1
|
Li Z, Ji Q, Yang Y, Xu M, Guan Y. Low genetic diversity and weak population structure of Albizia odoratissima on Hainan Island. BMC PLANT BIOLOGY 2025; 25:395. [PMID: 40148779 PMCID: PMC11951558 DOI: 10.1186/s12870-025-06373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The increasing demand for wood owing to societal development has highlighted the potential of Albizia odoratissima, a valuable timber species, to address significant timber shortages in China. However, the lack of effective genetic and genomic resources has limited the development and utilization of this species. RESULTS In this study, we utilised 95.3 Gb of HiFi reads to assemble a draft genome of A. odoratissima, resulting in a genome size of 788 Mb, comprising 511 contigs. We conducted whole-genome resequencing on 106 individuals from 7 populations on Hainan Island to explore these resources. Our analysis identified 498,308 high-quality single nucleotide polymorphisms, which were used to assess the genetic diversity, structure, and demographic history of A. odoratissima on Hainan Island. The results indicated that the genetic diversity of A. odoratissima on Hainan Island is relatively low (observed heterozygosity = 0.189, expected heterozygosity = 0.189, genetic diversity = 1.319 × 10-4) with minimal genetic differentiation (Fst = 0.0151) among the seven populations. Furthermore, molecular variance, principal coordinate analysis, neighbour-joining tree analysis, and genetic structure analysis revealed a shallow population structure. The linkage disequilibrium (LD) decay ranged from 11.4 kb for Jianfengling (JFL) to 39.2 kb for Wuzhishan (WZS). LD decay, demographic history, and Tajima's D analyses indicated that the WZS population has experienced a bottleneck effect. CONCLUSIONS This study offers new insights into the genetic diversity and population structure of A. odoratissima on Hainan Island, providing a foundation for future resource utilization and genetic improvement strategies for this species.
Collapse
Affiliation(s)
- Zhiting Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Qiaomiao Ji
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yali Guan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
2
|
Tabatabaee Y, Zhang C, Arasti S, Mirarab S. Species tree branch length estimation despite incomplete lineage sorting, duplication, and loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639320. [PMID: 40027742 PMCID: PMC11870528 DOI: 10.1101/2025.02.20.639320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phylogenetic branch lengths are essential for many analyses, such as estimating divergence times, analyzing rate changes, and studying adaptation. However, true gene tree heterogeneity due to incomplete lineage sorting (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT) can complicate the estimation of species tree branch lengths. While several tools exist for estimating the topology of a species tree addressing various causes of gene tree discordance, much less attention has been paid to branch length estimation on multi-locus datasets. For single-copy gene trees, some methods are available that summarize gene tree branch lengths onto a species tree, including coalescent-based methods that account for heterogeneity due to ILS. However, no such branch length estimation method exists for multi-copy gene family trees that have evolved with gene duplication and loss. To address this gap, we introduce the CASTLES-Pro algorithm for estimating species tree branch lengths while accounting for both GDL and ILS. CASTLES-Pro improves on the existing coalescent-based branch length estimation method CASTLES by increasing its accuracy for single-copy gene trees and extends it to handle multi-copy ones. Our simulation studies show that CASTLES-Pro is generally more accurate than alternatives, eliminating the systematic bias toward overestimating terminal branch lengths often observed when using concatenation. Moreover, while not theoretically designed for HGT, we show that CASTLES-Pro maintains relatively high accuracy under high rates of random HGT. Code availability CASTLES-Pro is implemented inside the software package ASTER, available at https://github.com/chaoszhang/ASTER . Data availability The datasets and scripts used in this study are available at https://github.com/ytabatabaee/CASTLES-Pro-paper .
Collapse
|
3
|
Higashino A, Nakamura K, Osada N. Population Genomics of Japanese Macaques (Macaca fuscata): Insights Into Deep Population Divergence and Multiple Merging Histories. Genome Biol Evol 2025; 17:evaf001. [PMID: 39763347 PMCID: PMC11735745 DOI: 10.1093/gbe/evaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The influence of long-term climatic changes such as glacial cycles on the history of living organisms has been a subject of research for decades, but the detailed population dynamics during the environmental fluctuations and their effects on genetic diversity and genetic load are not well understood on a genome-wide scale. The Japanese macaque (Macaca fuscata) is a unique primate adapted to the cold environments of the Japanese archipelago. Despite the past intensive research for the Japanese macaque population genetics, the genetic background of Japanese macaques at the whole-genome level has been limited to a few individuals, and the comprehensive demographic history and genetic differentiation of Japanese macaques have been underexplored. We conducted whole-genome sequencing of 64 Japanese macaque individuals from 5 different regions, revealing significant genetic differentiation and functional variant diversity across populations. In particular, Japanese macaques have low genetic diversity and harbor many shared and population-specific gene loss, which might contribute to population-specific phenotypes. Our estimation of population demography using phased haplotypes suggested that, after the strong population bottleneck shared among all populations around 400 to 500 kya, the divergence among populations initiated around 150 to 200 kya, but there has been the time with strong gene flow between some populations after the split, indicating multiple population split and merge events probably due to habitat fragmentation and fusion during glacial cycles. These findings not only present a complex population history of Japanese macaques but also enhance their value as research models, particularly in neuroscience and behavioral studies. This comprehensive genomic analysis sheds light on the adaptation and evolution of Japanese macaques, contributing valuable insights to both evolutionary biology and biomedical research.
Collapse
Affiliation(s)
- Atsunori Higashino
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Katsuki Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoki Osada
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| |
Collapse
|
4
|
Ferrari RR, Ricardo PC, Dias FC, de Souza Araujo N, Soares DO, Zhou QS, Zhu CD, Coutinho LL, Arias MC, Batista TM. The nuclear and mitochondrial genome assemblies of Tetragonisca angustula (Apidae: Meliponini), a tiny yet remarkable pollinator in the Neotropics. BMC Genomics 2024; 25:587. [PMID: 38862915 PMCID: PMC11167848 DOI: 10.1186/s12864-024-10502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The field of bee genomics has considerably advanced in recent years, however, the most diverse group of honey producers on the planet, the stingless bees, are still largely neglected. In fact, only eleven of the ~ 600 described stingless bee species have been sequenced, and only three using a long-read (LR) sequencing technology. Here, we sequenced the nuclear and mitochondrial genomes of the most common, widespread and broadly reared stingless bee in Brazil and other neotropical countries-Tetragonisca angustula (popularly known in Brazil as jataí). RESULTS A total of 48.01 Gb of DNA data were generated, including 2.31 Gb of Pacific Bioscience HiFi reads and 45.70 Gb of Illumina short reads (SRs). Our preferred assembly comprised 683 contigs encompassing 284.49 Mb, 62.84 Mb of which (22.09%) corresponded to 445,793 repetitive elements. N50, L50 and complete BUSCOs reached 1.02 Mb, 91 contigs and 97.1%, respectively. We predicted that the genome of T. angustula comprises 17,459 protein-coding genes and 4,108 non-coding RNAs. The mitogenome consisted of 17,410 bp, and all 37 genes were found to be on the positive strand, an unusual feature among bees. A phylogenomic analysis of 26 hymenopteran species revealed that six odorant receptor orthogroups of T. angustula were found to be experiencing rapid evolution, four of them undergoing significant contractions. CONCLUSIONS Here, we provided the first nuclear and mitochondrial genome assemblies for the ecologically and economically important T. angustula, the fourth stingless bee species to be sequenced with LR technology thus far. We demonstrated that even relatively small amounts of LR data in combination with sufficient SR data can yield high-quality genome assemblies for bees.
Collapse
Affiliation(s)
- Rafael Rodrigues Ferrari
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Cordeiro Dias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Dalliane Oliveira Soares
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sate Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luiz Lehmann Coutinho
- Departamento de Ciências Animais, Universidade de São Paulo/ESALQ, Piracicaba, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Thiago Mafra Batista
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil.
| |
Collapse
|
5
|
Singh AP, De K, Uniyal VP, Sathyakumar S. Unveiling of climate change-driven decline of suitable habitat for Himalayan bumblebees. Sci Rep 2024; 14:4983. [PMID: 38424143 PMCID: PMC10904386 DOI: 10.1038/s41598-024-52340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Insect pollinators, especially bumblebees are rapidly declining from their natural habitat in the mountain and temperate regions of the world due to climate change and other anthropogenic activities. We still lack reliable information about the current and future habitat conditions of bumblebees in the Himalaya. In this study, we used the maximum entropy algorithm for SDM to look at current and future (in 2050 and 2070) suitable habitats for bumblebees in the Himalaya. We found that the habitat conditions in the Himalayan mountain range do not have a very promising future as suitable habitat for most species will decrease over the next 50 years. By 2050, less than 10% of the Himalayan area will remain a suitable habitat for about 72% of species, and by 2070 this number will be raised to 75%. During this time period, the existing suitable habitat of bumblebees will be declined but some species will find new suitable habitat which clearly indicates possibility of habitat range shift by Himalayan bumblebees. Overall, about 15% of the Himalayan region is currently highly suitable for bumblebees, which should be considered as priority areas for the conservation of these pollinators. Since suitable habitats for bumblebees lie between several countries, nations that share international borders in the Himalayan region should have international agreements for comprehensive pollinator diversity conservation to protect these indispensable ecosystem service providers.
Collapse
Affiliation(s)
- Amar Paul Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India.
| | - Kritish De
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka, 585313, India
| | - Virendra Prasad Uniyal
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India
| | | |
Collapse
|
6
|
Liu Y, Olsson A, Larva T, Cantwell-Jones A, Gill RJ, Cederberg B, Webster MT. Genomic variation in montane bumblebees in Scandinavia: High levels of intraspecific diversity despite population vulnerability. Mol Ecol 2024; 33:e17251. [PMID: 38112228 DOI: 10.1111/mec.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Populations of many bumblebee species are declining, with distributions shifting northwards to track suitable climates. Climate change is considered a major contributing factor. Arctic species are particularly vulnerable as they cannot shift further north, making assessment of their population viability important. Analysis of levels of whole-genome variation is a powerful way to analyse population declines and fragmentation. Here, we use genome sequencing to analyse genetic variation in seven species of bumblebee from the Scandinavian mountains, including two classified as vulnerable. We sequenced 333 samples from across the ranges of these species in Sweden. Estimates of effective population size (NE ) vary from ~55,000 for species with restricted high alpine distributions to 220,000 for more widespread species. Population fragmentation is generally very low or undetectable over large distances in the mountains, suggesting an absence of barriers to gene flow. The relatively high NE and low population structure indicate that none of the species are at immediate risk of negative genetic effects caused by high levels of genetic drift. However, reconstruction of historical fluctuations in NE indicates that the arctic specialist species Bombus hyperboreus has experienced population declines since the last ice age and we detected one highly inbred diploid male of this species close to the southern limit of its range, potentially indicating elevated genetic load. Although the levels of genetic variation in montane bumblebee populations are currently relatively high, their ranges are predicted to shrink drastically due to the effects of climate change and monitoring is essential to detect future population declines.
Collapse
Affiliation(s)
- Yuanzhen Liu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tuuli Larva
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aoife Cantwell-Jones
- Department of Life Sciences, Georgina Mace Centre for The Living Planet, Imperial College London, Ascot, UK
| | - Richard J Gill
- Department of Life Sciences, Georgina Mace Centre for The Living Planet, Imperial College London, Ascot, UK
| | - Björn Cederberg
- Swedish University of Agricultural Sciences, Swedish Species Information Centre, Uppsala, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Heraghty SD, Jackson JM, Lozier JD. Whole genome analyses reveal weak signatures of population structure and environmentally associated local adaptation in an important North American pollinator, the bumble bee Bombus vosnesenskii. Mol Ecol 2023; 32:5479-5497. [PMID: 37702957 DOI: 10.1111/mec.17125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Studies of species that experience environmental heterogeneity across their distributions have become an important tool for understanding mechanisms of adaptation and predicting responses to climate change. We examine population structure, demographic history and environmentally associated genomic variation in Bombus vosnesenskii, a common bumble bee in the western USA, using whole genome resequencing of populations distributed across a broad range of latitudes and elevations. We find that B. vosnesenskii exhibits minimal population structure and weak isolation by distance, confirming results from previous studies using other molecular marker types. Similarly, demographic analyses with Sequentially Markovian Coalescent models suggest that minimal population structure may have persisted since the last interglacial period, with genomes from different parts of the species range showing similar historical effective population size trajectories and relatively small fluctuations through time. Redundancy analysis revealed a small amount of genomic variation explained by bioclimatic variables. Environmental association analysis with latent factor mixed modelling (LFMM2) identified few outlier loci that were sparsely distributed throughout the genome and although a few putative signatures of selective sweeps were identified, none encompassed particularly large numbers of loci. Some outlier loci were in genes with known regulatory relationships, suggesting the possibility of weak selection, although compared with other species examined with similar approaches, evidence for extensive local adaptation signatures in the genome was relatively weak. Overall, results indicate B. vosnesenskii is an example of a generalist with a high degree of flexibility in its environmental requirements that may ultimately benefit the species under periods of climate change.
Collapse
Affiliation(s)
- Sam D Heraghty
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|