1
|
Yuan J, Wu F, Peng X, Wu Q, Yue K, Yuan C, An N, Peng Y. Global patterns and determinants of the initial concentrations of litter carbon components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175844. [PMID: 39214368 DOI: 10.1016/j.scitotenv.2024.175844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Plant litter is an important carbon (C) and nutrient pool in terrestrial ecosystems. The C components in plant litter are important because they regulate plant litter decomposition rate, but little is known on the global patterns and determinants of their concentrations in freshly fallen plant litter. Here, we quantified the concentrations of leaf litter C components (i.e., carbohydrate, polyphenol, tannin, and condensed tannin) with 864 measurements from 161 independent publications. We found that (1) the mean concentrations of leaf litter carbohydrate, polyphenol, tannin and condensed tannin were 27.7, 6.08, 8.84 and 5.7 %, respectively; (2) the concentrations of leaf litter C components were affected by taxonomic division, mycorrhizal association, life form, and/or leaf shedding strategy; (3) soil property had similar impacts on the concentrations of the four C compounds, while the influence of mean annual temperature and precipitation varied; and (4) elevation had opposing effects on carbohydrate and polyphenol concentrations, but not on that of tannin and condensed tannin, and only carbohydrate concentration was strongly affected by absolute latitude. In general, our results clearly show the global patterns and drivers of the concentrations of litter C compounds, providing new insights into the role of litter decomposition in global C dynamics.
Collapse
Affiliation(s)
- Ji Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xin Peng
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chaoxiang Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Nannan An
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| |
Collapse
|
2
|
Zheng S, Yu M, Webber BL, Didham RK. Intraspecific leaf trait variation mediates edge effects on litter decomposition rate in fragmented forests. Ecology 2024; 105:e4260. [PMID: 38353290 DOI: 10.1002/ecy.4260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
There is strong trait dependence in species-level responses to environmental change and their cascading effects on ecosystem functioning. However, there is little understanding of whether intraspecific trait variation (ITV) can also be an important mechanism mediating environmental effects on ecosystem functioning. This is surprising, given that global change processes such as habitat fragmentation and the creation of forest edges drive strong trait shifts within species. On 20 islands in the Thousand Island Lake, China, we quantified intraspecific leaf trait shifts of a widely distributed shrub species, Vaccinium carlesii, in response to habitat fragmentation. Using a reciprocal transplant decomposition experiment between forest edge and interior on 11 islands with varying areas, we disentangled the relative effects of intraspecific leaf trait variation versus altered environmental conditions on leaf decomposition rates in forest fragments. We found strong intraspecific variation in leaf traits in response to edge effects, with a shift toward recalcitrant leaves with low specific leaf area and high leaf dry matter content from forest interior to the edge. Using structural equation modeling, we showed that such intraspecific leaf trait response to habitat fragmentation had translated into significant plant afterlife effects on leaf decomposition, leading to decreased leaf decomposition rates from the forest interior to the edge. Importantly, the effects of intraspecific leaf trait variation were additive to and stronger than the effects from local environmental changes due to edge effects and habitat loss. Our experiment provides the first quantitative study showing that intraspecific leaf trait response to edge effects is an important driver of the decrease in leaf decomposition rate in fragmented forests. By extending the trait-based response-effect framework toward the individual level, intraspecific variation in leaf economics traits can provide the missing functional link between environmental change and ecological processes. These findings suggest an important area for future research on incorporating ITV to understand and predict changes in ecosystem functioning in the context of global change.
Collapse
Affiliation(s)
- Shilu Zheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia
| | - Mingjian Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Bruce L Webber
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia
- Western Australian Biodiversity Science Institute, Perth, Western Australia, Australia
| | - Raphael K Didham
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia
| |
Collapse
|
3
|
Response of Soil Fauna to the Shift in a Riparian Landscape along an Urban-Rural Habitat Gradient. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148690. [PMID: 35886541 PMCID: PMC9316243 DOI: 10.3390/ijerph19148690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022]
Abstract
Urbanization is accelerating worldwide, resulting in drastic alterations of natural riverbanks, which seriously affects the ecological functions and services of riparian landscapes. Our understanding of how anthropogenic activities influence soil animal communities within riparian zones is scarce. The soil fauna represents an important biotic component of the soil ecosystem and greatly contributes to soil structure and fertility formation. We investigated the richness, abundance, diversity, and distribution of soil animal groups, including macro- and mesofauna, in different riparian landscapes along an urban-rural habitat gradient. In natural riparian zones with permeable revetments, the soil fauna was richest and most abundant, mainly because of the low levels of human disturbance and the more suitable habitat conditions. Different soil animal groups responded differently to revetment type and distance from the water flow. The hygrophilous soil mesofauna, requiring a more humid environment, was more sensitive to shifts in revetment types, the location on the riverbank, and the seasons. In summer, when precipitation in the study area was highest, the abundance of the hygrophilous soil mesofauna was significantly higher than in autumn. Distance from the water flow significantly affected the abundance of the hygrophilous soil mesofauna. Our results demonstrated that hygrophilous soil mesofauna can serve as a good indicator in riparian zones, reflecting the hydrological conditions. We also observed interactions between revetment type and distance from the water flow; the distance effect was stronger in the natural riparian zone with a permeable revetment type. Our results highlight the importance of anthropogenic effects on soil ecosystem processes and functions in riparian landscapes, and the necessity of protecting and retaining the natural riverbank and native vegetation patches in riparian landscape planning and construction.
Collapse
|
4
|
van der Plas F, Schröder-Georgi T, Weigelt A, Barry K, Meyer S, Alzate A, Barnard RL, Buchmann N, de Kroon H, Ebeling A, Eisenhauer N, Engels C, Fischer M, Gleixner G, Hildebrandt A, Koller-France E, Leimer S, Milcu A, Mommer L, Niklaus PA, Oelmann Y, Roscher C, Scherber C, Scherer-Lorenzen M, Scheu S, Schmid B, Schulze ED, Temperton V, Tscharntke T, Voigt W, Weisser W, Wilcke W, Wirth C. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat Ecol Evol 2020; 4:1602-1611. [PMID: 33020598 DOI: 10.1038/s41559-020-01316-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.
Collapse
Affiliation(s)
- Fons van der Plas
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.
| | - Thomas Schröder-Georgi
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| | - Kathryn Barry
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| | - Sebastian Meyer
- Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Adriana Alzate
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
| | - Romain L Barnard
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Hans de Kroon
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Anne Ebeling
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Anke Hildebrandt
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Sophia Leimer
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique, Montferrier-sur-Lez, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Liesje Mommer
- Plant Ecology and Nature Conservation group, Wageningen University, Wageningen, the Netherlands
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Christiane Roscher
- German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Münster, Germany.,Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Stefan Scheu
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany.,J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Zurich, Switzerland.,Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Vicky Temperton
- Leuphana University Lüneburg, Institute of Ecology, Universitätsallee 1, Lüneburg, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Winfried Voigt
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Wolfgang Weisser
- Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christian Wirth
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany.,Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
5
|
Blondeel H, Perring MP, De Lombaerde E, Depauw L, Landuyt D, Govaert S, Maes SL, Vangansbeke P, De Frenne P, Verheyen K. Individualistic responses of forest herb traits to environmental change. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:601-614. [PMID: 32109335 DOI: 10.1111/plb.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land-use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change. We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two-level full-factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA). For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast-colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade-tolerant species. Interactions between treatments were not important predictors. Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species' ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
Collapse
Affiliation(s)
- H Blondeel
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - M P Perring
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
- Ecosystem Restoration and Intervention Ecology Research Group, School of Biological Sciences, the University of Western Australia, Crawley, WA, Australia
| | - E De Lombaerde
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - L Depauw
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - D Landuyt
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - S Govaert
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - S L Maes
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P Vangansbeke
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P De Frenne
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - K Verheyen
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| |
Collapse
|
6
|
Assessment of litter availability and its quality plasticity of four wild species of the Indian arid environment. Trop Ecol 2019. [DOI: 10.1007/s42965-019-00034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Pieristè M, Chauvat M, Kotilainen TK, Jones AG, Aubert M, Robson TM, Forey E. Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia 2019; 191:191-203. [PMID: 31363838 PMCID: PMC6732127 DOI: 10.1007/s00442-019-04478-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/23/2019] [Indexed: 11/30/2022]
Abstract
Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photodegradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), differing in their leaf traits and decomposition rate, were analysed over a period of 7–10 months. Over the entire period, the effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark treatment, where litter lost 20–30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate forest, UV radiation and blue light remain important in accelerating surface litter decomposition.
Collapse
Affiliation(s)
- Marta Pieristè
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, P.O. Box 65, Viikinkaari1, 00014, Helsinki, Finland. .,Normandie Université, UNIROUEN, IRSTEA, ECODIV, FR Scale CNRS 3730, Rouen, France.
| | - Matthieu Chauvat
- Normandie Université, UNIROUEN, IRSTEA, ECODIV, FR Scale CNRS 3730, Rouen, France
| | - Titta K Kotilainen
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, P.O. Box 65, Viikinkaari1, 00014, Helsinki, Finland.,Natural Resources Institute Finland, Itäinen Pitkäkatu 4a, 20520, Turku, FI, Finland
| | - Alan G Jones
- Earthwatch Institute, Mayfield House, 256 Banbury Road, Oxford, OX2 7DE, UK.,Forest Systems, Scion. 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Michaël Aubert
- Normandie Université, UNIROUEN, IRSTEA, ECODIV, FR Scale CNRS 3730, Rouen, France
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, P.O. Box 65, Viikinkaari1, 00014, Helsinki, Finland
| | - Estelle Forey
- Normandie Université, UNIROUEN, IRSTEA, ECODIV, FR Scale CNRS 3730, Rouen, France
| |
Collapse
|
8
|
Determining the Mechanisms that Influence the Surface Temperature of Urban Forest Canopies by Combining Remote Sensing Methods, Ground Observations, and Spatial Statistical Models. REMOTE SENSING 2018. [DOI: 10.3390/rs10111814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spatiotemporal distribution pattern of the surface temperatures of urban forest canopies (STUFC) is influenced by many environmental factors, and the identification of interactions between these factors can improve simulations and predictions of spatial patterns of urban cool islands. This quantitative research uses an integrated method that combines remote sensing, ground surveys, and spatial statistical models to elucidate the mechanisms that influence the STUFC and considers the interaction of multiple environmental factors. This case study uses Jinjiang, China as a representative of a city experiencing rapid urbanization. We build up a multisource database (forest inventory, digital elevation models, population, and remote sensing imagery) on a uniform coordinate system to support research into the interactions that influence the STUFC. Landsat-5/8 Thermal Mapper images and meteorological data were used to retrieve the temporal and spatial distributions of land surface temperature. Ground observations, which included the forest management planning inventory and population density data, provided the factors that determine the STUFC spatial distribution on an urban scale. The use of a spatial statistical model (GeogDetector model) reveals the interaction mechanisms of STUFC. Although different environmental factors exert different influences on STUFC, in two periods with different hot spots and cold spots, the patch area and dominant tree species proved to be the main factors contributing to STUFC. The interaction between multiple environmental factors increased the STUFC, both linearly and nonlinearly. Strong interactions tended to occur between elevation and dominant species and were prevalent in either hot or cold spots in different years. In conclusion, the combining of multidisciplinary methods (e.g., remote sensing images, ground observations, and spatial statistical models) helps reveal the mechanism of STUFC on an urban scale.
Collapse
|
9
|
Henneron L, Chauvat M, Archaux F, Akpa‐Vinceslas M, Bureau F, Dumas Y, Ningre F, Richter C, Balandier P, Aubert M. Plasticity in leaf litter traits partly mitigates the impact of thinning on forest floor carbon cycling. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ludovic Henneron
- Normandie Univ, UNIROUEN, IRSTEA, ECODIV Rouen France
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences Umeå Sweden
| | | | | | | | | | - Yann Dumas
- IRSTEA, UR EFNODomaine des Barres Nogent‐sur‐Vernisson France
| | | | | | | | | |
Collapse
|
10
|
Hortal S, Lozano YM, Bastida F, Armas C, Moreno JL, Garcia C, Pugnaire FI. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Sci Rep 2017; 7:17756. [PMID: 29259319 PMCID: PMC5736699 DOI: 10.1038/s41598-017-18103-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/05/2017] [Indexed: 11/23/2022] Open
Abstract
Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.
Collapse
Affiliation(s)
- S Hortal
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, E-04120, La Cañada de San Urbano, Almería, Spain. .,Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Y M Lozano
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, E-04120, La Cañada de San Urbano, Almería, Spain.,Freie Universität Berlin, Institut für Biologie, Plant Ecology, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - F Bastida
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, P.O. Box 164, E-30100, Murcia, Spain
| | - C Armas
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, E-04120, La Cañada de San Urbano, Almería, Spain
| | - J L Moreno
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, P.O. Box 164, E-30100, Murcia, Spain
| | - C Garcia
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, P.O. Box 164, E-30100, Murcia, Spain
| | - F I Pugnaire
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Carretera de Sacramento s/n, E-04120, La Cañada de San Urbano, Almería, Spain
| |
Collapse
|