1
|
Raymond BB, Guenzi-Tiberi P, Maréchal E, Quarmby LM. Snow alga Sanguina aurantia as revealed through de novo genome assembly and annotation. G3 (BETHESDA, MD.) 2024; 14:jkae181. [PMID: 39093299 PMCID: PMC11457085 DOI: 10.1093/g3journal/jkae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
To thrive on melting alpine and polar snow, some Chlorophytes produce an abundance of astaxanthin, causing red blooms, often dominated by genus Sanguina. The red cells have not been cultured, but we recently grew a green biciliate conspecific with Sanguina aurantia from a sample of watermelon snow. This culture provided source material for Oxford Nanopore Technology and Illumina sequencing. Our assembly pipeline exemplifies the value of a hybrid long- and short-read approach for the complexities of working with a culture grown from a field sample. Using bioinformatic tools, we separated assembled contigs into 2 genomic pools based on a difference in GC content (57.5 and 55.1%). We present the data as 2 assemblies of S. aurantia variants but explore other possibilities. High-throughput chromatin conformation capture analysis (Hi-C sequencing) was used to scaffold the assemblies into a 96-Mb genome designated as "A" and a 102-Mb genome designated as "B." Both assemblies are highly contiguous: genome A consists of 38 scaffolds with an N50 of 5.4 Mb, while genome B has 50 scaffolds with an N50 of 6.4 Mb. RNA sequencing was used to improve gene annotation.
Collapse
Affiliation(s)
- Breanna B Raymond
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCBC V5A 1S6, Canada
| | - Pierre Guenzi-Tiberi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 17 Avenue des Martyrs, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Université Grenoble Alpes, IRIG, CEA Grenoble, 17 Avenue des Martyrs, 38000 Grenoble, France
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCBC V5A 1S6, Canada
| |
Collapse
|
2
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
3
|
Segawa T, Yonezawa T, Matsuzaki R, Mori H, Akiyoshi A, Navarro F, Fujita K, Aizen VB, Li Z, Mano S, Takeuchi N. Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice. THE ISME JOURNAL 2023; 17:491-501. [PMID: 36650274 PMCID: PMC10030584 DOI: 10.1038/s41396-023-01359-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Recent studies of microbial biogeography have revealed the global distribution of cosmopolitans and dispersal of regional endemics, but little is known about how these processes are affected by microbial evolution. Here, we compared DNA sequences from snow/glacier algae found in an 8000-year-old ice from a glacier in central Asia with those from modern snow samples collected at 34 snow samples from globally distributed sites at the poles and mid-latitudes, to determine the evolutionary relationship between cosmopolitan and endemic phylotypes of snow algae. We further applied a coalescent theory-based demographic model to the DNA sequences. We found that the genus Raphidonema (Trebouxiophyceae) was distributed over both poles and mid-latitude regions and was detected in different ice core layers, corresponding to distinct time periods. Our results indicate that the modern cosmopolitan phylotypes belonging to Raphidonema were persistently present long before the last glacial period. Furthermore, endemic phylotypes originated from ancestral cosmopolitan phylotypes, suggesting that modern regional diversity of snow algae in the cryosphere is a product of microevolution. These findings suggest that the cosmopolitans dispersed across the world and then derived new localized endemics, which thus improves our understanding of microbial community formation by microevolution in natural environments.
Collapse
Affiliation(s)
- Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan.
| | - Takahiro Yonezawa
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan.
| | - Ryo Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | | | - Francisco Navarro
- Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Koji Fujita
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| | - Vladimir B Aizen
- Department of Earth and Space Science, University of Idaho, Moscow, Idaho, USA
| | - Zhongqin Li
- Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and National Resources/Tianshan Glaciological Station, Chinese Academy of Sciences, Gansu, China
| | - Shuhei Mano
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Novis PM, Dhami M, Podolyan A, Matsumoto M, Kodner R. The austral biflagellate Chloromonas rubroleosa (Chlorophyceae) is the closest relative of the unusual quadriflagellate genus Chlainomonas, both found in snow. JOURNAL OF PHYCOLOGY 2023; 59:342-355. [PMID: 36680562 DOI: 10.1111/jpy.13318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/28/2023]
Abstract
The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of "Group D" snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.
Collapse
Affiliation(s)
- Phil M Novis
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | | | - Maya Matsumoto
- Department of Biology and Environmental Science, Western Washington University, Washington, USA
| | - Robin Kodner
- Department of Biology and Environmental Science, Western Washington University, Washington, USA
| |
Collapse
|
5
|
Nakashima T, Uetake J, Segawa T, Procházková L, Tsushima A, Takeuchi N. Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan. FRONTIERS IN PLANT SCIENCE 2021; 12:689119. [PMID: 34290725 PMCID: PMC8289405 DOI: 10.3389/fpls.2021.689119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 05/25/2023]
Abstract
Snow algae are photosynthetic microbes that inhabit the melting snow surface in alpine and polar regions. We analyzed the pigment and species composition of colored snow collected on Mt. Tateyama in Japan during the melting seasons of 2015 and 2016. High-performance liquid chromatographic analyses of the pigments extracted from the colored snow showed that their composition varied within the study area and were classified into four types: Type A (astaxanthin-monoester dominant), Type B (medium astaxanthin-monoester content), Type C (abundant primary carotenoids and free-astaxanthin), and Type D (abundant primary carotenoids and astaxanthin diesters). Types A and B were most commonly observed in the study area, whereas Types C and D appeared only at specific sites. Analysis of the 18S ribosomal RNA (18S rRNA) gene revealed six major amplicon sequence variants (ASVs) of snow algae, belonging to the Sanguina, Chloromonas, and Chlainomonas groups. The relative abundance of the algal ASVs showed that Sanguina was dominant (>48%) in both Types A and B, suggesting that the difference in astaxanthin abundance between the two types was caused by the production of pigments in the algal cells. The algal community structures of Types C and D differed from those of Types A and B, indicating that the primary carotenoids and astaxanthin diesters were derived from certain algal species in these types. Therefore, astaxanthin-rich Sanguina algae mostly induced the red snow that appeared widely in this alpine area; however, they were partially dominated by Chloromonas or Chlainomonas algae, causing different pigment compositions.
Collapse
Affiliation(s)
| | - Jun Uetake
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Kofu, Japan
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Akane Tsushima
- Graduate School of Science, Chiba University, Chiba, Japan
| | | |
Collapse
|
6
|
Matsuzaki R, Takashima Y, Suzuki I, Kawachi M, Nozaki H, Nohara S, Degawa Y. The Enigmatic Snow Microorganism, Chionaster nivalis, Is Closely Related to Bartheletia paradoxa (Agaricomycotina, Basidiomycota). Microbes Environ 2021; 36. [PMID: 34135204 PMCID: PMC8209449 DOI: 10.1264/jsme2.me21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chionaster nivalis is frequently detected in thawing snowpacks and glaciers. However, the taxonomic position of this species above the genus level remains unclear. We herein conducted molecular analyses of C. nivalis using the ribosomal RNA operon sequences obtained from more than 200 cells of this species isolated from a field-collected material. Our molecular phylogenetic analyses revealed that C. nivalis is a sister to Bartheletia paradoxa, which is an orphan basal lineage of Agaricomycotina. We also showed that C. nivalis sequences were contained in several previously examined meta-amplicon sequence datasets from snowpacks and glaciers in the Northern Hemisphere and Antarctica.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Biodiversity Division, National Institute for Environmental Studies
| | - Yusuke Takashima
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo
| | - Seiichi Nohara
- Biodiversity Division, National Institute for Environmental Studies
| | - Yousuke Degawa
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| |
Collapse
|
7
|
Procházková L, Remias D, Holzinger A, Řezanka T, Nedbalová L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol 2020; 44:105-117. [PMID: 33519055 PMCID: PMC7819945 DOI: 10.1007/s00300-020-02778-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|