1
|
Silvestro R, Mura C, Alano Bonacini D, de Lafontaine G, Faubert P, Mencuccini M, Rossi S. Local adaptation shapes functional traits and resource allocation in black spruce. Sci Rep 2023; 13:21257. [PMID: 38040772 PMCID: PMC10692160 DOI: 10.1038/s41598-023-48530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Climate change is rapidly altering weather patterns, resulting in shifts in climatic zones. The survival of trees in specific locations depends on their functional traits. Local populations exhibit trait adaptations that ensure their survival and accomplishment of growth and reproduction processes during the growing season. Studying these traits offers valuable insights into species responses to present and future environmental conditions, aiding the implementation of measures to ensure forest resilience and productivity. This study investigates the variability in functional traits among five black spruce (Picea mariana (Mill.) B.S.P.) provenances originating from a latitudinal gradient along the boreal forest, and planted in a common garden in Quebec, Canada. We examined differences in bud phenology, growth performance, lifetime first reproduction, and the impact of a late-frost event on tree growth and phenological adjustments. The findings revealed that trees from northern sites exhibit earlier budbreak, lower growth increments, and reach reproductive maturity earlier than those from southern sites. Late-frost damage affected growth performance, but no phenological adjustment was observed in the successive year. Local adaptation in the functional traits may lead to maladaptation of black spruce under future climate conditions or serve as a potent evolutionary force promoting rapid adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- R Silvestro
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - C Mura
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - D Alano Bonacini
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - G de Lafontaine
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de biologie, chimie et Géographie, Centre for Northern Studies, Centre for Forest Research, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - P Faubert
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
- Carbone boréal, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
| | - M Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Bellaterra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - S Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
2
|
Alfaro-Sánchez R, Johnstone JF, Cumming SG, Day NJ, Mack MC, Walker XJ, Baltzer JL. What Drives Reproductive Maturity and Efficiency in Serotinous Boreal Conifers? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In boreal North America, much of the landscape is covered by fire-adapted forests dominated by serotinous conifers. For these forests, reductions in fire return interval could limit reproductive success, owing to insufficient time for stands to reach reproductive maturity i.e., to initiate cone production. Improved understanding of the drivers of reproductive maturity can provide important information about the capacity of these forests to self-replace following fire. Here, we assessed the drivers of reproductive maturity in two dominant and widespread conifers, semi-serotinous black spruce and serotinous jack pine. Presence or absence of female cones were recorded in approximately 15,000 individuals within old and recently burned stands in two distinct ecozones of the Northwest Territories (NWT), Canada. Our results show that reproductive maturity was triggered by a minimum tree size threshold rather than an age threshold, with trees reaching reproductive maturity at smaller sizes where environmental conditions were more stressful. The number of reproductive trees per plot increased with stem density, basal area, and at higher latitudes (colder locations). The harsh climatic conditions present at these higher latitudes, however, limited the recruitment of jack pine at the treeline ecotone. The number of reproductive black spruce trees increased with deeper soils, whereas the number of reproductive jack pine trees increased where soils were shallower. We examined the reproductive efficiency i.e., the number of seedlings recruited per reproductive tree, linking pre-fire reproductive maturity of recently burned stands and post-fire seedling recruitment (recorded up to 4 years after the fires) and found that a reproductive jack pine can recruit on average three times more seedlings than a reproductive black spruce. We suggest that the higher reproductive efficiency of jack pine can explain the greater resilience of this species to wildfire compared with black spruce. Overall, these results help link life history characteristics, such as reproductive maturity, to variation in post-fire recruitment of dominant serotinous conifers.
Collapse
|
3
|
Gratzer G, Pesendorfer MB, Sachser F, Wachtveitl L, Nopp‐Mayr U, Szwagrzyk J, Canham CD. Does fine scale spatiotemporal variation in seed rain translate into plant population structure? OIKOS 2021. [DOI: 10.1111/oik.08826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Georg Gratzer
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Mario B. Pesendorfer
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Frederik Sachser
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
- Inst. of Wildlife Biology and Game Management, Dept of Integrative Biology and Biodiversity Research, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Laura Wachtveitl
- Inst. of Forest Ecology, Dept of Soil and Forest Sciences, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Ursula Nopp‐Mayr
- Inst. of Wildlife Biology and Game Management, Dept of Integrative Biology and Biodiversity Research, BOKU – Univ. of Natural Resources and Life Sciences Vienna Austria
| | - Jerzy Szwagrzyk
- Dept of Botany and Nature Conservation, Forest Biodiversity Inst., Univ. of Agriculture Kraków Poland
| | | |
Collapse
|
4
|
Qiu T, Aravena MC, Andrus R, Ascoli D, Bergeron Y, Berretti R, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Julio Camarero J, Clark CJ, Courbaud B, Delzon S, Donoso Calderon S, Farfan-Rios W, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Journé V, Kilner CL, Kobe RK, Koenig WD, Kunstler G, LaMontagne JM, Ledwon M, Lutz JA, Motta R, Myers JA, Nagel TA, Nuñez CL, Pearse IS, Piechnik Ł, Poulsen JR, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Scher CL, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Swenson JJ, Swift M, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Żywiec M, Clark JS. Is there tree senescence? The fecundity evidence. Proc Natl Acad Sci U S A 2021; 118:e2106130118. [PMID: 34400503 PMCID: PMC8403963 DOI: 10.1073/pnas.2106130118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.
Collapse
Affiliation(s)
- Tong Qiu
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Marie-Claire Aravena
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - Robert Andrus
- Department of Geography, University of Colorado, Boulder, CO 80309
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada
- Department of Biological Sciences, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC H2L 2C4, Canada
| | - Roberta Berretti
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Michal Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Thomas Boivin
- l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Ecologie des Forets Mediterranennes, 84000 Avignon, France
| | - Raul Bonal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | - Thomas Caignard
- Université Bordeaux, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615 Pessac, France
| | - Rafael Calama
- Centro de Investigación Forestal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR), 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), 50059 Zaragoza, Spain
| | - Connie J Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Benoit Courbaud
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | - Sylvain Delzon
- Université Bordeaux, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biodiversity, Genes, and Communities (BIOGECO), 33615 Pessac, France
| | - Sergio Donoso Calderon
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - William Farfan-Rios
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, Washington University in Saint Louis, St. Louis, MO 63110
| | - Catherine A Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Gregory S Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, US Department of Agriculture Forest Service, Asheville, NC 28801
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, US Department of Agriculture Forest Service, Research Triangle Park, NC 27709
| | - Janneke Hille Ris Lambers
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita 010-0195, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109
| | - Valentin Journé
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | | | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
- Department of Forestry, Michigan State University, East Lansing, MI 48824
| | - Walter D Koenig
- Hastings Reservation, University of California Berkeley, Carmel Valley, CA 93924
| | - Georges Kunstler
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| | | | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 31-016 Krakow, Poland
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT 84322
- Ecology Center, Utah State University, Logan, UT 84322
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Chase L Nuñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
| | - Ian S Pearse
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO 80526
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | | | - Miranda D Redmond
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Kyle C Rodman
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Harald Schmidt Van Marle
- Universidad de Chile, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN), La Pintana, 8820808 Santiago, Chile
| | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - Shubhi Sharma
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DISAA), University of Milan, 20133 Milano, Italy
| | - Thomas T Veblen
- Department of Geography, University of Colorado, Boulder, CO 80309
| | - Amy V Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - Andreas P Wion
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, United States 00936
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, 31-512 Krakow, Poland
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, NC 27708;
- Université Grenoble Alpes, l'Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), 38402 St.-Martin-d'Heres, France
| |
Collapse
|
5
|
Major EI, Höhn M, Avanzi C, Fady B, Heer K, Opgenoorth L, Piotti A, Popescu F, Postolache D, Vendramin GG, Csilléry K. Fine-scale spatial genetic structure across the species range reflects recent colonization of high elevation habitats in silver fir (Abies alba Mill.). Mol Ecol 2021; 30:5247-5265. [PMID: 34365696 PMCID: PMC9291806 DOI: 10.1111/mec.16107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 12/03/2022]
Abstract
Variation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations’ resilience and adaptive potential. The spatial distribution of genetic diversity within populations, referred to as fine‐scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1,368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east‐west isolation‐by‐distance pattern consistent with the post‐glacial colonization history of the species. Genetic differentiation among sites (FCT = 0.148) was an order of magnitude greater than between elevations within sites (FSC = 0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modelling revealed that elevation and, to a lesser extent, post‐glacial colonization history, but not climatic and habitat variables, were the best predictors of FSGS across populations. These results suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide information about demographic history complementary to non‐spatial statistics, and could be used for genetic diversity monitoring, especially in forest trees.
Collapse
Affiliation(s)
- Enikő I Major
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Mária Höhn
- Department of Botany, Hungarian University of Agronomy and Life Sciences, Budapest, Hungary
| | - Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Bruno Fady
- Ecology of Mediterranean Forests (URFM), INRAE, UR629, Avignon, France
| | - Katrin Heer
- Conservation Biology, Philipps Universität Marburg, Marburg, Germany
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany.,Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Flaviu Popescu
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Dragos Postolache
- National Institute for Research and Development in Forestry "Marin Drăcea", Ilfov County, Romania
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino (Firenze), Italy
| | - Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
6
|
Wills C, Wang B, Fang S, Wang Y, Jin Y, Lutz J, Thompson J, Harms KE, Pulla S, Pasion B, Germain S, Liu H, Smokey J, Su SH, Butt N, Chu C, Chuyong G, Chang-Yang CH, Dattaraja HS, Davies S, Ediriweera S, Esufali S, Fletcher CD, Gunatilleke N, Gunatilleke S, Hsieh CF, He F, Hubbell S, Hao Z, Itoh A, Kenfack D, Li B, Li X, Ma K, Morecroft M, Mi X, Malhi Y, Ong P, Rodriguez LJ, Suresh HS, Sun IF, Sukumar R, Tan S, Thomas D, Uriarte M, Wang X, Wang X, Yao TL, Zimmermann J. Interactions between all pairs of neighboring trees in 16 forests worldwide reveal details of unique ecological processes in each forest, and provide windows into their evolutionary histories. PLoS Comput Biol 2021; 17:e1008853. [PMID: 33914731 PMCID: PMC8084225 DOI: 10.1371/journal.pcbi.1008853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.
Collapse
Affiliation(s)
- Christopher Wills
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Bin Wang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin
| | - Shuai Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
| | - Yunquan Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing
| | - Yi Jin
- College of Life Sciences, Zhejiang University, Hangzhou
| | - James Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
| | - Jill Thompson
- Center for Ecology & Hydrology, Penicuik, Midlothian, Scotland
| | - Kyle E. Harms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Los Angeles, United States of America
| | - Sandeep Pulla
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
- National Centre for Biological Sciences, GKVK Campus, Bengaluru, India
| | - Bonifacio Pasion
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan
| | - Sara Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
| | - Heming Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai
| | - Joseph Smokey
- Department of Biology, Memorial University of Newfoundland, Newfoundland, Canada
| | - Sheng-Hsin Su
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei
| | - Nathalie Butt
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - George Chuyong
- Department of Botany and Plant Physiology, University of Buea, Cameroon
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung
| | | | - Stuart Davies
- Center for Tropical Forest Science, Smithsonian Institution, Washington, DC, United States of America
| | - Sisira Ediriweera
- Faculty of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Shameema Esufali
- Department of Botany, University of Peradeniya, Peradeniya Sri Lanka
| | | | - Nimal Gunatilleke
- Dept. of Botany, Faculty of Science, University of Peradeniya, Peradeniya Sri Lanka
| | - Savi Gunatilleke
- Dept. of Botany, Faculty of Science, University of Peradeniya, Peradeniya Sri Lanka
| | | | - Fangliang He
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - Stephen Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Zhanqing Hao
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
| | - Akira Itoh
- Graduate School of Science, Osaka City University, Sumiyoshi Ku, Osaka, Japan
| | - David Kenfack
- Center for Tropical Forest Science–Forest Global Earth Observatory (CTFS-ForestGEO), Smithsonian Tropical Research Institute, NMNH—MRC, Washington, DC, United States of America
| | - Buhang Li
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - Xiankun Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing
| | | | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing
| | - Yadvinder Malhi
- School of Geography and the Environment, Oxford University Centre for the Environment, University of Oxford, Oxford, United Kingdom
| | - Perry Ong
- Institute of Biology, College of Science, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Lillian Jennifer Rodriguez
- Institute of Biology, College of Science, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - H. S. Suresh
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - I Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien
| | - Raman Sukumar
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
| | - Sylvester Tan
- Forest Department Sarawak, Bangunan Wisma Sumber Alam, Jalan Stadium, Petra Jaya, Kuching, Sarawak, Malaysia
| | - Duncan Thomas
- Department of Biology, Washington State University, Vancouver, Washington State, United States of America
| | - Maria Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York city, New York, United States of America
| | - Xihua Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai
| | - Xugao Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
| | - T. L. Yao
- Forest Research Institute Malaysia, Kepong Selangor, Malaysia
| | - Jess Zimmermann
- Dept of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR, United States of America
| |
Collapse
|
7
|
Kucheravy CE, Roth JD, Markham JH. Red foxes increase reproductive output of white spruce in a non-mast year. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
9
|
Avanzi C, Heer K, Büntgen U, Labriola M, Leonardi S, Opgenoorth L, Piermattei A, Urbinati C, Vendramin GG, Piotti A. Individual reproductive success in Norway spruce natural populations depends on growth rate, age and sensitivity to temperature. Heredity (Edinb) 2020; 124:685-698. [PMID: 32203247 PMCID: PMC7239854 DOI: 10.1038/s41437-020-0305-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
Quantifying the individual reproductive success and understanding its determinants is a central issue in evolutionary research for the major consequences that the transmission of genetic variation from parents to offspring has on the adaptive potential of populations. Here, we propose to distil the myriad of information embedded in tree-ring time series into a set of tree-ring-based phenotypic traits to be investigated as potential drivers of reproductive success in forest trees. By using a cross-disciplinary approach that combines parentage analysis and a thorough dendrophenotypic characterisation of putative parents, we assessed sex-specific relationships between such dendrophenotypic traits (i.e., age, growth rate and parameters describing sensitivity to climate and to extreme climatic events) and reproductive success in Norway spruce. We applied a full probability method for reconstructing parent-offspring relationships between 604 seedlings and 518 adult trees sampled within five populations from southern and central Europe. We found that individual female and male reproductive success was positively associated with tree growth rate and age. Female reproductive success was also positively influenced by the correlation between growth and the mean temperature of the previous vegetative season. Overall, our results showed that Norway spruce individuals with the highest fitness are those who are able to keep high-growth rates despite potential growth limitations caused by reproductive costs and climatic limiting conditions. Identifying such functional links between the individual ecophysiological behaviour and its evolutionary gain would increase our understanding on how natural selection shapes the genetic composition of forest tree populations over time.
Collapse
Affiliation(s)
- Camilla Avanzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy.
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN, Cambridge, UK
- Swiss Federal Research Institute, WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Czech Globe, Global Change Research Institute CAS and Masaryk University, Kotlárská 2, 61137, Brno, Czech Republic
| | - Mariaceleste Labriola
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Lars Opgenoorth
- Swiss Federal Research Institute, WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Ecology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN, Cambridge, UK
| | - Carlo Urbinati
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131, Ancona, Italy
| | - Giovanni Giuseppe Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy
| | - Andrea Piotti
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
10
|
Andrus RA, Harvey BJ, Hoffman A, Veblen TT. Reproductive maturity and cone abundance vary with tree size and stand basal area for two widely distributed conifers. Ecosphere 2020. [DOI: 10.1002/ecs2.3092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Robert A. Andrus
- Department of Geography University of Colorado Boulder Boulder Colorado 80309 USA
| | - Brian J. Harvey
- School of Environmental and Forest Sciences University of Washington Seattle Washington 98195 USA
| | - Ashley Hoffman
- Department of Geography University of Colorado Boulder Boulder Colorado 80309 USA
| | - Thomas T. Veblen
- Department of Geography University of Colorado Boulder Boulder Colorado 80309 USA
| |
Collapse
|
11
|
Pesendorfer MB, Bogdziewicz M, Szymkowiak J, Borowski Z, Kantorowicz W, Espelta JM, Fernández‐Martínez M. Investigating the relationship between climate, stand age, and temporal trends in masting behavior of European forest trees. GLOBAL CHANGE BIOLOGY 2020; 26:1654-1667. [PMID: 31950581 PMCID: PMC7079002 DOI: 10.1111/gcb.14945] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/24/2019] [Indexed: 06/01/2023]
Abstract
Masting-temporally variable seed production with high spatial synchrony-is a pervasive strategy in wind-pollinated trees that is hypothesized to be vulnerable to climate change due to its correlation with variability in abiotic conditions. Recent work suggests that aging may also have strong effects on seed production patterns of trees, but this potential confounding factor has not been considered in previous times series analysis of climate change effects. Using a 54 year dataset for seven dominant species in 17 forests across Poland, we used the proportion of seed-producing trees (PST) to contrast the predictions of the climate change and aging hypotheses in Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Quercus petraea, and Quercus robur. Our results show that in all species, PST increased over time and that this change correlated most strongly with stand age, while the standardized precipitation-evapotranspiration index, a measure of drought, contributed to temporal trends in PST of F. sylvatica and Q. robur. Temporal variability of PST also increased over time in all species except P. sylvestris, while trends in temporal autocorrelation and among-stand synchrony reflect species-specific masting strategies. Our results suggest a pivotal role of plant ontogeny in driving not only the extent but also variability and synchrony of reproduction in temperate forest trees. In a time of increasing forest regrowth in Europe, we therefore call for increased attention to demographic effects such as aging on plant reproductive behavior, particularly in studies examining global change effects using long-term time series data.
Collapse
Affiliation(s)
- Mario B. Pesendorfer
- Institute of Forest EcologyDepartment of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesViennaAustria
- Cornell Lab of OrnithologyIthacaNYUSA
- Smithsonian Migratory Bird CenterNational Zoological ParkWashingtonDCUSA
| | | | - Jakub Szymkowiak
- Population Ecology LabFaculty of BiologyAdam Mickiewicz UniversityPoznańPoland
| | | | - Władysław Kantorowicz
- Department of Silviculture and Genetics of Forest TreesForest Research InstituteRaszynPoland
| | | | | |
Collapse
|
12
|
Schupp EW, Zwolak R, Jones LR, Snell RS, Beckman NG, Aslan C, Cavazos BR, Effiom E, Fricke EC, Montaño-Centellas F, Poulsen J, Razafindratsima OH, Sandor ME, Shea K. Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AOB PLANTS 2019; 11:plz067. [PMID: 31857875 PMCID: PMC6914678 DOI: 10.1093/aobpla/plz067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing 'drivers of intraspecific variation in seed dispersal' into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal.
Collapse
Affiliation(s)
- Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Rebecca S Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Edu Effiom
- REDD & Biodiversity Unit, Cross River State Forestry Commission, Calabar, Nigeria
| | - Evan C Fricke
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA
| | | | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Onja H Razafindratsima
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | - Manette E Sandor
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
13
|
The Effect of Insect Defoliations and Seed Production on the Dynamics of Radial Growth Synchrony among Scots Pine Pinus sylvestris L. Provenances. FORESTS 2019. [DOI: 10.3390/f10100934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The intraspecific variation of climate–growth relationships observed on provenance trials results from among–provenance differences in phenotypic plasticity. Temporal variation in radial growth synchrony among provenances may be modified by adverse climatic/biotic conditions such as drought or insect defoliation. However, these factors can potentially diminish provenance–specific growth reactions and, consequently, prevent the identification of provenances with the highest adaptive potential. Thus, understanding the influence of major biotic conditions on provenance–specific climate–growth relationships seems to be important to anticipate climate change. To determine provenance–specific growth patterns in relation to climate conditions (drought), seed production (reproductive effort), and insect defoliation in a common garden of Scots pine (Pinus sylvestris L.), we applied dendroecological techniques to time–series of tree–ring widths and basal area increments. The long–term records of seed production and insect outbreaks from the local Scots pine stands were used to explain the potential effect of biotic factors on the temporal dynamics of radial growth synchrony. During a period of favorable growth conditions, Scots pine provenances showed a decline in inter–provenance synchronicity in growth patterns, while during years affected by severe soil water deficit and insect defoliation, they manifested high uniformity in growth dynamics. The long–term trend in growth synchrony among P. sylvestris provenances depend on both abiotic and biotic environmental factors. This gains significance following an introduction of the appropriate selection of tree provenances for climate–smart forestry.
Collapse
|
14
|
Lauder JD, Moran EV, Hart SC. Fight or flight? Potential tradeoffs between drought defense and reproduction in conifers. TREE PHYSIOLOGY 2019; 39:1071-1085. [PMID: 30924877 DOI: 10.1093/treephys/tpz031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/26/2018] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Plants frequently exhibit tradeoffs between reproduction and growth when resources are limited, and often change these allocation patterns in response to stress. Shorter-lived plants such as annuals tend to allocate relatively more resources toward reproduction when stressed, while longer-lived plants tend to invest more heavily in survival and stress defense. However, severe stress may affect the fitness implications of allocating relatively more resources to reproduction versus stress defense. Increased drought intensity and duration have led to widespread mortality events in coniferous forests. In this review, we ask how potential tradeoffs between reproduction and survival influence the likelihood of drought-induced mortality and species persistence. We propose that trees may exhibit what we call 'fight or flight' behaviors under stress. 'Fight' behaviors involve greater resource allocation toward survival (e.g., growth, drought-resistant xylem and pest defense). 'Flight' consists of higher relative allocation of resources to reproduction, potentially increasing both offspring production and mortality risk for the adult. We hypothesize that flight behaviors increase as drought stress escalates the likelihood of mortality in a given location.
Collapse
Affiliation(s)
- Jeffrey D Lauder
- Quantitative and Systems Biology Graduate Group, University of California, Merced, N. Lake Road, Merced, CA, USA
| | - Emily V Moran
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute, University of California, Merced, N. Lake Road, Merced, CA, USA
| | - Stephen C Hart
- Department of Life & Environmental Sciences and Sierra Nevada Research Institute, University of California, Merced, N. Lake Road, Merced, CA, USA
| |
Collapse
|
15
|
Hacket-Pain AJ, Ascoli D, Vacchiano G, Biondi F, Cavin L, Conedera M, Drobyshev I, Liñán ID, Friend AD, Grabner M, Hartl C, Kreyling J, Lebourgeois F, Levanič T, Menzel A, van der Maaten E, van der Maaten-Theunissen M, Muffler L, Motta R, Roibu CC, Popa I, Scharnweber T, Weigel R, Wilmking M, Zang CS. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol Lett 2018; 21:1833-1844. [PMID: 30230201 PMCID: PMC6446945 DOI: 10.1111/ele.13158] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 01/17/2023]
Abstract
Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.
Collapse
Affiliation(s)
- Andrew J Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Davide Ascoli
- Dipartimento di Agraria, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Giorgio Vacchiano
- DISAA, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Franco Biondi
- DendroLab, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, 89509, USA
| | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Marco Conedera
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, a Ramél 18, CH-6953, Cadenazzo, Switzerland
| | - Igor Drobyshev
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, 230 53, Alnarp, Sweden.,Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, 445 boulevard de l' Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Isabel Dorado Liñán
- Forest Research Centre, (INIA-CIFOR), Ctra. La Coruñna km. 7.5, 28040, Madrid, Spain
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Cambridge, UK
| | - Michael Grabner
- University of Natural Resources and Life Science - BOKU, Vienna, Austria
| | - Claudia Hartl
- Department of Geography, Johannes Gutenberg-University, Johann-Joachim-Becher-Weg 21, 55128, Mainz, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - François Lebourgeois
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, 14 rue Girardet, 54000, Nancy, France
| | - Tom Levanič
- Slovenian Forestry Institute, Večna pot 2, SI-1000, Ljubljana, Slovenia
| | - Annette Menzel
- TUM School of Life Sciences, Professorship of Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2 a, 85748, Garching, Germany
| | - Ernst van der Maaten
- Forest Growth and Woody Biomass Production, TU Dresden, Pienner Str. 8, 01737, Tharandt, Germany
| | | | - Lena Muffler
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Renzo Motta
- DISAFA, University of Turin, Largo Braccini 2, 10095, Grugliasco (TO), Italy
| | | | - Ionel Popa
- National Research and Development Institute in Forestry, Marin Drăcea, Calea Bucovinei 73bis, Campulung Moldovenesc, Romania
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Robert Weigel
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489, Greifswald, Germany
| | - Christian S Zang
- TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| |
Collapse
|