1
|
Clark NJ, Ernest SKM, Senyondo H, Simonis J, White EP, Yenni GM, Karunarathna KANK. Beyond single-species models: leveraging multispecies forecasts to navigate the dynamics of ecological predictability. PeerJ 2025; 13:e18929. [PMID: 39989750 PMCID: PMC11846506 DOI: 10.7717/peerj.18929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Background Forecasting the responses of natural populations to environmental change is a key priority in the management of ecological systems. This is challenging because the dynamics of multi-species ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear responses to environmental change, often over multiple temporal lags. In addition, biotic interactions, and other sources of multi-species dependence, are major contributors to patterns of population variation. Theory suggests that near-term ecological forecasts of population abundances can be improved by modelling these dependencies, but empirical support for this idea is lacking. Methods We test whether models that learn from multiple species, both to estimate nonlinear environmental effects and temporal interactions, improve ecological forecasts compared to simpler single species models for a semi-arid rodent community. Using dynamic generalized additive models, we analyze time series of monthly captures for nine rodent species over 25 years. Results Model comparisons provide strong evidence that multi-species dependencies improve both hindcast and forecast performance, as models that captured these effects gave superior predictions than models that ignored them. We show that changes in abundance for some species can have delayed, nonlinear effects on others, and that lagged, nonlinear effects of temperature and vegetation greenness are key drivers of changes in abundance for this system. Conclusions Our findings highlight that multivariate models are useful not only to improve near-term ecological forecasts but also to ask targeted questions about ecological interactions and drivers of change. This study emphasizes the importance of jointly modelling species' shared responses to the environment and their delayed temporal interactions when teasing apart community dynamics.
Collapse
Affiliation(s)
- Nicholas J. Clark
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
- UQ Spatial Epidemiology Laboratory, University of Queensland, Gatton, Queensland, Australia
| | - S. K. Morgan Ernest
- Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| | - Henry Senyondo
- Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| | - Juniper Simonis
- Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
- DAPPER Stats, Portland, Oregon, United States
| | - Ethan P. White
- Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| | - Glenda M. Yenni
- Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| | - K. A. N. K. Karunarathna
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
- UQ Spatial Epidemiology Laboratory, University of Queensland, Gatton, Queensland, Australia
- Department of Mathematics, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
2
|
Charley CL, Gray EL, Baker AM. Owl Pellet Content Analysis Proves an Effective Technique to Monitor a Population of Threatened Julia Creek Dunnarts ( Sminthopsis douglasi) Throughout a Native Rodent Plague. Ecol Evol 2025; 15:e70922. [PMID: 39981546 PMCID: PMC11840426 DOI: 10.1002/ece3.70922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Logistical, environmental and temporal considerations can limit the effectiveness of long-term live trapping for small mammals in remote environments. Owl pellet content analysis offers a low-cost, non-invasive alternative to live trapping, as it is generally reflective of prey abundance within the broader small mammal community. One species to which this detection technique could be readily applied is the threatened Australian dasyurid, the Julia Creek dunnart, Sminthopsis douglasi. Most population information is outdated, and the species is notoriously difficult to monitor. Here, we aimed to monitor S. douglasi and other small terrestrial vertebrates over time and in relation to a native long-haired rat (Rattus villosissimus) plague, assessing their occurrence as dietary items in eastern barn owl (Tyto javanica delicatula) pellets collected at Toorak, north-west Queensland, Australia. A total of 1007 individual vertebrates were identified from 706 barn owl pellets spanning 3 present-day collections (2023-2024), with further analysis incorporating a prior published historical dataset (1994-2001, 210 pellets). We demonstrated a shift in Toorak small mammal community structure both over time and in response to an active R. villosissimus plague. Despite declines across present-day pellet collections, S. douglasi was always detected in high abundance, peaking at 30.75% of all individuals. Cumulative probability of detection indicated that analysis of owl pellets was highly effective at detecting S. douglasi (within 20 pellets) despite the ongoing rodent plague, which has undermined the effectiveness of parallel live trapping efforts across the region. Owl pellet analysis is thus an effective methodology for rapidly assessing S. douglasi populations and should be incorporated into both S. douglasi and other small mammal species monitoring regimes.
Collapse
Affiliation(s)
- Cameron L. Charley
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Emma L. Gray
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Andrew M. Baker
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Biodiversity and Geosciences Program, Queensland MuseumSouth BrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Doherty TS, Bohórquez Fandiño DF, Watchorn DJ, Legge SM, Dickman CR. Experimentally testing animal responses to prescribed fire size and severity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14231. [PMID: 38111980 DOI: 10.1111/cobi.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 12/20/2023]
Abstract
Deserts are often highly biodiverse and provide important habitats for many threatened species. Fire is a dominant disturbance in deserts, and prescribed burning is increasingly being used by conservation managers and Indigenous peoples to mitigate the damaging effects of climate change, invasive plants, and land-use change. The size, severity, and patchiness of fires can affect how animals respond to fire. However, there are almost no studies examining such burn characteristics in desert environments, which precludes the use of such information in conservation planning. Using a before-after control-impact approach with 20 sampling sites, we studied the outcomes of 10 prescribed burns of varying size (5-267 ha), severity, and patchiness to identify which variables best predicted changes in small mammal and reptile species richness and abundance. Three of the 13 species showed a clear response to fire. Captures increased for 2 species (1 mammal, 1 reptile) and decreased for 1 species (a reptile) as the proportional area burned around traps increased. Two other mammal species showed weaker positive responses to fire. Total burn size and burn patchiness were not influential predictors for any species. Changes in capture rates occurred only at sites with the largest and most severe burns. No fire-related changes in capture rates were observed where fires were small and very patchy. Our results suggest that there may be thresholds of fire size or fire severity that trigger responses to fire, which has consequences for management programs underpinned by the patch mosaic burning paradigm. The prescribed burns we studied, which are typical in scale and intensity across many desert regions, facilitated the presence of some taxa and are unlikely to have widespread or persistent negative impacts on small mammal or reptile communities in this ecosystem provided that long unburned habitat harboring threatened species is protected.
Collapse
Affiliation(s)
- Tim S Doherty
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Daniel F Bohórquez Fandiño
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Darcy J Watchorn
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences (Burwood campus), Deakin University, Waurn Ponds, Victoria, Australia
| | - Sarah M Legge
- Research Institute of Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
- Fenner School of Society and the Environment, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Chris R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Stringer EJ, Gruber B, Sarre SD, Wardle GM, Edwards SV, Dickman CR, Greenville AC, Duncan RP. Boom-bust population dynamics drive rapid genetic change. Proc Natl Acad Sci U S A 2024; 121:e2320590121. [PMID: 38621118 PMCID: PMC11067018 DOI: 10.1073/pnas.2320590121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.
Collapse
Affiliation(s)
- Emily J. Stringer
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Stephen D. Sarre
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Richard P. Duncan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| |
Collapse
|
5
|
Dinnage R, Sarre SD, Duncan RP, Dickman CR, Edwards SV, Greenville AC, Wardle GM, Gruber B. slimr: An R package for tailor-made integrations of data in population genomic simulations over space and time. Mol Ecol Resour 2024; 24:e13916. [PMID: 38124500 DOI: 10.1111/1755-0998.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Software for realistically simulating complex population genomic processes is revolutionizing our understanding of evolutionary processes, and providing novel opportunities for integrating empirical data with simulations. However, the integration between standalone simulation software and R is currently not well developed. Here, we present slimr, an R package designed to create a seamless link between standalone software SLiM >3.0, one of the most powerful population genomic simulation frameworks, and the R development environment, with its powerful data manipulation and analysis tools. We show how slimr facilitates smooth integration between genetic data, ecological data and simulation in a single environment. The package enables pipelines that begin with data reading, cleaning and manipulation, proceed to constructing empirically based parameters and initial conditions for simulations, then to running numerical simulations and finally to retrieving simulation results in a format suitable for comparisons with empirical data - aided by advanced analysis and visualization tools provided by R. We demonstrate the use of slimr with an example from our own work on the landscape population genomics of desert mammals, highlighting the advantage of having a single integrated tool for both data analysis and simulation. slimr makes the powerful simulation ability of SLiM directly accessible to R users, allowing integrated simulation projects that incorporate empirical data without the need to switch between software environments. This should provide more opportunities for evolutionary biologists and ecologists to use realistic simulations to better understand the interplay between ecological and evolutionary processes.
Collapse
Affiliation(s)
- Russell Dinnage
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Stephen D Sarre
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Richard P Duncan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Christopher R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Aaron C Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Glenda M Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Yip SJS, Dickman CR. Foraging and Food Selection in a Desert Rodent: Diet Shifts of the Sandy Inland Mouse between Population Booms and Busts. Animals (Basel) 2023; 13:ani13101702. [PMID: 37238132 DOI: 10.3390/ani13101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Seeds are commonly viewed as the mainstay of the diet of desert rodents. We describe the diet of a common Australian desert rodent, the sandy inland mouse Pseudomys hermannsburgensis, using direct observations of free-living animals and analysis of the stomach contents of preserved specimens. Direct observations showed that animals forage mostly on the ground surface and eat seeds from a wide range of plant species, as well as invertebrates and occasional green plant material. Stomach content analysis revealed no differences in the presence or absence of these three major food groups between seasons or the sexes. However, invertebrates were more prominent in the diet of mice during prolonged, dry, population 'bust' periods compared with post-rain population 'boom' periods, with this dietary shift probably reflecting a scarcity of seeds during the busts. The results confirm that seed is an important component of the diet of P. hermannsburgensis, with 92% of stomachs containing seed. The results also support the classification of the species as omnivorous rather than granivorous, with 70% of stomachs containing invertebrates and over half the specimens analysed containing both seeds and invertebrates. We suggest that dietary flexibility is important for rodent persistence in Australia's climatically unpredictable arid regions.
Collapse
Affiliation(s)
- Stephanie J S Yip
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Watchorn D, Dickman C, Dunlop J, Sanders E, Watchorn M, Burns P. Ghost rodents: Albinism in Australian rodent species. Ecol Evol 2023; 13:e9942. [PMID: 36993146 PMCID: PMC10042460 DOI: 10.1002/ece3.9942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
While almost half of all mammal species are rodents, records of albinism in free-ranging rodents are very rare. Australia has a large and diverse assemblage of native rodent species, but there are no records of free-ranging albino rodents in the published literature. In this study, we aim to improve our understanding of the occurrence of albinism in Australian rodent species by collating contemporary and historic records of this condition and providing an estimate of its frequency. We found 23 records of albinism (i.e., a complete loss of pigmentation), representing eight species, in free-ranging rodents native to Australia, with the frequency of albinism being generally <0.1%. Our findings bring the total number of rodent species in which albinism has been recorded globally to 76. While native Australian species represent only 7.8% of the world's murid rodent diversity, they now account for 42.1% of murid rodent species known to exhibit albinism. We also identified multiple concurrent albino records from a small island population of rakali (Hydromys chrysogaster) and discuss the factors that may contribute to the relatively high frequency (2%) of the condition on this island. We suggest that the small number of native albino rodents recorded in mainland Australia over the last 100 years means that traits associated with the condition are likely deleterious within populations and are thus selected against.
Collapse
Affiliation(s)
- Darcy Watchorn
- Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus)Deakin UniversityGeelongVictoriaAustralia
- Wildlife Conservation and ScienceZoos VictoriaParkvilleVictoria3052Australia
| | - Chris Dickman
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South Wales2006Australia
| | - Judy Dunlop
- Western Australian Feral Cat Working Group58 Sutton St, MandurahMandurahWestern Australia6210Australia
| | - Emmalie Sanders
- School of Agricultural, Veterinary and Environmental SciencesCharles Sturt UniversityAlburyNew South Wales2640Australia
| | - Molly Watchorn
- Life SciencesZoos VictoriaParkvilleVictoria3052Australia
| | - Phoebe Burns
- Wildlife Conservation and ScienceZoos VictoriaParkvilleVictoria3052Australia
| |
Collapse
|
8
|
Bragato PJ, Spencer EE, Dickman CR, Crowther MS, Tulloch A, Newsome TM. Effects of habitat, season and flood on corvid scavenging dynamics in Central Australia. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Patrick J. Bragato
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Emma E. Spencer
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Chris R. Dickman
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Ayesha Tulloch
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| | - Thomas M. Newsome
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
9
|
Odour-mediated Interactions Between an Apex Reptilian Predator and its Mammalian Prey. J Chem Ecol 2022; 48:401-415. [PMID: 35233678 PMCID: PMC9079038 DOI: 10.1007/s10886-022-01350-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
An important but understudied modality for eavesdropping between predators and prey is olfaction, especially between non-mammalian vertebrate predators and their prey. Here we test three olfactory eavesdropping predictions involving an apex reptilian predator, the sand goanna Varanus gouldii, and several species of its small mammalian prey in arid central Australia: 1) small mammals will recognize and avoid the odour of V. gouldii; 2) V. gouldii will be attracted to the odour of small mammals, especially of species that maximize its energetic returns; and 3) small mammals will be less mobile and will show higher burrow fidelity where V. gouldii is absent compared with where it is present. As expected, we found that small mammals recognized and avoided faecal odour of this goanna, feeding less intensively at food patches where the odour of V. gouldii was present than at patches with no odour or a pungency control odour. Varanus gouldii also was attracted to the odour of small mammals in artificial burrows and dug more frequently at burrows containing the odour of species that were energetically profitable than at those of species likely to yield diminishing returns. Our third prediction received mixed support. Rates of movement of three species of small mammals were no different where V. gouldii was present or absent, but burrow fidelity in two of these species increased as expected where V. gouldii had been removed. We conclude that olfaction plays a key role in the dynamic interaction between V. gouldii and its mammalian prey, with the interactants using olfaction to balance their respective costs of foraging and reducing predation risk. We speculate that the risk of predation from this apex reptilian predator drives the highly unusual burrow-shifting behaviour that characterizes many of Australia's small desert mammals.
Collapse
|
10
|
Lee JS, Letnic M, Mills CH. Diet and occurrences of the letter-winged kite in a predation refuge. Naturwissenschaften 2021; 108:61. [PMID: 34797399 DOI: 10.1007/s00114-021-01772-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
Nomadism is an advantageous life history strategy for specialised predators because it enables the predator to respond rapidly to changes in prey populations. The letter-winged kite (Elanus scriptus) is a nomadic nocturnal bird of prey endemic to arid and semi-arid zones of Australia. Letter-winged kites prey almost exclusively on nocturnal rodents and are often associated with rodent irruptions, but little is known about the ecology of letter-winged kites inside their core range. The Strzelecki Desert contains a known dingo-mediated predation refuge for native rodents. In this manuscript, we compare kite sightings, predator activity, and small mammal populations across survey sites in the Strzelecki Desert where dingoes were common and where dingoes were rare and use publicly available data from the Atlas of Living Australia (ALA) to assess trends in the occurrence of kites in the region. Ninety-five percent of ALA observations occurred in areas where dingoes were common. Similarly, all our observations of kites occurred where dingoes were common and during an extended population irruption of Notomys fuscus. Notomys fuscus was the most frequent item in the letter-winged kite diet at our study sites. We suggest that there is significant evidence that these sites in the Strzelecki Desert form part of the core range for the letter-winged kite whose use of this area is facilitated by a predation refuge for rodents mediated by the dingo. We conclude that predation refuges mediated by dingoes could be a factor driving the distributions of letter-winged kites and other predators of rodents, particularly nomadic predators.
Collapse
Affiliation(s)
- Joshua S Lee
- Centre for Ecosystem Science, School of BEES, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Ecology & Evolution Research Centre, School of BEES, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Mike Letnic
- Centre for Ecosystem Science, School of BEES, UNSW Sydney, Kensington, NSW, 2052, Australia.,Ecology & Evolution Research Centre, School of BEES, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Charlotte H Mills
- Centre for Ecosystem Science, School of BEES, UNSW Sydney, Kensington, NSW, 2052, Australia.,Ecology & Evolution Research Centre, School of BEES, UNSW Sydney, Kensington, NSW, 2052, Australia.,School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
11
|
Polyakov AY, Tietje WD, Srivathsa A, Rolland V, Hines JE, Oli MK. Multiple coping strategies maintain stability of a small mammal population in a resource-restricted environment. Ecol Evol 2021; 11:12529-12541. [PMID: 34594518 PMCID: PMC8462162 DOI: 10.1002/ece3.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
In semi-arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom-up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource-restricted environments. Using a 21-year biannual capture-recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi-arid oak woodland of coastal-central California. We applied Pradel's temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal-central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.
Collapse
Affiliation(s)
- Anne Y. Polyakov
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - William D. Tietje
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Arjun Srivathsa
- School of Natural Resources and EnvironmentUniversity of FloridaGainesvilleFLUSA
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFLUSA
| | - Virginie Rolland
- Department of Biological SciencesArkansas State UniversityJonesboroARUSA
| | - James E. Hines
- US Geological Survey, Patuxent Wildlife Research CenterLaurelMDUSA
| | - Madan K. Oli
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
12
|
Stojanovic D, Rayner L, Tulloch A, Crates R, Webb M, Ingwersen D, Runge C, Heinsohn R. A range‐wide monitoring programme for a critically endangered nomadic bird. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dejan Stojanovic
- Fenner School of Environment and Society Australian National University Acton 2601 Australian Capital Territory Australia
- Australian National University Canberra Australian Capital Territory Australia
| | - Laura Rayner
- Fenner School of Environment and Society Australian National University Acton 2601 Australian Capital Territory Australia
| | - Ayesha Tulloch
- The University of Sydney Sydney New South Wales Australia
| | - Ross Crates
- Fenner School of Environment and Society Australian National University Acton 2601 Australian Capital Territory Australia
| | - Matthew Webb
- Fenner School of Environment and Society Australian National University Acton 2601 Australian Capital Territory Australia
| | | | - Claire Runge
- UiT the Arctic University of Norway Tromsø Norway
| | - Robert Heinsohn
- Fenner School of Environment and Society Australian National University Acton 2601 Australian Capital Territory Australia
| |
Collapse
|
13
|
Pavey CR. A nomadic avian predator displays flexibility in prey choice during episodic outbreaks of rodents in arid Australia. Oecologia 2021; 196:211-222. [PMID: 33934187 DOI: 10.1007/s00442-021-04926-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
In environments driven by unpredictable resource pulses, populations of many consumer species experience dramatic fluctuations in abundance and spatial extent. Predator-prey relationships in these acyclic systems are poorly understood in particular with respect to the level of prey specialisation shown by nomadic predators. To understand the dynamics of such a system I examined the response to rodent outbreaks by the letter-winged kite (Elanus scriptus) in the Simpson Desert, Australia; a region that experiences major pulses in primary productivity, driven by unpredictable rainfall events. The kite feeds on small mammals and is the only night-hunting species in the Accipitridae. Letter-winged kites irrupted in the area on only three occasions during 20 years of sampling (1999-2019) and remained for a maximum of 20 months. Each period of kite occupation occurred only during the increase and/or peak phase of rodent population cycles (which occurred three times during the study). During each period kite diet was dominated by small (10-50 g body mass) quadrupedal rodents (Pseudomys australis, P. hermannsburgensis, Mus musculus). Abundance of these species varied across the three outbreaks and kites typically captured them in proportion to availability. The large body mass (134 g) long-haired rat (Rattus villosissimus) was abundant during one outbreak but was infrequently consumed. The bipedal spinifex hopping-mouse (Notomys alexis) was within the kites' favoured prey size range (35 g) but was consistently avoided. The flexibility in prey selection by letter-winged kites appears to be an important adaptation for survival and reproduction by species exploiting acyclic rodent outbreaks.
Collapse
Affiliation(s)
- Chris R Pavey
- CSIRO Land and Water, Winnellie, PMB 44, Darwin, NT, 0822, Australia.
| |
Collapse
|
14
|
Potter TI, Greenville AC, Dickman CR. Night of the hunter: using cameras to quantify nocturnal activity in desert spiders. PeerJ 2021; 9:e10684. [PMID: 33585081 PMCID: PMC7860110 DOI: 10.7717/peerj.10684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
Invertebrates dominate the animal world in terms of abundance, diversity and biomass, and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Previous research investigating the interaction between wolf spiders (Lycosidae: Lycosa spp.) and the lesser hairy-footed dunnart (Sminthopsis youngsoni) found that camera traps provide a viable method for examining temporal activity patterns and interactions between these species. Here, we re-examine lycosid activity to determine whether these patterns vary with different environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes, and whether cameras are able to detect other invertebrate fauna. Twenty-four cameras were deployed over a 3-month period in an arid region in central Australia, capturing 2,356 confirmed images of seven invertebrate taxa, including 155 time-lapse images of lycosids. Overall, there was no clear difference in temporal activity with respect to dune position or fire history, but twice as many lycosids were detected in unburned compared to burned areas. Despite some limitations, camera traps appear to have considerable utility as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders, and we recommend greater uptake in their usage in future.
Collapse
Affiliation(s)
- Tamara I Potter
- Terrestrial Ecosystem Research Network, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Aaron C Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.,National Environmental Science Program Threatened Species Recovery Hub, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.,National Environmental Science Program Threatened Species Recovery Hub, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
|
16
|
Senior KL, Ramsauer J, McCarthy MA, Kelly LT. The influence of weather and moon phase on small mammal activity. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am19056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small mammals are commonly surveyed using live trapping but the influence of weather conditions on trap success is largely unknown. This information is required to design and implement more effective field surveys and monitoring. We tested the influence of weather and moon phase on capture rates of small mammals in the Murray Mallee region of semi-arid Australia. We used extensive pitfall trapping data collected at 267 sites, totalling 54492 trap-nights. We built regression models to explore the relationship between the capture rates of five species and daily meteorological conditions, and across families of mammals, including dasyurids, burramyids and rodents. A relationship common to several taxa was the positive influence of high winds (>20km h−1) on capture rates. We also identified differences between taxa, with warmer overnight temperatures increasing capture rates of mallee ningaui but decreasing those of Bolam’s mouse. This makes it difficult to determine a single set of ‘optimal’ meteorological conditions for surveying the entire community but points to conditions favourable to individual species and groups. We recommend that surveys undertaken in warmer months encompass a variety of meteorological conditions to increase capture rates and provide a representative sample of the small mammal community present in a landscape.
Collapse
|
17
|
Law B, Gonsalves L, McConville A, Tap P. Landscape monitoring reveals initial trends in occupancy and activity of bats in multiple‐use forests. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bradley Law
- NSW Department of Primary Industries Locked Bag 5022 Parramatta New South Wales2124Australia
| | - Leroy Gonsalves
- NSW Department of Primary Industries Locked Bag 5022 Parramatta New South Wales2124Australia
| | | | - Patrick Tap
- Forestry Corporation of NSW Dubbo New South Wales Australia
| |
Collapse
|
18
|
Berris KK, Breed WG, Moseby KE, Carthew SM. Female reproductive suppression in an Australian arid zone rodent, the spinifex hopping mouse. J Zool (1987) 2020. [DOI: 10.1111/jzo.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. K. Berris
- School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - W. G. Breed
- School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - K. E. Moseby
- Centre for Ecosystem Science University of New South Wales Sydney NSW Australia
- Arid Recovery Roxby Downs SA Australia
| | - S. M. Carthew
- Research Institute for Environment and Livelihoods Charles Darwin University Casuarina NT Australia
| |
Collapse
|
19
|
Pavey CR, Nano CEM, Waltert M. Population dynamics of dasyurid marsupials in dryland Australia: Variation across habitat and time. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chris R. Pavey
- CSIRO Land and Water PMB 44 Winnellie Northern Territory 0822Australia
| | - Catherine E. M. Nano
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Alice Springs Northern Territory Australia
| | - Matthias Waltert
- Workgroup on Endangered Species J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
| |
Collapse
|
20
|
Bleicher SS, Dickman CR. On the landscape of fear: shelters affect foraging by dunnarts (Marsupialia, Sminthopsis spp.) in a sandridge desert environment. J Mammal 2020. [DOI: 10.1093/jmammal/gyz195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Disturbances such as fire reduce the structural complexity of terrestrial habitats, increasing the risk of predation for small prey species. The postfire effect of predation has especially deleterious effects in Australian habitats owing to the presence of invasive mammalian predators, the red fox (Vulpes vulpes) and feral cat (Felis catus), that rapidly exploit burned habitats. Here, we investigated whether the provision of artificial shelter could alleviate the risk of predation perceived by two species of small marsupial, the dunnarts Sminthopsis hirtipes and S. youngsoni, in open postfire habitat in the sandridge system of the Simpson Desert, central Australia. We installed artificial shelters constructed from wire mesh that allowed passage of the dunnarts but not of their predators at one site, and measured and compared the perceived risk of predation by the dunnarts there with those on a control site using optimal patch-use theory (giving-up densities, GUDs). GUDs were lower near artificial shelters than away from them, and near dune crests where dunnarts typically forage, suggesting that the shelters acted as corridors for dunnarts to move up to the crests from burrows in the swales. Foraging was lower near the crest in the control plot. Two-day foraging bouts were observed in dunnart activity, with recruitment to GUD stations occurring a day earlier in the augmented shelter plot. Despite these results, the effects of the shelters were localized and not evident at the landscape scale, with GUDs reduced also in proximity to sparse natural cover in the form of regenerating spinifex grass hummocks. Mapping dunnart habitat use using the landscape of fear (LOF) framework confirmed that animals perceived safety near shelter and risk away from it. We concluded that the LOF framework can usefully assess real-time behavioral responses of animals to management interventions in situations where demographic responses take longer to occur.
Collapse
Affiliation(s)
- Sonny S Bleicher
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
- Biology Department, Washington and Lee University, Lexington, VA, USA
| | - Christopher R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences A08, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Maute K, Hose GC, Story P, Bull CM, French K. Surviving drought: a framework for understanding animal responses to small rain events in the arid zone. Ecology 2019; 100:e02884. [PMID: 31498887 DOI: 10.1002/ecy.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 11/06/2022]
Abstract
Large rain events drive dramatic resource pulses and the complex pulse-reserve dynamics of arid ecosystems change between high-rain years and drought. However, arid-zone animal responses to short-term changes in climate are unknown, particularly smaller rain events that briefly interrupt longer-term drought. Using arthropods as model animals, we determined the effects of a small rain event on arthropod abundance in western New South Wales, Australia during a longer-term shift toward drought. Arthropod abundance decreased over 2 yr, but captures of 10 out of 15 ordinal taxa increased dramatically after the small rain event (<40 mm). The magnitude of increases ranged from 10.4 million% (collembolans) to 81% (spiders). After 3 months, most taxa returned to prerain abundance. However, small soil-dwelling beetles, mites, spiders, and collembolans retained high abundances despite the onset of winter temperatures and lack of subsequent rain. As predicted by pulse-reserve models, most arid-zone arthropod populations declined during drought. However, small rain events may play a role in buffering some taxa from declines during longer-term drought or other xenobiotic influences. We outline the framework for a new model of animal responses to environmental conditions in the arid zone, as some species clearly benefit from rain inputs that do not dramatically influence primary productivity.
Collapse
Affiliation(s)
- Kimberly Maute
- Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Paul Story
- Australian Plague Locust Commission, G.P.O. Box 858, Canberra, Australian Capital Territory, 2601, Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Kristine French
- Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
22
|
Paniw M, Maag N, Cozzi G, Clutton-Brock T, Ozgul A. Life history responses of meerkats to seasonal changes in extreme environments. Science 2019; 363:631-635. [PMID: 30733418 DOI: 10.1126/science.aau5905] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/10/2019] [Indexed: 11/02/2022]
Abstract
Species in extreme habitats increasingly face changes in seasonal climate, but the demographic mechanisms through which these changes affect population persistence remain unknown. We investigated how changes in seasonal rainfall and temperature influence vital rates and viability of an arid environment specialist, the Kalahari meerkat, through effects on body mass. We show that climate change-induced reduction in adult mass in the prebreeding season would decrease fecundity during the breeding season and increase extinction risk, particularly at low population densities. In contrast, a warmer nonbreeding season resulting in increased mass and survival would buffer negative effects of reduced rainfall during the breeding season, ensuring persistence. Because most ecosystems undergo seasonal climate variations, a full understanding of species vulnerability to global change relies on linking seasonal trait and population dynamics.
Collapse
Affiliation(s)
- Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland.
| | - Nino Maag
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Gabriele Cozzi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus 8467, South Africa
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
23
|
Gibb H, Grossman BF, Dickman CR, Decker O, Wardle GM. Long‐term responses of desert ant assemblages to climate. J Anim Ecol 2019; 88:1549-1563. [DOI: 10.1111/1365-2656.13052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/24/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Heloise Gibb
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Victoria Australia
| | - Blair F. Grossman
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Victoria Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Orsolya Decker
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Victoria Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
24
|
O’Connell MA, Hallett JG. Community ecology of mammals: deserts, islands, and anthropogenic impacts. J Mammal 2019. [DOI: 10.1093/jmammal/gyz010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - James G Hallett
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| |
Collapse
|
25
|
Nano CEM, Randall DJ, Stewart AJ, Pavey CR, McDonald PJ. Spatio-temporal gradients in food supply help explain the short-term colonisation dynamics of the critically endangered central rock-rat ( Zyzomys pedunculatus
). AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catherine E. M. Nano
- Flora and Fauna Division; Department of Environment and Natural Resources; Northern Territory Government; Alice Springs Northern Territory 0870 Australia
| | - Debbie J. Randall
- Flora and Fauna Division; Department of Environment and Natural Resources; Northern Territory Government; Alice Springs Northern Territory 0870 Australia
| | - Alistair J. Stewart
- Flora and Fauna Division; Department of Environment and Natural Resources; Northern Territory Government; Alice Springs Northern Territory 0870 Australia
| | - Chris R. Pavey
- Land & Water; CSIRO; Winnellie Northern Territory Australia
| | - Peter J. McDonald
- Flora and Fauna Division; Department of Environment and Natural Resources; Northern Territory Government; Alice Springs Northern Territory 0870 Australia
| |
Collapse
|
26
|
Bennison K, Godfree R, Dickman CR. Synchronous boom–bust cycles in central Australian rodents and marsupials in response to rainfall and fire. J Mammal 2018. [DOI: 10.1093/jmammal/gyy105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kerrie Bennison
- Parks Australia, Department of Environment and Energy, Canberra, Australian Capital Territory, Australia
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Robert Godfree
- CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Christopher R Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Greenville AC, Burns E, Dickman CR, Keith DA, Lindenmayer DB, Morgan JW, Heinze D, Mansergh I, Gillespie GR, Einoder L, Fisher A, Russell-Smith J, Metcalfe DJ, Green PT, Hoffmann AA, Wardle GM. Biodiversity responds to increasing climatic extremes in a biome-specific manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:382-393. [PMID: 29627562 DOI: 10.1016/j.scitotenv.2018.03.285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
An unprecedented rate of global environmental change is predicted for the next century. The response to this change by ecosystems around the world is highly uncertain. To address this uncertainty, it is critical to understand the potential drivers and mechanisms of change in order to develop more reliable predictions. Australia's Long Term Ecological Research Network (LTERN) has brought together some of the longest running (10-60years) continuous environmental monitoring programs in the southern hemisphere. Here, we compare climatic variables recorded at five LTERN plot network sites during their period of operation and place them into the context of long-term climatic trends. Then, using our unique Australian long-term datasets (total 117 survey years across four biomes), we synthesize results from a series of case studies to test two hypotheses: 1) extreme weather events for each plot network have increased over the last decade, and; 2) trends in biodiversity will be associated with recent climate change, either directly or indirectly through climate-mediated disturbance (wildfire) responses. We examined the biodiversity responses to environmental change for evidence of non-linear behavior. In line with hypothesis 1), an increase in extreme climate events occurred within the last decade for each plot network. For hypothesis 2), climate, wildfire, or both were correlated with biodiversity responses at each plot network, but there was no evidence of non-linear change. However, the influence of climate or fire was context-specific. Biodiversity responded to recent climate change either directly or indirectly as a consequence of changes in fire regimes or climate-mediated fire responses. A national long-term monitoring framework allowed us to find contrasting species abundance or community responses to climate and disturbance across four of the major biomes of Australia, highlighting the need to establish and resource long-term monitoring programs across representative ecosystem types, which are likely to show context-specific responses.
Collapse
Affiliation(s)
- Aaron C Greenville
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Emma Burns
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher R Dickman
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - David A Keith
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, Sydney, University of New South Wales, Australia; NSW Office of Environment and Heritage, Hurstville, New South Wales, Australia
| | - David B Lindenmayer
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - John W Morgan
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Research Centre for Applied Alpine Ecology, Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Dean Heinze
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Research Centre for Applied Alpine Ecology, Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Ian Mansergh
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Research Centre for Applied Alpine Ecology, Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Graeme R Gillespie
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Department of Environment and Natural Resources (DENR), Darwin, Northern Territory, Australia; School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Luke Einoder
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Department of Environment and Natural Resources (DENR), Darwin, Northern Territory, Australia
| | - Alaric Fisher
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Department of Environment and Natural Resources (DENR), Darwin, Northern Territory, Australia
| | - Jeremy Russell-Smith
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Darwin Centre for Bushfire Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Daniel J Metcalfe
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; CSIRO Ecosystem Sciences, Tropical Forest Research Centre, Atherton, Queensland, Australia
| | - Peter T Green
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Glenda M Wardle
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Australia; Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Greenville A, Brandle R, Canty P, Dickman CR. Dynamics, habitat use and extinction risk of a carnivorous desert marsupial. J Zool (1987) 2018. [DOI: 10.1111/jzo.12605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A.C. Greenville
- Desert Ecology Research Group School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- National Environmental Science Program Threatened Species Recovery Hub Sydney NSW Australia
| | - R. Brandle
- National Environmental Science Program Threatened Species Recovery Hub Sydney NSW Australia
- Department for Environment and Water Natural Resources SA Arid Lands Port Augusta SA Australia
| | - P. Canty
- State Herbarium Department for Environment and Water Adelaide SA Australia
| | - C. R. Dickman
- Desert Ecology Research Group School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
- National Environmental Science Program Threatened Species Recovery Hub Sydney NSW Australia
| |
Collapse
|
29
|
Wilson S, Smith AC, Naujokaitis-Lewis I. Opposing responses to drought shape spatial population dynamics of declining grassland birds. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Scott Wilson
- Wildlife Research Division, Environment Canada; National Wildlife Research Centre; Ottawa ON Canada
| | - Adam C. Smith
- Canadian Wildlife Service, Environment Canada; National Wildlife Research Centre; Ottawa ON Canada
| | - Ilona Naujokaitis-Lewis
- Landscape Science and Technology Division, Environment Canada; National Wildlife Research Centre; Ottawa ON Canada
| |
Collapse
|
30
|
Potter TI, Greenville AC, Dickman CR. Assessing the potential for intraguild predation among taxonomically disparate micro-carnivores: marsupials and arthropods. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171872. [PMID: 29892379 PMCID: PMC5990775 DOI: 10.1098/rsos.171872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Interspecific competition may occur when resources are limited, and is often most intense between animals in the same ecological guild. Intraguild predation (IGP) is a distinctive form of interference competition, where a dominant predator selectively kills subordinate rivals to gain increased access to resources. However, before IGP can be identified, organisms must be confirmed as members of the same guild and occur together in space and time. The lesser hairy-footed dunnart (Sminthopsis youngsoni, Dasyuridae) is a generalist marsupial insectivore in arid Australia, but consumes wolf spiders (Lycosa spp., Lycosidae) disproportionately often relative to their availability. Here, we test the hypothesis that this disproportionate predation is a product of frequent encounter rates between the interactants due to high overlap in their diets and use of space and time. Diet and prey availability were determined using direct observations and invertebrate pitfall trapping, microhabitat use by tracking individuals of both species-groups, and temporal activity using spotlighting and camera traps. Major overlap (greater than 75% similarity) was found in diet and temporal activity, and weaker overlap in microhabitat use. Taken together, these findings suggest reasonable potential, for the first time, for competition and intraguild predation to occur between taxa as disparate as marsupials and spiders.
Collapse
Affiliation(s)
- Tamara I. Potter
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- National Environmental Science Programme Threatened Species Recovery Hub, University of Sydney, Sydney, New South Wales, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- National Environmental Science Programme Threatened Species Recovery Hub, University of Sydney, Sydney, New South Wales, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Greenville AC, Wardle GM, Dickman CR. Desert mammal populations are limited by introduced predators rather than future climate change. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170384. [PMID: 29291051 PMCID: PMC5717625 DOI: 10.1098/rsos.170384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/04/2017] [Indexed: 05/19/2023]
Abstract
Climate change is predicted to place up to one in six species at risk of extinction in coming decades, but extinction probability is likely to be influenced further by biotic interactions such as predation. We use structural equation modelling to integrate results from remote camera trapping and long-term (17-22 years) regional-scale (8000 km2) datasets on vegetation and small vertebrates (greater than 38 880 captures) to explore how biotic processes and two key abiotic drivers influence the structure of a diverse assemblage of desert biota in central Australia. We use our models to predict how changes in rainfall and wildfire are likely to influence the cover and productivity of the dominant vegetation and the impacts of predators on their primary rodent prey over a 100-year timeframe. Our results show that, while vegetation cover may decline due to climate change, the strongest negative effect on prey populations in this desert system is top-down suppression from introduced predators.
Collapse
Affiliation(s)
- Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, St Lucia, Australia
- Author for correspondence: Aaron C. Greenville e-mail:
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, St Lucia, Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, St Lucia, Australia
| |
Collapse
|
32
|
Greenville AC, Dickman CR, Wardle GM. 75 years of dryland science: Trends and gaps in arid ecology literature. PLoS One 2017; 12:e0175014. [PMID: 28384186 PMCID: PMC5383157 DOI: 10.1371/journal.pone.0175014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/20/2017] [Indexed: 12/28/2022] Open
Abstract
Growth in the publication of scientific articles is occurring at an exponential rate, prompting a growing need to synthesise information in a timely manner to combat urgent environmental problems and guide future research. Here, we undertake a topic analysis of dryland literature over the last 75 years (8218 articles) to identify areas in arid ecology that are well studied and topics that are emerging. Four topics-wetlands, mammal ecology, litter decomposition and spatial modelling, were identified as 'hot topics' that showed higher than average growth in publications from 1940 to 2015. Five topics-remote sensing, climate, habitat and spatial, agriculture and soils-microbes, were identified as 'cold topics', with lower than average growth over the survey period, but higher than average numbers of publications. Topics in arid ecology clustered into seven broad groups on word-based similarity. These groups ranged from mammal ecology and population genetics, broad-scale management and ecosystem modelling, plant ecology, agriculture and ecophysiology, to populations and paleoclimate. These patterns may reflect trends in the field of ecology more broadly. We also identified two broad research gaps in arid ecology: population genetics, and habitat and spatial research. Collaborations between population genetics and ecologists and investigations of ecological processes across spatial scales would contribute profitably to the advancement of arid ecology and to ecology more broadly.
Collapse
Affiliation(s)
- Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- National Environmental Science Programme Threatened Species Recovery Hub, University of Sydney, Sydney, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Sydney, Australia
- * E-mail:
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- National Environmental Science Programme Threatened Species Recovery Hub, University of Sydney, Sydney, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Sydney, Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
- Long Term Ecological Research Network, Terrestrial Ecosystem Research Network, Sydney, Australia
| |
Collapse
|
33
|
Breed WG, Leigh CM, Breed MF. Changes in abundance and reproductive activity of small arid-zone murid rodents on an active cattle station in central Australia. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Boom and bust population cycles are characteristic of many arid-zone rodents, but it is unknown to what extent these dynamics might be influenced by the presence of invasive rodents, such as the house mouse (Mus musculus) in Australia.
Aim
To determine whether the presence of M. musculus can have negative consequences on the population abundance and reproduction of two old Australian endemic rodents (the spinifex hopping mouse, Notomys alexis, and sandy inland mouse, Pseudomys hermannsburgensis).
Methods
The study took place on the sand dunes of a cattle station in central Australia. Population abundance was estimated as the number of individuals caught in small mammal traps, and female reproductive condition by external examination and, in a few cases, euthanasia and inspection of the reproductive tract.
Key results
Two synchronous periods of high abundance of N. alexis and M. musculus occurred several months after significant rainfall events, whereas the abundance of P. hermannsburgensis was consistently low. No reproduction took place in N. alexis or M. musculus when populations had reached high abundance. During low-rainfall periods, M. musculus was not detected on the sand dunes, and the two endemic species were sparsely distributed, with reproduction occasionally being evident.
Conclusions
During dry periods, M. musculus contracted back to refuges around the homestead and, after significant rainfall, it expanded onto the sand dunes and became abundant at the same time as did N. alexis. In contrast, and unlike in areas where M. musculus was generally rare, P. hermannsburgensis always remained at a low abundance. These patterns suggest that in areas of the natural environment close to human-modified sites, populations of at least one species of an old endemic rodent are supressed by the presence of M. musculus. Reproduction did not occur in the old endemics at times of high M. musculus abundance, but did take place in spring/early summer, even in some dry years.
Implications
The spread of M. musculus into the Australian arid zone may have had negative impacts on the population dynamics of P. hermannsburgensis. These findings suggest that the presence of human settlements has resulted in refuges for house mice, which periodically spread out into the natural environment during ‘boom’ times and adversely affect the natural population cycle of ecologically similar species such as P. hermannsburgensis.
Collapse
|
34
|
Wayne AF, Wilson BA, Woinarski JCZ. Falling apart? Insights and lessons from three recent studies documenting rapid and severe decline in terrestrial mammal assemblages of northern, south-eastern and south-western Australia. WILDLIFE RESEARCH 2017. [DOI: 10.1071/wr16178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Since European settlement in 1788, much of the Australian terrestrial mammal fauna has declined or become extinct. The pattern of, and reason for, that decline was little documented, and is now difficult to decipher. Many mammal species are still declining, providing (an unfortunate) opportunity to better document the process, identify the causal factors and attempt to redress the problem.
Aim
We compare trends in mammal abundance reported in three recent longitudinal studies in conservation reserves in Australia. The studies were not established with the intention of documenting mammal decline, but marked simultaneous decline of co-existing species was the most striking feature of their results.
Methods
Long-term monitoring in Kakadu National Park, Northern Territory (2001–04 and 2007–09), the Upper Warren region of Western Australia (since 1974) and the Great Otway National Park, Victoria (since 1975) principally relied on trapping, but also some spotlighting and sand plots, to document changes and trends in abundance in their respective mammal assemblages.
Key results
Decline was reported in most mammal species, across taxonomic groups, diets and size classes, but mostly involved species <5500g. The studies differed in their monitoring protocols and varied in the degree to which potential causal factors were monitored, thereby constraining interpretation of the drivers of declines. Inappropriate fire regimes and predation by feral cats are likely contributing factors in at least two study areas, and periods of markedly below-average rainfall are implicated in two areas.
Conclusions
We conclude the following: (1) conservation reserves in Australia may be failing to maintain at least some elements of the biodiversity that they were established to protect, and substantially enhanced management is required to redress this problem; (2) with current threats, mammal assemblages in Australia may be highly unstable; (3) substantial increase in effective long-term biodiversity monitoring programs in an adaptive management framework is needed; and (4) such monitoring programs will be more insightful if they also monitor factors driving population change.
Implications
Native mammal species declines and community disassembly may be occurring elsewhere. Long-term monitoring is critical for assessing trends in biodiversity and if done well, it can guide more effective and efficient management to deliver better conservation outcomes.
Collapse
|
35
|
Spatial and temporal synchrony in reptile population dynamics in variable environments. Oecologia 2016; 182:475-85. [PMID: 27337964 DOI: 10.1007/s00442-016-3672-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Resources are seldom distributed equally across space, but many species exhibit spatially synchronous population dynamics. Such synchrony suggests the operation of large-scale external drivers, such as rainfall or wildfire, or the influence of oasis sites that provide water, shelter, or other resources. However, testing the generality of these factors is not easy, especially in variable environments. Using a long-term dataset (13-22 years) from a large (8000 km(2)) study region in arid Central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of six reptile species across nine widely separated sites. For species that showed synchronous spatial dynamics, we then used multivariate follow a multivariate auto-regressive state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations. For asynchronous species, we used MARSS models to explore four other possible population structures: (1) populations were asynchronous, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, or (4) differed between three sub-regions with different rainfall gradients. Only one species showed evidence of spatial population synchrony and our results provide little evidence that rainfall synchronizes reptile populations. The oasis or the wildfire hypotheses were the best-fitting models for the other five species. Thus, our six study species appear generally to be structured in space into one or two populations across the study region. Our findings suggest that for arid-dwelling reptile populations, spatial and temporal dynamics are structured by abiotic events, but individual responses to covariates at smaller spatial scales are complex and poorly understood.
Collapse
|