1
|
Myrstener M, Greenberg LA, Lidberg W, Kuglerová L. Riparian buffers mitigate downstream effects of clear-cutting on instream metabolic rates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124740. [PMID: 40049015 DOI: 10.1016/j.jenvman.2025.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/30/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Clear-cutting of forests with little or no regard for riparian buffers alters the local abiotic habitat of streams within and downstream of clear-cuts by increasing temperature, incident light, suspended sediments and resource inputs such as carbon and inorganic nutrients. It is also well documented that streams with narrow or non-existent riparian buffers affect local stream ecosystem processes. Here, we ask whether ecosystem processes can also be affected downstream of clear-cuts. We tested this in nine headwater streams that run through recently harvested clear-cuts (1-6 years ago) with varying buffer widths (<10 and ≥ 15 m) in northern Sweden. We compared biofilm (periphytic algal and bacterial mats) and whole stream metabolic rates in stream reaches situated upstream of the clear-cuts, in the clear-cuts and downstream of the clear-cuts. We found that biofilm gross primary productivity (GPP) in streams with thin buffers (<10 m) increased, on average, by 54 % downstream of clear-cuts in July, but that the net effect on the whole ecosystem was still a decrease in ecosystem productivity due to high respiration rates. In September, the situation was different as there was a 50 % decrease in biofilm GPP downstream of clear-cuts, and the net effect was again a decrease in ecosystem productivity. Wide buffer zones (>15 m) could mitigate these longitudinal changes for both biofilm and whole stream metabolism, except in one stream that was dominated by fine sediments. Importantly, the magnitude of downstream propagation in biofilm GPP was related to the magnitude of responses in the clear-cut, which in turn was driven by nutrient concentrations. To upscale the potential magnitude of clear-cutting in Sweden, we estimated that nearly 6 % (or 57,400 km) of the total forested stream length is situated within and 100 m downstream of clear-cuts that were harvested 1-6 years ago. Based on this study, we conclude that clear-cut effects on stream ecosystem processes are not only local, but can also be propagated to downstream recipient waters if riparian buffer width in the clear-cut is less than 15 m.
Collapse
Affiliation(s)
- Maria Myrstener
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Larry A Greenberg
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | - William Lidberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lenka Kuglerová
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
2
|
Roon DA, Bellmore JR, Benjamin JR, Robinne FN, Flitcroft RL, Compton JE, Ebersole JL, Dunham JB, Bladon KD. Linking Fire, Food Webs, and Fish in Stream Ecosystems. Ecosystems 2025; 28:1. [PMID: 39759976 PMCID: PMC11698785 DOI: 10.1007/s10021-024-00955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/06/2024] [Indexed: 01/07/2025]
Abstract
As wildfire regimes shift, resource managers are concerned about potential threats to aquatic ecosystems and the species they support, especially fishes. However, predicting fish responses can be challenging because wildfires affect aquatic ecosystems via multiple pathways. Application of whole-ecosystem approaches, such as food web modeling, can act as heuristic tools that offer valuable insights that account for these different mechanisms. We applied a dynamic food web simulation model that mechanistically linked stream trophic dynamics to the myriad effects that wildfires can have on aquatic and riparian ecosystems at a local stream reach-scale. We simulated how wildfires of different severity may influence short- (months to years) and long-term (years to decades) periphyton, aquatic invertebrate, and fish biomass dynamics in forested headwater streams of the western Pacific Northwest (USA). In many cases, wildfire increased modeled periphyton, invertebrate, and fish biomass over both short- and long-time periods. However, modeled responses varied extensively in their direction (that is, positive or negative), magnitude, and duration depending on fire severity, time since fire, and trophic level. The shapes of these response trajectories were especially sensitive to predicted wildfire effects on water temperature, canopy cover, riparian shading, and instream turbidity. Model simulations suggest a single fire could result in a wide range of aquatic ecosystem responses, especially in watersheds with mixed burn severity. Our analysis highlights the utility of whole-ecosystem approaches, like food web modeling, as heuristic tools for improving our understanding of the mechanisms linking fire, food webs, and fish and for identifying contexts where fires could have deleterious impacts on fishes. Supplementary Information The online version contains supplementary material available at 10.1007/s10021-024-00955-4.
Collapse
Affiliation(s)
- David A. Roon
- Oregon State University, Department of Forest Ecosystems & Society, Corvallis, Oregon USA
| | - J. Ryan Bellmore
- USDA Forest Service, Pacific Northwest Research Station, Juneau, Alaska USA
| | - Joseph R. Benjamin
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, Idaho USA
| | - François-Nicolas Robinne
- Pacific Salmon Foundation, Salmon Watersheds Program, Vancouver, British Columbia Canada
- Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, Ontario Canada
| | | | - Jana E. Compton
- US EPA, Office of Research and Development, Corvallis, Oregon USA
| | | | - Jason B. Dunham
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon USA
| | - Kevin D. Bladon
- Oregon State University, Department of Forest Ecosystems & Society, Corvallis, Oregon USA
| |
Collapse
|
3
|
McCaig ML, Kidd KA, Smenderovac EE, Perrotta BG, Emilson CE, Stastny M, Venier L, Emilson EJS. Response of stream habitat and microbiomes to spruce budworm defoliation: New considerations for outbreak management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3020. [PMID: 39155464 DOI: 10.1002/eap.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 08/20/2024]
Abstract
Defoliation by eastern spruce budworm is one of the most important natural disturbances in Canadian boreal and hemi-boreal forests with annual area affected surpassing that of fire and harvest combined, and its impacts are projected to increase in frequency, severity, and range under future climate scenarios. Deciding on an active management strategy to control outbreaks and minimize broader economic, ecological, and social impacts is becoming increasingly important. These strategies differ in the degree to which defoliation is suppressed, but little is known about the downstream consequences of defoliation and, thus, the implications of management. Given the disproportionate role of headwater streams and their microbiomes on net riverine productivity across forested landscapes, we investigated the effects of defoliation by spruce budworm on headwater stream habitat and microbiome structure and function to inform management decisions. We experimentally manipulated a gradient of defoliation among 12 watersheds during a spruce budworm outbreak in the Gaspésie Peninsula, Québec, Canada. From May through October of 2019-2021, stream habitat (flow rates, dissolved organic matter [DOM], water chemistry, and nutrients), algal biomass, and water temperatures were assessed. Bacterial and fungal biofilm communities were examined by incubating six leaf packs for five weeks (mid-August to late September) in one stream reach per watershed. Microbiome community structure was determined using metabarcoding of 16S and ITS rRNA genes, and community functions were examined using extracellular enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. We found that cumulative defoliation was correlated with increased streamflow rates and temperatures, and more aromatic DOM (measured as specific ultraviolet absorbance at 254 nm), but was not correlated to nutrient concentrations. Cumulative defoliation was also associated with altered microbial community composition, an increase in carbohydrate biosynthesis, and a reduction in aromatic compound degradation, suggesting that microbes are shifting to the preferential use of simple carbohydrates rather than more complex aromatic compounds. These results demonstrate that high levels of defoliation can affect headwater stream microbiomes to the point of altering stream ecosystem productivity and carbon cycling potential, highlighting the importance of incorporating broader ecological processes into spruce budworm management decisions.
Collapse
Affiliation(s)
- Madison L McCaig
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Emily E Smenderovac
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | | | - Caroline E Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Michael Stastny
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick, Canada
| | - Lisa Venier
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
4
|
Zhang K, Tan X, Zhang Q. Nutritional Quality of Basal Resource in Stream Food Webs Increased with Light Reduction-Implications for Riparian Revegetation. MICROBIAL ECOLOGY 2024; 87:114. [PMID: 39259373 PMCID: PMC11390794 DOI: 10.1007/s00248-024-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Biofilms are considered a basal resource with high nutritional quality in stream food webs, as periphytic algae are abundant of polyunsaturated fatty acids (PUFAs). PUFAs are essential for growth and reproduction of consumers who cannot or have very limited capacity to biosynthesize. Yet, how the nutritional quality based on PUFA of basal food sources changes with light intensity remains unclear. We conducted a manipulative experiment in mesocosms to explore the response and mechanisms of nutritional quality to shading, simulating riparian restoration. We found a significant increase in PUFA% (including arachidonic acid, ARA) under shading conditions. The increased PUFA is caused by the algal community succession from Cyanobacteria and Chlorophyta to Bacillariophyta which is abundant of PUFA (especially eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA). On the other hand, shading increased PUFA via upregulating enzymes such as Δ12 desaturase (FAD2, EC:1.14.19.6) and 3-ketoacyl-CoA synthase (KCS, EC:2.3.1.199) in the biosynthesis of unsaturated fatty acid elongation pathways. Our findings imply that riparian reforestation by decreasing light intensity increases the nutritional quality of basal resources in streams, which may enhance transfer of good quality carbon to consumers in higher trophic levels through bottom-up effects.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P R China.
| |
Collapse
|
5
|
Martens KD, Devine WD. Pool Formation and The Role Of Instream Wood In Small Streams In Predominantly Second-growth Forests. ENVIRONMENTAL MANAGEMENT 2023; 71:1011-1023. [PMID: 36564636 DOI: 10.1007/s00267-022-01771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Extensive and intensive forest harvesting during the 20th century often had, and continues to have, negative impacts on stream structure and ultimately fish. Loss of instream wood and pools has been identified as a pathway by which riparian forest management can negatively impacts salmonids. Passive riparian restoration (allowing forests and streams to recover through natural processes) through the use of riparian buffers when conducting forest harvests has often been employed to promote stream habitat recovery. In this study, we evaluate the effects of 25 years of passive restoration on instream wood and pool recovery in 74 reaches in small streams (1st through 3rd order) across three channel types (pool-riffle, step-pool, and cascade) in a predominantly second-growth forest. Gradient and stream size were the most important variables for determining pool density, while stream size was the most important variable for determining pool depth. Instream wood formed 39% of pools in pool-riffle, 30% of pools in step-pool and 25% of pools in cascade channels types. Instream wood volume had a significant (R2 = 0.261, P ≤ 0.001) positive relationship with pool volume in wood-formed pools. Dimensions of individual wood pieces were associated with their likelihood of pool formation: for each additional 1 meter length within the bankfull channel the odds of forming a pool increased by 25.6%, and for each additional centimeter in diameter the odds of pool formation increased by 2.0%. When compared with studies conducted in both second- and old-growth forests, we concluded that streams associated with second-growth forests hadve both reduced densities and sizes of instream wood and pools. Young forests are likely continuing to negatively impact stream habitat and fish populations. Because riparian zones in many forests are now dominated by relatively young forest stands, and given the timeline for recovery using passive restoration alone (e.g., 100 s of years in Pacific Coastal forests), active restoration could be explored to accelerate instream wood and pool recovery.
Collapse
Affiliation(s)
- Kyle D Martens
- Washington State Department of Natural Resources, 1111 Washington St SE, Olympia, WA, 98504, USA.
| | - Warren D Devine
- Washington State Department of Natural Resources, 1111 Washington St SE, Olympia, WA, 98504, USA
| |
Collapse
|
6
|
Larson CE, Engelken P, McCullough DG, Eric Benbow M. Emerald ash borer invasion of riparian forests alters organic matter and bacterial subsidies to south Michigan headwater streams. CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES. JOURNAL CANADIEN DES SCIENCES HALIEUTIQUES ET AQUATIQUES 2023; 80:298-312. [PMID: 37942173 PMCID: PMC10631550 DOI: 10.1139/cjfas-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Emerald ash borer (EAB) has killed millions of ash trees in the United States and Canada, yet impacts on terrestrial-aquatic linkages are largely unknown. Ash tree death along streams creates canopy gaps, increasing light to riparian plants and potentially affecting organic matter subsidies. Six EAB-related canopy gaps along streams across a gradient of timing of EAB invasion in Michigan were characterized for coarse woody material (CWM), terrestrial and aquatic leaf litter and their associated bacterial communities, and macroinvertebrates upstream, downstream, and at the center of the gap. Stream sites downstream of EAB-related canopy gaps had significantly lower dissolved oxygen and macroinvertebrate diversity than sites upstream and at the gaps. Yet there was no difference in CWM or aquatic leaf litter, likely due to downstream movement of organic matter from upstream riparian sources. Low abundance bacterial amplicon sequence variants unique to gap or forest were detected in leaves and leaf litter, suggesting that EAB-related canopy gaps altered leaf-associated bacterial communities. Overall, EAB invasion indirectly impacted some variables, while organic matter dynamics were resistant to change.
Collapse
Affiliation(s)
- Courtney E. Larson
- Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, 103 Giltner Hall, 293 Farm Lane, Room 103, East Lansing, MI 48824, USA
| | - Patrick Engelken
- Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA
| | - Deborah G. McCullough
- Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, Natural Resources Building, 480 Wilson Road, Room 126, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
| | - M. Eric Benbow
- Department of Entomology, Michigan State University, Natural Science Building. 288, Farm Lane Room 243, East Lansing, MI, 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, 103 Giltner Hall, 293 Farm Lane, Room 103, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
- Department of Osteopathic Medical Specialties, Michigan State University, 965 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Roon DA, Dunham JB, Bellmore JR, Olson DH, Harvey BC. Influence of riparian thinning on trophic pathways supporting stream food webs in forested watersheds. Ecosphere 2022. [DOI: 10.1002/ecs2.4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- David A. Roon
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
- Department of Forest Engineering, Resources and Management Oregon State University Corvallis Oregon USA
| | - Jason B. Dunham
- Forest and Rangeland Ecosystem Science Center US Geological Survey Corvallis Oregon USA
| | - J. Ryan Bellmore
- Pacific Northwest Research Station USDA Forest Service Juneau Alaska USA
| | - Deanna H. Olson
- Pacific Northwest Research Station USDA Forest Service Corvallis Oregon USA
| | - Bret C. Harvey
- Pacific Southwest Research Station USDA Forest Service Arcata California USA
| |
Collapse
|
8
|
Campbell JL, Driscoll CT, Jones JA, Boose ER, Dugan HA, Groffman PM, Jackson CR, Jones JB, Juday GP, Lottig NR, Penaluna BE, Ruess RW, Suding K, Thompson JR, Zimmerman JK. Forest and Freshwater Ecosystem Responses to Climate Change and Variability at US LTER Sites. Bioscience 2022. [DOI: 10.1093/biosci/biab124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems.
Collapse
Affiliation(s)
| | | | - Julia A Jones
- Oregon State University , Corvallis, Oregon, United States
| | - Emery R Boose
- Harvard University , Petersham, Massachusetts, United States
| | - Hilary A Dugan
- University of Wisconsin , Madison, Wisconsin, United States
| | - Peter M Groffman
- City University of New York, and with the Cary Institute of Ecosystem Studies , Millbrook, New York, United States
| | | | - Jeremy B Jones
- University of Alaska Fairbanks , Fairbanks, Alaska, United States
| | - Glenn P Juday
- University of Alaska Fairbanks , Fairbanks, Alaska, United States
| | - Noah R Lottig
- University of Wisconsin's Trout Lake Station , Boulder Junction, Wisconsin, United States
| | | | - Roger W Ruess
- University of Alaska Fairbanks , Fairbanks, Alaska, United States
| | | | | | - Jess K Zimmerman
- University of Puerto Rico-Rio Piedras , San Juan, Puerto Rico, United States
| |
Collapse
|
9
|
de Paula FR, Ruschel AR, Felizzola JF, Frauendorf TC, de Barros Ferraz SF, Richardson JS. Seizing resilience windows to foster passive recovery in the forest-water interface in Amazonian lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154425. [PMID: 35276136 DOI: 10.1016/j.scitotenv.2022.154425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Forest regeneration has increased in many tropical abandoned lands and current restoration commitments in this region aim to restore over 1,400,000 km2 of degraded land by 2030. Although regenerating forests recover biomass, biodiversity, and processes with time, the recovery trajectories may be uncertain due to past disturbances. Currently, there is a lack of knowledge to sustain the effectiveness of passive regeneration for the recovery of riparian forests and the adjacent waterbodies in the tropics, which may compromise the outcomes of ongoing and future tropical riparian restoration programs. We evaluated the drivers of riparian forest structural recovery and how this relates to stream conditions in 12 abandoned pasturelands in eastern Brazilian Amazonia. These pasturelands range across regeneration age (pasture (PA) - 0 to 4 years; young regeneration (YR) - 8 to 12 years; old regeneration (OR) - 18 to 22 years) and years of past land-use (PA - 23.25 average years of past land-use, YR - 18.25, OR - 7). We compared the conditions of these sites to 4 reference sites with conserved forests (REF, >100 years), where there was no recorded pasture use in the past. Short-term responses of forests and streams to passive regeneration indicated high ecosystem resilience after low to intermediate past land-use intensity, reflected in the improvement of stream ecosystems. Such high resilience is possibly attributable to low- to intermediate-intensity pasture-related disturbances, remaining forest matrix, and residual structures (e.g. roots, sprouts, and in-stream wood) observed in the area. Our results suggest a recovery by 12 to 20 years for riparian forests of this region. However, areas degraded by intensive land-use apparently showed delayed recovery. We conclude that seizing resilience windows (defined here as the period when ecosystems retain high potential resilience) is essential to foster passive recovery of riparian forests and streams more cost-effectively in the tropics.
Collapse
Affiliation(s)
- Felipe Rossetti de Paula
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil; Department of Forest & Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T1Z4, Canada; Embrapa Amazônia Oriental, Brazilian Agricultural Research Corporation, Trav. Doutor Enéas Pinheiro, s/n, CP 48, Belém, PA 66095-100, Brazil.
| | - Ademir Roberto Ruschel
- Embrapa Amazônia Oriental, Brazilian Agricultural Research Corporation, Trav. Doutor Enéas Pinheiro, s/n, CP 48, Belém, PA 66095-100, Brazil.
| | - Juliana Feitosa Felizzola
- Embrapa Amazônia Oriental, Brazilian Agricultural Research Corporation, Trav. Doutor Enéas Pinheiro, s/n, CP 48, Belém, PA 66095-100, Brazil.
| | - Therese C Frauendorf
- Department of Biology, University of Victoria, PO Box 3020, Station CSC, Victoria, BC V8W3N5, Canada; Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States.
| | - Silvio Frosini de Barros Ferraz
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, CP 9, Piracicaba, SP 13418-900, Brazil.
| | - John S Richardson
- Department of Forest & Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
10
|
Biophysical Heterogeneity, Hydrologic Connectivity, and Productivity of a Montane Floodplain Forest. Ecosystems 2022. [DOI: 10.1007/s10021-022-00769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Machado-Silva F, Neres-Lima V, Oliveira AF, Moulton TP. Forest cover controls the nitrogen and carbon stable isotopes of rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152784. [PMID: 34995604 DOI: 10.1016/j.scitotenv.2021.152784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Deforestation affects the ecological integrity of rivers and streams, threatening biodiversity and ecosystem services worldwide. However, few studies have strictly analyzed the effect of the functional responses of tropical streams to changes in forest cover since deforested basins are usually also influenced by confounding anthropogenic inputs. Here we address tropical streams and test whether the stable isotopic ratios of nitrogen (N, δ15N) and carbon (C, δ13C) and the ratio of C:N of ecosystem components vary along a forest cover gradient. We also assess the ecological integrity of streams by in situ measurements using physical features commonly used in stream quality assessments. The results showed that the δ15N of most aquatic components, δ13C of particulate matter and omnivorous fish, and C:N of particulate matter and algae vary significantly with forest cover, indicating the role of terrestrial vegetation in regulating stream biogeochemistry. The dual stable isotope analysis satisfactorily indicated the changes in terrestrial-aquatic connections regarding both N and C cycles, thus showing the role of algae and particulate matter in influencing stream fauna through food web transfers. Our results support the use of stable isotopes to monitor watershed deforestation and highlight the need for reassessment of the effects of anthropogenic inputs on δ15N increase in globally distributed inland waters since the loss of forest is a significant cause in itself.
Collapse
Affiliation(s)
- Fausto Machado-Silva
- Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil; Program in Geosciences - Environmental Geochemistry, Fluminense Federal University, 24020-141 Niteroi, Brazil.
| | - Vinicius Neres-Lima
- Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil; Departmento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| | | | - Timothy Peter Moulton
- Programa de Pós-Graduação em Ecologia e Evolução, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil; Departmento de Ecologia, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Riparian Buffers as a Critical Landscape Feature: Insights for Riverscape Conservation and Policy Renovations. DIVERSITY 2022. [DOI: 10.3390/d14030172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Riparian zones are critical for functional integrity of riverscapes and conservation of riverscape biodiversity. The synergism of intermediate flood-induced disturbances, moist microclimates, constant nutrient influx, high productivity, and resource heterogeneity make riparian zones disproportionately rich in biodiversity. Riparian vegetation intercepts surface-runoff, filters pollutants, and supplies woody debris as well as coarse particulate organic matter (e.g., leaf litter) to the stream channel. Riparian zones provide critical habitat and climatic refugia for wildlife. Numerous conservation applications have been implemented for riparian-buffer conservation. Although fixed-width buffers have been widely applied as a conservation measure, the effectiveness of these fixed buffer widths is debatable. As an alternative to fixed-width buffers, we suggest adoption of variable buffer widths, which include multiple tiers that vary in habitat structure and ecological function, with each tier subjected to variable management interventions and land-use restrictions. The riparian-buffer design we proposed can be delineated throughout the watershed, harmonizes with the riverscape concept, thus, a prudent approach to preserve biodiversity and ecosystem functions at variable spatial extents. We posit remodeling existing conservation policies to include riparian buffers into a broader conservation framework as a keystone structure of the riverscape. Watershed-scale riparian conservation is compatible with landscape-scale conservation of fluvial systems, freshwater protected-area networks, and aligns with enhancing environmental resilience to global change. Sustainable multiple-use strategies can be retrofitted into watershed-scale buffer reservations and may harmonize socio-economic goals with those of biodiversity conservation.
Collapse
|
13
|
Evaluation of sunlight penetration through riparian forest and its effects on stream biota. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Arif M, Tahir M, Jie Z, Changxiao L. Impacts of riparian width and stream channel width on ecological networks in main waterways and tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148457. [PMID: 34153764 DOI: 10.1016/j.scitotenv.2021.148457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 05/20/2023]
Abstract
Riparian buffer width and stream channel width have different impacts on ecological networks (e.g., plant cover, regeneration, exotics, erosion, habitat, and stressors) and provide various ecosystem services. The protection of riparian zones of increasing widths for higher-order streams and connected tributaries alongside mega-reservoirs and around dams is of great global significance. However, it remains unclear which protection strategies are most effective for such zones. By applying a rapid field-based approach with 326 transects on an inundated area of 58,000 km2 within the Three Gorges Dam Reservoir (TGDR) in China, we found that riparian buffer areas were influenced differently by broad-ranging widths. The riparian buffer width of 101.84 ± 72.64 m (mean ± standard deviation) had the greatest impact on the main waterway, whereas the stream channel width of 99.87 ± 97.10 m was most influential in tributaries. The correlation coefficient strengths among ecological and stress parameters (independently) were relatively greater in the main waterway riparian zones; the highest value was r = 0.930 using Pearson correlation (p < 0.05). In contrast, stress parameters revealed substantial and strong relationships with ecological parameters in tributaries, with the highest value being r = 0.551. Riparian width had the strongest influence on buffer vegetation scales, high-impact exotics, and bank stability. In comparison, channel width had the greatest effect on tree roots, dominant tree regeneration, and agricultural farming. These parameters showed distinctive responses in the shapes of indexing in higher-order streams and connected tributaries. These observations confirm the urgent need for research on regional-based extended riparian areas managed by the same administration strategies. Revised guidelines are needed to protect massive dam and reservoir ecosystems from further deterioration.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China; Punjab Forest Department, Government of Punjab, Lahore 54000, Pakistan.
| | | | - Zheng Jie
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Li Changxiao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Aquatic Biological Diversity Responses to Flood Disturbance and Forest Management in Small, Forested Watersheds. WATER 2021. [DOI: 10.3390/w13192793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined riparian system responses to an extreme rainfall event on 1–4 December 2007, in eleven small watersheds (mean area—13.2 km2) from 2008–2016 at debris flow, high flood, and low flood reaches (all extended overbank flows). Macroinvertebrate responses followed expected outcomes after extreme disturbance including increasing chironomids and other multi-voltine species. A core assemblage of twenty abundant and common species-maintained populations even after debris flow (likely by recolonizing quickly) with total richness during project of 253 including 183 rare species (<0.01 total abundance) supporting an annual turnover of species from 22 to 33%. Primary disturbance changes to habitat were declines in shade and in-channel wood at all reaches, more strongly at debris flow reaches. Macroinvertebrate communities across disturbance intensities became increasingly similar after the storm. Combined effects of the flood reducing channel complexity and previous logging decreasing in-channel wood recruitment from riparian systems, limits habitat complexity. Until this feature of forested watershed streams returns, there appears to be a ceiling on reach scale aquatic biological diversity.
Collapse
|
16
|
Pace G, Gutiérrez-Cánovas C, Henriques R, Boeing F, Cássio F, Pascoal C. Remote sensing depicts riparian vegetation responses to water stress in a humid Atlantic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145526. [PMID: 33581545 DOI: 10.1016/j.scitotenv.2021.145526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Riparian areas in the Cantabrian Atlantic ecoregion (northwest Portugal) play a key role in soil formation and conservation, regulation of nutrient and water cycle, creation of landscape aesthetic value and the preservation of biodiversity. The maintenance of their ecological integrity is crucial given the ever increase in multiple anthropogenic (water demand and agriculture) and climatic pressures (droughts and extreme events). We developed a transferable remote sensing approach, taking advantage of the latest freely available technologies (Sentinel-2 and Copernicus Land products), to detect intra-annual and inter-annual changes in riparian vegetation productivity at the river basin scale related to water stress. This study has used the normalized difference vegetation index (NDVI) to investigate riparian vegetation productivity dynamics on three different vegetation types (coniferous, broadleaved and grassland) over the past 5 years (2015-2019). Our results indicated that inter-annual seasonality differed between drier (2017) and wetter (2016) years. We found that intra-annual dynamics of NDVI were influenced by the longitudinal river zonation. Our model ranked first (r2m = 0.73) showed that the productivity of riparian vegetation during the dry season was positively influenced by annual rainfall and by the type of riparian vegetation. The emergent long lags between climatic variation and riparian plant productivity provides opportunities to forecast early warnings of climatically-driven impacts. In addition, the different average productivity levels among vegetation types should be considered when assessing climatic impacts on riparian vegetation. Future applications of Sentinel 2 products could seek to distinguish riparian areas that are likely to be more vulnerable to changes in the annual water balance from those that are more resistant under longer-term changes in climate.
Collapse
Affiliation(s)
- G Pace
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - C Gutiérrez-Cánovas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - R Henriques
- Department of Earth Sciences, University of Minho, Institute of Earth Sciences (ICT), Campus of Gualtar, 4710-057 Braga, Portugal
| | - F Boeing
- Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - F Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - C Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
17
|
Roon DA, Dunham JB, Groom JD. Shade, light, and stream temperature responses to riparian thinning in second-growth redwood forests of northern California. PLoS One 2021; 16:e0246822. [PMID: 33592001 PMCID: PMC7886199 DOI: 10.1371/journal.pone.0246822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Resource managers in the Pacific Northwest (USA) actively thin second-growth forests to accelerate the development of late-successional conditions and seek to expand these restoration thinning treatments into riparian zones. Riparian forest thinning, however, may impact stream temperatures-a key water quality parameter often regulated to protect stream habitat and aquatic organisms. To better understand the effects of riparian thinning on shade, light, and stream temperature, we employed a manipulative field experiment following a replicated Before-After-Control-Impact (BACI) design in three watersheds in the redwood forests of northern California, USA. Thinning treatments were intended to reduce canopy closure or basal area within the riparian zone by up to 50% on both sides of the stream channel along a 100-200 m stream reach. We found that responses to thinning ranged widely depending on the intensity of thinning treatments. In the watersheds with more intensive treatments, thinning reduced shade, increased light, and altered stream thermal regimes in thinned and downstream reaches. Thinning shifted thermal regimes by increasing maximum temperatures, thermal variability, and the frequency and duration of elevated temperatures. These thermal responses occurred primarily during summer but also extended into spring and fall. Longitudinal profiles indicated that increases in temperature associated with thinning frequently persisted downstream, but downstream effects depended on the magnitude of upstream temperature increases. Model selection analyses indicated that local changes in shade as well as upstream thermal conditions and proximity to upstream treatments explained variation in stream temperature responses to thinning. In contrast, in the study watershed with less intensive thinning, smaller changes in shade and light resulted in minimal stream temperature responses. Collectively, our data shed new light on the stream thermal responses to riparian thinning. These results provide relevant information for managers considering thinning as a viable restoration strategy for second-growth riparian forests.
Collapse
Affiliation(s)
- David A Roon
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason B Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, United States of America
| | - Jeremiah D Groom
- Groom Analytics, LLC, Corvallis, Oregon, United States of America
| |
Collapse
|
18
|
Dyste JM, Valett HM. Assessing stream channel restoration: the phased recovery framework. Restor Ecol 2019. [DOI: 10.1111/rec.12926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacob M. Dyste
- Division of Biological Sciences The University of Montana Missoula MT 59812 U.S.A
| | - H. Maurice Valett
- Division of Biological Sciences The University of Montana Missoula MT 59812 U.S.A
| |
Collapse
|
19
|
Turunen J, Markkula J, Rajakallio M, Aroviita J. Riparian forests mitigate harmful ecological effects of agricultural diffuse pollution in medium-sized streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:495-503. [PMID: 30176461 DOI: 10.1016/j.scitotenv.2018.08.427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Agricultural pollution persists as a significant environmental problem for stream ecosystems. Uncultivated buffer zones or reforestation of riparian zones are advocated as a key management option that could compensate the harmful land use impacts. The effectiveness of riparian forests to protect ecological conditions of agricultural streams is yet inconclusive, particularly regarding the benefit of riparian buffers in streams suffering from uninterrupted agricultural diffuse pollution. We studied the effects of riparian land use on periphyton production and diatom, macrophyte and benthic macroinvertebrate communities in medium-sized agricultural streams by a) comparing 18 open field and forested agricultural stream reach pairs that only differed by the extent of riparian forest cover, and b) comparing the agricultural reaches to 15 near-natural streams. We found that periphyton abundance was higher in open reaches than in the forested reaches, but diatom community structure did not respond to the riparian forest cover. Macrophyte and macroinvertebrate communities were clearly affected by the riparian forest cover. Graminoids dominated in open reaches, whereas bryophytes were more abundant in forested reaches. Shredding invertebrates were more abundant in forested reaches compared to open reaches, but grazers did not differ between the reach types. Macrophyte trait composition and macroinvertebrate community difference between the reaches were positively related to the difference in riparian forest cover. The community structure of all three groups in the agricultural streams differed distinctly from the near-natural streams. However, only macrophyte communities in forested agricultural reaches showed resemblance to near-natural composition. Our results suggest that riparian forests provide ecological benefits that can partly compensate the impacts of agricultural diffuse pollution. However, community structure of forested agricultural reaches did not match the near-natural composition in any organism group indicating that catchment-scale management and mitigation of diffuse pollution need to be still advocated to achieve ecological goals in stream management and restoration.
Collapse
Affiliation(s)
- Jarno Turunen
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, 90014 Oulu, Finland.
| | - Janne Markkula
- Department of Ecology and Genetics, University of Oulu, P.O. Box 8000, 90014, Finland.
| | - Maria Rajakallio
- Department of Ecology and Genetics, University of Oulu, P.O. Box 8000, 90014, Finland.
| | - Jukka Aroviita
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, 90014 Oulu, Finland.
| |
Collapse
|
20
|
Halvorson HM, Barry JR, Lodato MB, Findlay RH, Francoeur SN, Kuehn KA. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol 2019; 33:188-201. [PMID: 31673197 PMCID: PMC6822982 DOI: 10.1111/1365-2435.13235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/24/2018] [Indexed: 12/01/2022]
Abstract
1. Well-documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested. 2. We tested algal-induced priming during decomposition of two leaf species of contrasting recalcitrance, Liriodendron tulipifera and Quercus nigra, in experimental streams under light or dark conditions. We measured litter-associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days. 3. Light increased algal biomass and production rates and increased bacterial abundance 141-733% and fungal production rates 20-157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short-term. 4. Algal-stimulated fungal production rates on both leaf species were not coupled to long-term increases in fungal biomass accrual or litter decomposition rates, which were 154-157% and 164-455% greater in the dark, respectively. The similar patterns on fast- vs. slow-decomposing L. tulipifera and Q. nigra, respectively, indicated that substrate recalcitrance may not mediate priming strength or direction. 5. In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested toward greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal-induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well-lit aquatic habitats.
Collapse
Affiliation(s)
- Halvor M. Halvorson
- University of Southern Mississippi, School of Biological, Earth, and Environmental Sciences, Hattiesburg, MS, USA 39406
| | - Jacob R. Barry
- University of Southern Mississippi, School of Biological, Earth, and Environmental Sciences, Hattiesburg, MS, USA 39406
| | - Matthew B. Lodato
- University of Southern Mississippi, School of Biological, Earth, and Environmental Sciences, Hattiesburg, MS, USA 39406
| | - Robert H. Findlay
- University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, USA 35487
| | - Steven N. Francoeur
- Eastern Michigan University, Department of Biology, Ypsilanti, MI, USA 48197
| | - Kevin A. Kuehn
- University of Southern Mississippi, School of Biological, Earth, and Environmental Sciences, Hattiesburg, MS, USA 39406
| |
Collapse
|
21
|
Majdi N, Traunspurger W. Leaf fall affects the isotopic niches of meiofauna and macrofauna in a stream food web. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Bechtold HA, Rosi EJ, Warren DR, Keeton WS. Forest Age Influences In-stream Ecosystem Processes in Northeastern US. Ecosystems 2016. [DOI: 10.1007/s10021-016-0093-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|