DOI: 10.1111/mec.15860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
The development of population genomic approaches in non-model species allows for renewed studies of the impact of reproductive systems and genetic drift on population diversity. Here, we investigate the genomic signatures of partial clonality in the deep water kelp Laminaria rodriguezii, known to reproduce by both sexual and asexual means. We compared these results with the species Laminaria digitata, a closely related species that differs by different traits, in particular its reproductive mode (no clonal reproduction). We analysed genome-wide variation with dd-RAD sequencing using 4,077 SNPs in L. rodriguezii and 7,364 SNPs in L. digitata. As predicted for partially clonal populations, we show that the distribution of FIS within populations of L. rodriguezii is shifted toward negative values, with a high number of loci showing heterozygote excess. This finding is the opposite of what we observed within sexual populations of L. digitata, characterized by a generalized deficit in heterozygotes. Furthermore, we observed distinct distributions of FIS among populations of L. rodriguezii, which is congruent with the predictions of theoretical models for different levels of clonality and genetic drift. These findings highlight that the empirical distribution of FIS is a promising feature for the genomic study of asexuality in natural populations. Our results also show that the populations of L. rodriguezii analysed here are genetically differentiated and probably isolated. Our study provides a conceptual framework to investigate partial clonality on the basis of RAD-sequencing SNPs. These results could be obtained without any reference genome, and are therefore of interest for various non-model species.
Collapse
Affiliation(s)
- Lauric Reynes
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Thierry Thibaut
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Stéphane Mauger
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Aurélie Blanfuné
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
| | | | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Myriam Valero
- IRL 3614, Evolutionary Biology and Ecology of Algae, CNRS, UC, UACH, Sorbonne Université, Roscoff, France
| | - Didier Aurelle
- CNRS, IRD, MIO, Aix Marseille Université, Université de Toulon, Marseille, France
- Institut de Systématique Évolution Biodiversité (ISYEB, UMR 7205), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Guzinski J, Ruggeri P, Ballenghien M, Mauger S, Jacquemin B, Jollivet C, Coudret J, Jaugeon L, Destombe C, Valero M. Seascape Genomics of the Sugar Kelp Saccharina latissima along the North Eastern Atlantic Latitudinal Gradient. Genes (Basel) 2020; 11:E1503. [PMID: 33322137 PMCID: PMC7763533 DOI: 10.3390/genes11121503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Temperature is one of the most important range-limiting factors for many seaweeds. Driven by the recent climatic changes, rapid northward shifts of species' distribution ranges can potentially modify the phylogeographic signature of Last Glacial Maximum. We explored this question in detail in the cold-tolerant kelp species Saccharina latissima, using microsatellites and double digest restriction site-associated DNA sequencing ( ddRAD-seq) derived single nucleotide polymorphisms (SNPs) to analyze the genetic diversity and structure in 11 sites spanning the entire European Atlantic latitudinal range of this species. In addition, we checked for statistical correlation between genetic marker allele frequencies and three environmental proxies (sea surface temperature, salinity, and water turbidity). Our findings revealed that genetic diversity was significantly higher for the northernmost locality (Spitsbergen) compared to the southern ones (Northern Iberia), which we discuss in light of the current state of knowledge on phylogeography of S. latissima and the potential influence of the recent climatic changes on the population structure of this species. Seven SNPs and 12 microsatellite alleles were found to be significantly associated with at least one of the three environmental variables. We speculate on the putative adaptive functions of the genes associated with the outlier markers and the importance of these markers for successful conservation and aquaculture strategies for S. latissima in this age of rapid global change.
Collapse
Affiliation(s)
- Jaromir Guzinski
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone KT15 3NB, Surrey, UK
| | - Paolo Ruggeri
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- Xelect ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, Scotland, UK
| | - Marion Ballenghien
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- UMR 7144, Adaptation et Diversité en Milieu Marin, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France
| | - Stephane Mauger
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Bertrand Jacquemin
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- CEVA, 83 Presqu’île de Pen Lan, 22610 Pleubian, France
| | - Chloe Jollivet
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
- Ecole polytechnique de Lausanne (EPFL), SV-IBI UPOATES, Route cantonale, CH-1015 Lausanne, Switzerland
| | - Jerome Coudret
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Lucie Jaugeon
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Christophe Destombe
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| | - Myriam Valero
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff CEDEX, France; (J.G.); (P.R.); (M.B.); (S.M.); (B.J.); (C.J.); (J.C.); (L.J.); (C.D.)
| |
Collapse
|