1
|
Vasantha Raman N, Gebreyohanes Belay BM, South J, Botha TL, Pegg J, Khosa D, Mofu L, Walsh G, Jordaan MS, Koelmans AA, Teurlincx S, Helmsing NR, de Jong N, van Donk E, Lürling M, Wepener V, Fernandes TV, de Senerpont Domis LN. Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124439. [PMID: 38942279 DOI: 10.1016/j.envpol.2024.124439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Emerging pollutants, such as pharmaceuticals and microplastics have become a pressing concern due to their widespread presence and potential impacts on ecological systems. To assess the ecosystem-level effects of these pollutants within a multi-stressor context, we simulated real-world conditions by exposing a near-natural multi-trophic aquatic food web to a gradient of environmentally relevant concentrations of fluoxetine and microplastics in large mesocosms over a period of more than three months. We measured the biomass and abundance of different trophic groups, as well as ecological functions such as nutrient availability and decomposition rate. To explore the mechanisms underlying potential community and ecosystem-level effects, we also performed behavioral assays focusing on locomotion parameters as a response variable in three species: Daphnia magna (zooplankton prey), Chaoborus flavicans larvae (invertebrate pelagic predator of zooplankton) and Asellus aquaticus (benthic macroinvertebrate), using water from the mesocosms. Our mesocosm results demonstrate that presence of microplastics governs the response in phytoplankton biomass, with a weak non-monotonic dose-response relationship due to the interaction between microplastics and fluoxetine. However, exposure to fluoxetine evoked a strong non-monotonic dose-response in zooplankton abundance and microbial decomposition rate of plant material. In the behavioral assays, the locomotion of zooplankton prey D. magna showed a similar non-monotonic response primarily induced by fluoxetine. Its predator C. flavicans, however, showed a significant non-monotonic response governed by both microplastics and fluoxetine. The behavior of the decomposer A. aquaticus significantly decreased at higher fluoxetine concentrations, potentially leading to reduced decomposition rates near the sediment. Our study demonstrates that effects observed upon short-term exposure result in more pronounced ecosystem-level effects following chronic exposure.
Collapse
Affiliation(s)
- Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands
| | - Berte M Gebreyohanes Belay
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands.
| | - Josie South
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK; South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Josephine Pegg
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, EC, South Africa; South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa
| | - Dumisani Khosa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa; Scientific Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Lubabalo Mofu
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa
| | - Gina Walsh
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, 2050, South Africa
| | - Martine S Jordaan
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda, 6140, South Africa; CapeNature Scientific Services, Stellenbosch, South Africa
| | - Albert A Koelmans
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands
| | - Sven Teurlincx
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Nico R Helmsing
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Nina de Jong
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Ecology and Biodiversity Research Group, University of Utrecht, Utrecht, the Netherlands
| | - Miquel Lürling
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB, Wageningen, the Netherlands; Department of Pervasive Systems, EEMCS, University of Twente & Department of Water Resources, ITC, University of Twente, the Netherlands
| |
Collapse
|
2
|
Moresco GA, Dias JD, Cabrera-Lamanna L, Baladán C, Bizic M, Rodrigues LC, Meerhoff M. Experimental warming promotes phytoplankton species sorting towards cyanobacterial blooms and leads to potential changes in ecosystem functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171621. [PMID: 38467252 DOI: 10.1016/j.scitotenv.2024.171621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
A positive feedback loop where climate warming enhances eutrophication and its manifestations (e.g., cyanobacterial blooms) has been recently highlighted, but its consequences for biodiversity and ecosystem functioning are not fully understood. We conducted a highly replicated indoor experiment with a species-rich subtropical freshwater phytoplankton community. The experiment tested the effects of three constant temperature scenarios (17, 20, and 23 °C) under high-nutrient supply conditions on community composition and proxies of ecosystem functioning, namely resource use efficiency (RUE) and CO2 fluxes. After 32 days, warming reduced species richness and promoted different community trajectories leading to a dominance by green algae in the intermediate temperature and by cyanobacteria in the highest temperature treatments. Warming promoted primary production, with a 10-fold increase in the mean biomass of green algae and cyanobacteria. The maximum RUE occurred under the warmest treatment. All treatments showed net CO2 influx, but the magnitude of influx decreased with warming. We experimentally demonstrated direct effects of warming on phytoplankton species sorting, with negative effects on diversity and direct positive effects on cyanobacteria, which could lead to potential changes in ecosystem functioning. Our results suggest potential positive feedback between the phytoplankton blooms and warming, via lower net CO2 sequestration in cyanobacteria-dominated, warmer systems, and add empirical evidence to the need for decreasing the likelihood of cyanobacterial dominance.
Collapse
Affiliation(s)
- Geovani Arnhold Moresco
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Juliana Déo Dias
- Departament of Oceanography and Limnology, Universidade Federal do Rio Grande do Norte, Natal, RN 59014-002, Brazil
| | - Lucía Cabrera-Lamanna
- Departament of Ecology and Environmental Management, Centro Universitario Regional del Este-Universidad de la República, Maldonado, Uruguay; Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Claudia Baladán
- Departament of Ecology and Environmental Management, Centro Universitario Regional del Este-Universidad de la República, Maldonado, Uruguay
| | - Mina Bizic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Environmental Technology, Environmental Microbiomics, Technical University Berlin, Berlin, Germany
| | - Luzia Cleide Rodrigues
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil; Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mariana Meerhoff
- Departament of Ecology and Environmental Management, Centro Universitario Regional del Este-Universidad de la República, Maldonado, Uruguay; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Department of Ecosciences, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Duchet C, Grabicová K, Kolar V, Lepšová O, Švecová H, Csercsa A, Zdvihalová B, Randák T, Boukal DS. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. WATER RESEARCH 2024; 250:121053. [PMID: 38159539 DOI: 10.1016/j.watres.2023.121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Vojtech Kolar
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Olga Lepšová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Helena Švecová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Andras Csercsa
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Barbora Zdvihalová
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Tomáš Randák
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Vad CF, Hanny-Endrédi A, Kratina P, Abonyi A, Mironova E, Murray DS, Samchyshyna L, Tsakalakis I, Smeti E, Spatharis S, Tan H, Preiler C, Petrusek A, Bengtsson MM, Ptacnik R. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities. GLOBAL CHANGE BIOLOGY 2023; 29:3054-3071. [PMID: 36946870 DOI: 10.1111/gcb.16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.
Collapse
Affiliation(s)
- Csaba F Vad
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, Budapest, Hungary
| | - Anett Hanny-Endrédi
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - András Abonyi
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - Ekaterina Mironova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - David S Murray
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), School of Biological Sciences, University of East Anglia, Norfolk, UK
- The Centre for Environmental, Fisheries and Aquaculture Science (Cefas), Suffolk, Lowestoft, UK
| | - Larysa Samchyshyna
- Institute of Fisheries, National Academy of Agrarian Sciences, Kyiv, Ukraine
- Institute of Fisheries and Marine Ecology, Berdiansk, Ukraine
| | - Ioannis Tsakalakis
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Evangelia Smeti
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece
| | - Sofie Spatharis
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Hanrong Tan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Ptacnik
- WasserCluster Lunz-Biologische Station, Lunz am See, Austria
| |
Collapse
|
5
|
Aben RCH, Velthuis M, Kazanjian G, Frenken T, Peeters ETHM, Van de Waal DB, Hilt S, de Senerpont Domis LN, Lamers LPM, Kosten S. Temperature response of aquatic greenhouse gas emissions differs between dominant plant types. WATER RESEARCH 2022; 226:119251. [PMID: 36288666 DOI: 10.1016/j.watres.2022.119251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Greenhouse gas (GHG) emissions from small inland waters are disproportionately large. Climate warming is expected to favor dominance of algae and free-floating plants at the expense of submerged plants. Through different routes these functional plant types may have far-reaching impacts on freshwater GHG emissions in future warmer waters, which are yet unknown. We conducted a 1,000 L mesocosm experiment testing the effects of plant type and warming on GHG emissions from temperate inland waters dominated by either algae, free-floating or submerged plants in controls and warmed (+4 °C) treatments for one year each. Our results show that the effect of experimental warming on GHG fluxes differs between dominance of different functional plant types, mainly by modulating methane ebullition, an often-dominant GHG emission pathway. Specifically, we demonstrate that the response to experimental warming was strongest for free-floating and lowest for submerged plant-dominated systems. Importantly, our results suggest that anticipated shifts in plant type from submerged plants to a dominance of algae or free-floating plants with warming may increase total GHG emissions from shallow waters. This, together with a warming-induced emission response, represents a so far overlooked positive climate feedback. Management strategies aimed at favouring submerged plant dominance may thus substantially mitigate GHG emissions.
Collapse
Affiliation(s)
- Ralf C H Aben
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Mandy Velthuis
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands; Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, Wageningen, PB 6708, the Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin 12587, Germany
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, Nijmegen, GL 6500, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, Wageningen, PB 6708, the Netherlands.
| |
Collapse
|
6
|
Zhang P, Wang T, Zhang H, Wang H, Hilt S, Shi P, Cheng H, Feng M, Pan M, Guo Y, Wang K, Xu X, Chen J, Zhao K, He Y, Zhang M, Xu J. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107478. [PMID: 35998413 DOI: 10.1016/j.envint.2022.107478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.
Collapse
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Penglan Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Meng Pan
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Yulun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianlin Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
7
|
Feniova IY, Sakharova EG, Krylov AV. Transfer of Essential Substances from Phytoplankton to Zooplankton in Freshwater Ecosystems (Review). CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
9
|
Pardikes NA, Revilla TA, Lue CH, Thierry M, Souto-Vilarós D, Hrcek J. Effects of phenological mismatch under warming are modified by community context. GLOBAL CHANGE BIOLOGY 2022; 28:4013-4026. [PMID: 35426203 DOI: 10.1111/gcb.16195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Climate change is altering the relative timing of species interactions by shifting when species first appear in communities and modifying the duration organisms spend in each developmental stage. However, community contexts, such as intraspecific competition and alternative resource species, can prolong shortened windows of availability and may mitigate the effects of phenological shifts on species interactions. Using a combination of laboratory experiments and dynamic simulations, we quantified how the effects of phenological shifts in Drosophila-parasitoid interactions differed with concurrent changes in temperature, intraspecific competition, and the presence of alternative host species. Our study confirmed that warming shortens the window of host susceptibility. However, the presence of alternative host species sustained interaction persistence across a broader range of phenological shifts than pairwise interactions by increasing the degree of temporal overlap with suitable development stages between hosts and parasitoids. Irrespective of phenological shifts, parasitism rates declined under warming due to reduced parasitoid performance, which limited the ability of community context to manage temporally mismatched interactions. These results demonstrate that the ongoing decline in insect diversity may exacerbate the effects of phenological shifts in ecological communities under future global warming temperatures.
Collapse
Affiliation(s)
- Nicholas A Pardikes
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Department of Life and Earth Sciences, Georgia State University-Perimeter College, Clarkston, Georgia, USA
| | - Tomás A Revilla
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Chia-Hua Lue
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Biology Department, Brooklyn College, City University of New York (CUNY), Brooklyn, New York, USA
| | - Melanie Thierry
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Daniel Souto-Vilarós
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Jan Hrcek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
Vijayaraj V, Laviale M, Allen J, Amoussou N, Hilt S, Hölker F, Kipferler N, Leflaive J, López Moreira M GA, Polst BH, Schmitt-Jansen M, Stibor H, Gross EM. Multiple-stressor exposure of aquatic food webs: Nitrate and warming modulate the effect of pesticides. WATER RESEARCH 2022; 216:118325. [PMID: 35349923 DOI: 10.1016/j.watres.2022.118325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Shallow lakes provide essential ecological and environmental services but are exposed to multiple stressors, including agricultural runoff (ARO) and climate warming, which may act on different target receptors disrupting their normal functioning. We performed a microcosm experiment to determine the individual and combined effects of three stressors-pesticides, nitrate and climate warming-on two trophic levels representative of communities found in shallow lakes. We used three submerged macrophyte species (Myriophyllum spicatum, Potamogeton perfoliatus, Elodea nuttallii), eight benthic or pelagic microalgal species and three primary consumer species (Daphnia magna, Lymnaea stagnalis, Dreissena polymorpha) with different feeding preferences for benthic and pelagic primary producers. Eight different treatments consisted of a control, only nitrate, a pesticide cocktail, and a combination of nitrate and pesticides representing ARO, each replicated at ambient temperature and +3.5°C, mimicking climate warming. Pesticides negatively affected all functional groups except phytoplankton, which increased. Warming and nitrate modified these effects. Strong but opposite pesticide and warming effects on Myriophyllum drove the response of the total macrophyte biomass. Nitrate significantly suppressed Myriophyllum final biomass, but not overall macrophyte and microalgal biomass. Nitrate and pesticides in combination caused a macrophyte decline, and the system tipped towards phytoplankton dominance. Strong synergistic or even reversed stressor interaction effects were observed for macrophytes or periphyton. We emphasize the need for more complex community- and ecosystem-level studies incorporating multiple stressor scenarios to define safe operating spaces.
Collapse
Affiliation(s)
- Vinita Vijayaraj
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Martin Laviale
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France
| | - Joey Allen
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Université de Toulouse, Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 CNRS, Toulouse, France
| | | | - Sabine Hilt
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nora Kipferler
- Ludwig-Maximilians University Munich, Department of Biology, Munich, Germany
| | - Joséphine Leflaive
- Université de Toulouse, Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 CNRS, Toulouse, France
| | | | - Bastian H Polst
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Mechthild Schmitt-Jansen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Leipzig, Germany
| | - Herwig Stibor
- Ludwig-Maximilians University Munich, Department of Biology, Munich, Germany
| | - Elisabeth M Gross
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; LTSER-Zone Atelier Moselle, F-57000 Metz, France.
| |
Collapse
|
11
|
Wei J, Li X, Xu X, Xu W, Chen Y, Zhang L, Yang Z, Huang Y. Elevated temperature mitigates the prolonged effect of high nitrogen on Microcystis aeruginosa removal through mixotrophic Ochromonas gloeopara grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153267. [PMID: 35074368 DOI: 10.1016/j.scitotenv.2022.153267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms are increasingly threatening the aquatic ecosystem functioning as a result of the global warming and eutrophication. The "top-down" control of cyanobacteria from consumers like the protozoans shows great potential because of the effectiveness and environment-friendliness. To reveal how the nutrition availability and elevated temperature affect the cyanobacteria removal through protozoans grazing, we grew the toxic Microcystis aeruginosa and the mixotrophic Ochromonas gloeopara in monocultures and cocultures at environmentally relevant nitrogen levels (0.5-8.0 mg L-1) under 25 °C and 30 °C, respectively. The growth of M. aeruginosa in monocultures was significantly enhanced as nitrogen concentration and temperature rose, partially benefitting from the promoted photosynthesis. By contrast, nitrogen availability affected neither the photoautotrophic growth nor the feeding on Microcystis of the mixotrophic O. gloeopara, but high temperature induced the mixotroph to be more heterotrophic as evidenced by the suppressed photosynthesis but strengthened feeding activity. Accordingly, the M. aeruginosa removal through O. gloeopara grazing in cocultures was delayed with increasing nitrogen, which, however, was sharply accelerated by elevated temperature. Based on the Gaussian models fitting, the theoretical time that the Microcystis was removed at 25 °C was prolonged from about 7.5 days to 10 days with increased nitrogen, but it was reduced to less than 4.6 days in all groups at 30 °C. While the intensity of Microcystis blooms is strongly positively correlated to the nutrition availability and temperature, the present study provided references for the practical application of Microcystis removal through grazing outdoors.
Collapse
Affiliation(s)
- Junjun Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xianxian Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaoqing Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wenjie Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yitong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
12
|
Temperature Affects the Biological Control of Dinoflagellates by the Generalist Parasitoid Parvilucifera rostrata. Microorganisms 2022; 10:microorganisms10020385. [PMID: 35208840 PMCID: PMC8874431 DOI: 10.3390/microorganisms10020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
The increase in emerging harmful algal blooms in the last decades has led to an extensive concern in understanding the mechanisms behind these events. In this paper, we assessed the growth of two blooming dinoflagellates (Alexandrium minutum and Heterocapsa triquetra) and their susceptibility to infection by the generalist parasitoid Parvilucifera rostrata under a temperature gradient. The growth of the two dinoflagellates differed across a range of temperatures representative of the Penzé Estuary (13 to 22 °C) in early summer. A. minutum growth increased across this range and was the highest at 19 and 22 °C, whereas H. triquetra growth was maximal at intermediate temperatures (15–18 °C). Interestingly, the effect of temperature on the parasitoid infectivity changed depending on which host dinoflagellate was infected with the dinoflagellate responses to temperature following a positive trend in A. minutum (higher infections at 20–22 °C) and a unimodal trend in H. triquetra (higher infections at 18 °C). Low temperatures negatively affected parasitoid infections in both hosts (i.e., “thermal refuge”). These results demonstrate how temperature shifts may not only affect bloom development in microalgal species but also their control by parasitoids.
Collapse
|
13
|
Polazzo F, Roth SK, Hermann M, Mangold‐Döring A, Rico A, Sobek A, Van den Brink PJ, Jackson M. Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an integrated assessment of extreme events in multiple stressors research. GLOBAL CHANGE BIOLOGY 2022; 28:1248-1267. [PMID: 34735747 PMCID: PMC9298819 DOI: 10.1111/gcb.15971] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 05/11/2023]
Abstract
Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | - Sabrina K. Roth
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Annika Mangold‐Döring
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Anna Sobek
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Paul J. Van den Brink
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
- Wageningen Environmental ResearchWageningenThe Netherlands
| | | |
Collapse
|
14
|
Yang J, Yang K, Zhang Y, Luo Y, Shang C. Maximum lake surface water temperatures changing characteristics under climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2547-2554. [PMID: 34370202 DOI: 10.1007/s11356-021-15621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Lake surface water temperature (LSWT) plays an important role in the metabolism of aquatic organisms, and is also an important indicator in lake ecosystems which affects the ecology and biogeochemical processes of lakes. The current research mainly focuses on the long-term trends of LSWT and the impact of climate warming on LSWT. Researchers have not paid enough attention to the study of extreme changes in trend of LSWT. An ice-free lake in China called Dianchi Lake was selected as our research area. We carried out a quantitative analysis of and provided a discussion on the changes in the maximum lake surface water temperature (MLSWT) from 2001 to 2018 at two timescales (month and year) based on MODIS 11A2 composite product data and water temperature environment of cyanobacteria outbreaks. The results showed that the MLSWT of Dianchi Lake increased between 2001 and 2018 and continued to exceed the temperature threshold (17.6°C) for cyanobacterial outbreaks during some timeframes and that the duration of high temperatures also increased. This phenomenon will extend the suitable growth period of cyanobacteria and will have a complex and long-term impact on water quality, the lake ecological environment, and the growth of aquatic organisms.
Collapse
Affiliation(s)
- Jiaying Yang
- GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Yunnan, 650500, China
- School of Information Science and Technology, Yunnan Normal University, Yunnan, 650500, China
| | - Kun Yang
- Faculty of Geography, Yunnan Normal University, Yunnan, 650500, China
- GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Yunnan, 650500, China
| | - Yueyue Zhang
- GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Yunnan, 650500, China
- School of Computer Science, Guangdong University of Science & Technology, Guangdong, 523668, China
| | - Yi Luo
- Faculty of Geography, Yunnan Normal University, Yunnan, 650500, China.
- GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Yunnan, 650500, China.
| | - Chunxue Shang
- GIS Technology Research Center of Resource and Environment in Western China, Ministry of Education, Yunnan Normal University, Yunnan, 650500, China
- Dean's Office, Yunnan Normal University, Yunnan, 650500, China
| |
Collapse
|
15
|
Zhang P, Zhang H, Wang H, Hilt S, Li C, Yu C, Zhang M, Xu J. Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems State Key Laboratory of Freshwater Ecology and Biotechnology of China Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems State Key Laboratory of Freshwater Ecology and Biotechnology of China Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems State Key Laboratory of Freshwater Ecology and Biotechnology of China Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| | - Sabine Hilt
- Department of Ecosystem Research Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Chao Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt Ministry of Education College of Fisheries Huazhong Agricultural University Wuhan China
| | - Chen Yu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt Ministry of Education College of Fisheries Huazhong Agricultural University Wuhan China
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt Ministry of Education College of Fisheries Huazhong Agricultural University Wuhan China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems State Key Laboratory of Freshwater Ecology and Biotechnology of China Institute of Hydrobiology Chinese Academy of Sciences Wuhan China
| |
Collapse
|
16
|
Is Zooplankton Body Size an Indicator of Water Quality in (Sub)tropical Reservoirs in China? Ecosystems 2021. [DOI: 10.1007/s10021-021-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Li Z, Xu Z, Yang Y, Stewart RIA, Urrutia-Cordero P, He L, Zhang H, Hansson LA. Heat Waves Alter Macrophyte-Derived Detrital Nutrients Release under Future Climate Warming Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5272-5281. [PMID: 33764736 DOI: 10.1021/acs.est.1c00884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In addition to a rise in global air and water mean temperatures, extreme climate events such as heat waves are increasing in frequency, intensity, and duration in many regions of the globe. Developing a mechanistic understanding of the impacts of heat waves on key ecosystem processes and how they differ from just an increase in mean temperatures is therefore of utmost importance for adaptive management against effects of global change. However, little is known about the impact of extreme events on freshwater ecosystem processes, particularly the decomposition of macrophyte detritus. We performed a mesocosm experiment to evaluate the impact of warming and heat waves on macrophyte detrital decomposition, applied as a fixed increment (+4 °C) above ambient and a fluctuating treatment with similar energy input, ranging from 0 to 6 °C above ambient (i.e., simulating heat waves). We showed that both warming and heat waves significantly accelerate dry mass loss of the detritus and carbon (C) release but found no significant differences between the two heated treatments on the effects on detritus dry mass loss and C release amount. This suggests that moderate warming indirectly enhanced macrophyte detritus dry mass loss and C release mainly by the amount of energy input rather than by the way in which warming was provided (i.e., by a fixed increment or in heat waves). However, we found significantly different amounts of nitrogen (N) and phosphorus (P) released between the two warming treatments, and there was an asymmetric response of N and P release patterns to the two warming treatments, possibly due to species-specific responses of decomposers to short-term temperature fluctuations and litter quality. Our results conclude that future climate scenarios can significantly accelerate organic matter decomposition and C, N, and P release from decaying macrophytes, and more importantly, there are asymmetric alterations in macrophyte-derived detrital N and P release dynamic. Therefore, future climate change scenarios could lead to alterations in N/P ratios in the water column via macrophyte decomposition processes and ultimately affect the structure and function of aquatic ecosystems, especially in the plankton community.
Collapse
Affiliation(s)
- Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Yujing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Rebecca I A Stewart
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden
| | - Pablo Urrutia-Cordero
- Department of Ecology and Genetics/Limnology, Evolutionary Biology Center, Uppsala University, Uppsala 752 36, Sweden
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Liang He
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden
| | - Huan Zhang
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden
| | - Lars-Anders Hansson
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden
| |
Collapse
|
18
|
Ilić M, Klintworth S, Jackson MC. Quality over quantity: Trophic cascades in a warming world. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maja Ilić
- School of Biological Sciences Queen's University Belfast Belfast UK
| | | | | |
Collapse
|
19
|
Ersoy Z, Scharfenberger U, Baho DL, Bucak T, Feldmann T, Hejzlar J, Levi EE, Mahdy A, Nõges T, Papastergiadou E, Stefanidis K, Šorf M, Søndergaard M, Trigal C, Jeppesen E, Beklioğlu M. Impact of nutrients and water level changes on submerged macrophytes along a temperature gradient: A pan-European mesocosm experiment. GLOBAL CHANGE BIOLOGY 2020; 26:6831-6851. [PMID: 32893967 DOI: 10.1111/gcb.15338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.
Collapse
Affiliation(s)
- Zeynep Ersoy
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- 'Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Ulrike Scharfenberger
- Department of River Ecology, Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Didier L Baho
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tuba Bucak
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Nature Conservation Centre, Ankara, Turkey
| | - Tõnu Feldmann
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia
| | - Josef Hejzlar
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eti E Levi
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | - Aldoushy Mahdy
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Tiina Nõges
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia
| | | | - Konstantinos Stefanidis
- Department of Biology, University of Patras, Rio, Greece
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos Attiki, Greece
| | - Michal Šorf
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Søndergaard
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Cristina Trigal
- Species Information Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Jeppesen
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey
| | - Meryem Beklioğlu
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey
| |
Collapse
|
20
|
Tanentzap AJ, Morabito G, Volta P, Rogora M, Yan ND, Manca M. Climate warming restructures an aquatic food web over 28 years. GLOBAL CHANGE BIOLOGY 2020; 26:6852-6866. [PMID: 32916760 DOI: 10.1111/gcb.15347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 05/17/2023]
Abstract
Climate warming can restructure lake food webs if trophic levels differ in their thermal responses, but evidence for these changes and their underlying mechanisms remain scarce in nature. Here we document how warming lake temperatures by up to 2°C, rather than changes in trophic state or fishing effort, have restructured the pelagic food web of a large European lake (Lake Maggiore, Italy). Our approach exploited abundance and biomass data collected weekly to yearly across five trophic levels from 1981 to 2008. Temperature generally had stronger effects on taxa than changes in fish predation or trophic state mediated through primary productivity. Consequently, we found that, as the lake warmed, the food web shifted in numerical abundance towards predators occupying middle trophic positions. Of these taxa, the spiny water flea (Bythotrephes longimanus) most prospered. Bythotrephes strongly limited abundances of the keystone grazer Daphnia, strengthening top-down structuring of the food web. Warmer temperatures partly restructured the food web by advancing peak Bythotrephes densities by approximately 60 days and extending periods of positive population growth by three times. Nonetheless, our results suggested that advances in the timing and size of peak Bythotrephes densities could not outpace changes in the timing and size of peak densities in their Daphnia prey. Our results provide rare evidence from nature as to how long-term warming can favour higher trophic levels, with the potential to strengthen top-down control of food webs.
Collapse
Affiliation(s)
- Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Giuseppe Morabito
- Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Pietro Volta
- Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Michela Rogora
- Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Norman D Yan
- Department of Biology, York University, Toronto, ON, Canada
| | - Marina Manca
- Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| |
Collapse
|
21
|
He H, Li Q, Li J, Han Y, Cao Y, Liu W, Yu J, Li K, Liu Z, Jeppesen E. Turning up the heat: warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory. Oecologia 2020; 194:251-265. [DOI: 10.1007/s00442-020-04758-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
|
22
|
Sarker S, Yadav AK, Akter M, Shahadat Hossain M, Chowdhury SR, Kabir MA, Sharifuzzaman S. Rising temperature and marine plankton community dynamics: Is warming bad? ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Schulhof MA, Shurin JB, Declerck SAJ, Van de Waal DB. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. GLOBAL CHANGE BIOLOGY 2019; 25:2751-2762. [PMID: 31004556 PMCID: PMC6852242 DOI: 10.1111/gcb.14660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 06/07/2023]
Abstract
Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer-driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.
Collapse
Affiliation(s)
- Marika A. Schulhof
- Division of Biological Sciences, Section of Ecology, Behavior & EvolutionUniversity of California San DiegoLa JollaCalifornia
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| | - Jonathan B. Shurin
- Division of Biological Sciences, Section of Ecology, Behavior & EvolutionUniversity of California San DiegoLa JollaCalifornia
| | - Steven A. J. Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
| |
Collapse
|
24
|
Velthuis M, Kosten S, Aben R, Kazanjian G, Hilt S, Peeters ETHM, van Donk E, Bakker ES. Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial. GLOBAL CHANGE BIOLOGY 2018; 24:5231-5242. [PMID: 30120802 DOI: 10.1111/gcb.14387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year-round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year-round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m-2 yaer-1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m-2 year-1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte-dominated systems, while not necessarily affecting net carbon burial on a system scale.
Collapse
Affiliation(s)
- Mandy Velthuis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Sarian Kosten
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ralf Aben
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Ecology & Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
25
|
Hao B, Wu H, Jeppesen E, Li W. The response of phytoplankton communities to experimentally elevated temperatures in the presence and absence of Potamogeton crispus. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
He H, Jin H, Jeppesen E, Li K, Liu Z, Zhang Y. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. WATER RESEARCH 2018; 144:304-311. [PMID: 30071399 DOI: 10.1016/j.watres.2018.07.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Although it is well established that climate warming can reinforce eutrophication in shallow lakes by altering top-down and bottom-up processes in the food web and biogeochemical cycling, recent studies in temperate zones have also shown that adverse effects of rising temperature are diminished in fishless systems. Whereas the removal of zooplanktivorous fish may be useful in attempts to mitigate eutrophication in temperate shallow lakes, it is uncertain whether similar mitigation might be achieved in warmer climates. We compared the responses of zooplankton and phytoplankton communities to climate warming in the presence and absence of fish (Aristichthys nobilis) in a 4-month mesocosm experiment at subtropical temperatures. We hypothesized that 1) fish and phytoplankton would benefit from warming, while zooplankton would suffer in fish-present mesocosms and 2) warming would favor zooplankton growth but reduce phytoplankton biomass in fish-absent mesocosms. Our results showed significant interacting effects of warming and fish presence on both phytoplankton and zooplankton. In mesocosms with fish, biomasses of fish and phytoplankton increased in heated treatments, while biomasses of Daphnia and total zooplankton declined. Warming reduced the proportion of large Daphnia in total zooplankton biomass, and reduced the zooplankton to phytoplankton biomass ratio, but increased the ratio of chlorophyll a to total phosphorus, indicating a relaxation of zooplankton grazing pressure on phytoplankton. Meanwhile, warming resulted in a 3-fold increase in TP concentrations in the mesocosms with fish present. The results suggest that climate warming has the potential to boost eutrophication in shallow lakes via both top-down (loss of herbivores) and bottom-up (elevated nutrient) effects. However, in the mesocosms without fish, there was no decline in large Daphnia or in total zooplankton biomass, supporting the conclusion that fish predation is the major driver of low large Daphnia abundance in warm lakes. In the fishless mesocosms, phytoplankton biomass and nutrient levels were not affected by temperature. Our study suggests that removing fish to mitigate warming effects on eutrophication may be potentially beneficial in subtropical lakes, though the rapid recruitment of fish in such lakes may present a challenge to success in the long-term.
Collapse
Affiliation(s)
- Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hui Jin
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, Beijing 100049, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, Beijing 100049, China; Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yongdong Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
27
|
Verbeek L, Gall A, Hillebrand H, Striebel M. Warming and oligotrophication cause shifts in freshwater phytoplankton communities. GLOBAL CHANGE BIOLOGY 2018; 24:4532-4543. [PMID: 29856108 DOI: 10.1111/gcb.14337] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 05/06/2023]
Abstract
While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide-ranging trend of nutrient decrease (re-oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
Collapse
Affiliation(s)
- Laura Verbeek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Andrea Gall
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
28
|
Potential Impacts of Induced Bank Filtration on Surface Water Quality: A Conceptual Framework for Future Research. WATER 2018. [DOI: 10.3390/w10091240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on induced bank filtration (IBF), a cost-effective and reliable drinking water production method, usually focus on processes affecting the target drinking water quality. We aim to expand this view by assessing potential impacts of IBF on surface water quality. We suggest that IBF can directly and indirectly affect several physical, chemical and biological processes in both the sediment and open water column, eventually leading to positive or negative changes in source water quality. Direct effects of IBF comprise water level fluctuations, changes in water level and retention time, and in organic content and redox conditions in littoral sediments. Indirect effects are mainly triggered by interrupting groundwater discharge into the surface water body. The latter may result in increased seasonal temperature variations in sediment and water and reduced discharge of solutes transported by groundwater such as nutrients and carbon dioxide. These changes can have cascading effects on various water quality, e.g., by facilitating toxic phytoplankton blooms. We propose investigating these potential effects of IBF in future field and laboratory studies to allow for more detailed insights into these yet unknown effects and their magnitude in order to assure a sustainable application of this valuable technique in the future.
Collapse
|
29
|
Lürling M, Mello MME, van Oosterhout F, de Senerpont Domis L, Marinho MM. Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Front Microbiol 2018; 9:1851. [PMID: 30150976 PMCID: PMC6099115 DOI: 10.3389/fmicb.2018.01851] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/24/2018] [Indexed: 11/29/2022] Open
Abstract
Eutrophication (nutrient over-enrichment) is the primary worldwide water quality issue often leading to nuisance cyanobacterial blooms. Climate change is predicted to cause further rise of cyanobacteria blooms as cyanobacteria can have a competitive advantage at elevated temperatures. We tested the hypothesis that simultaneous rise in nutrients and temperature will promote cyanobacteria more than a single increase in one of the two drivers. To this end, controlled experiments were run with seston from 39 different urban water bodies varying in trophic state from mesotrophic to hypertrophic. These experiments were carried out at two different temperatures, 20°C (ambient) and 25°C (warming scenario) with or without the addition of a surplus of nutrients (eutrophication scenario). To facilitate comparisons, we quantified the effect size of the different treatments, using cyanobacterial and algal chlorophyll a concentrations as a response variable. Cyanobacterial and algal chlorophyll a concentrations were determined with a PHYTO-PAM phytoplankton analyzer. Warming caused an 18% increase in cyanobacterial chlorophyll-a, while algal chlorophyll-a concentrations were on average 8% higher at 25°C than at 20°C. A nutrient pulse had a much stronger effect on chlorophyll-a concentrations than warming. Cyanobacterial chlorophyll-a concentrations in nutrient enriched incubations at 20 or 25°C were similar and 9 times higher than in the incubations without nutrient pulse. Likewise, algal chlorophyll-a concentrations were 6 times higher. The results of this study confirm that warming alone yields marginally higher cyanobacteria chlorophyll-a concentrations, yet that a pulse of additional nutrients is boosting blooms. The responses of seston originating from mesotrophic waters seemed less strong than those from eutrophic waters, which indicates that nutrient control strategies –catchment as well as in-system measures– could increase the resilience of surface waters to the negative effects of climate change.
Collapse
Affiliation(s)
- Miquel Lürling
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands.,Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Mariana Mendes E Mello
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands.,Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Frank van Oosterhout
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Lisette de Senerpont Domis
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands.,Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Marcelo M Marinho
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Impacts of warming on top-down and bottom-up controls of periphyton production. Sci Rep 2018; 8:9901. [PMID: 29967408 PMCID: PMC6028635 DOI: 10.1038/s41598-018-26348-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
Global warming profoundly impacts the functioning of aquatic ecosystems. Nonetheless, the effect of warming on primary producers is poorly understood, especially periphyton production, which is affected both directly and indirectly by temperature-sensitive top-down and bottom-up controls. Here, we study the impact of warming on gross primary production in experimental ecosystems with near-realistic foodwebs during spring and early summer. We used indoor mesocosms following a temperate temperature regime (control) and a warmed (+4 °C) treatment to measure biomass and production of phytoplankton and periphyton. The mesocosms’ primary production was dominated by periphyton (>82%) during the studied period (April-June). Until May, periphyton production and biomass were significantly higher in the warm treatment (up to 98% greater biomass compared to the control) due to direct temperature effects on growth and indirect effects resulting from higher sediment phosphorus release. Subsequently, enhanced grazer abundances seem to have counteracted the positive temperature effect causing a decline in periphyton biomass and production in June. We thus show, within our studied period, seasonally distinct effects of warming on periphyton, which can significantly affect overall ecosystem primary production and functioning.
Collapse
|
31
|
Fiałkowska E, Pajdak-Stós A. Temperature-Dependence of Predator-Prey Dynamics in Interactions Between the Predatory Fungus Lecophagus sp. and Its Prey L. inermis Rotifers. MICROBIAL ECOLOGY 2018; 75:400-406. [PMID: 28963577 PMCID: PMC5742607 DOI: 10.1007/s00248-017-1060-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Temperature is considered an important factor that influences the bottom-up and top-down control in water habitats. We examined the influence of temperature on specific predatory-prey dynamics in the following two-level trophic system: the predatory fungus Lecophagus sp. and its prey Lecane inermis rotifers, both of which originated from activated sludge obtained from a wastewater treatment plant (WWTP). The experiments investigating the ability of conidia to trap rotifers and the growth of fungal mycelium were performed in a temperature range that is similar to that in WWTPs in temperate climate. At 20 °C, 80% of the conidia trapped the prey during the first 24 h, whereas at 8 °C, no conidium was successful. The mycelium growth rate was the highest at 20 °C (r = 1.44) during the first 48 h but decreased during the following 24 h (r = 0.98), suggesting the quickest use of resources. At a medium temperature of 15 °C, the tendency was opposite, and the r value was lower during the first 48 h. At 8 °C, the growth rate was very low and remained at the same level even though numerous active rotifers were potentially available for the fungus. The temperature also influences the production of new conidia; on the 7th day, new conidia were observed in 96% of the wells at 20 °C, but no new conidia were observed at 8°C. These results show that the prey (rotifers)-predator (Lecophagus) dynamics in WWTPs is temperature-dependent, and a temperature of 8 °C is a strongly limiting factor for the fungus. Moderate temperatures ensure the most stable coexistence of the fungus and its prey, whereas the highest temperature can promote the prevalence of the predator.
Collapse
Affiliation(s)
- Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka Pajdak-Stós
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
32
|
Aben RCH, Barros N, van Donk E, Frenken T, Hilt S, Kazanjian G, Lamers LPM, Peeters ETHM, Roelofs JGM, de Senerpont Domis LN, Stephan S, Velthuis M, Van de Waal DB, Wik M, Thornton BF, Wilkinson J, DelSontro T, Kosten S. Cross continental increase in methane ebullition under climate change. Nat Commun 2017; 8:1682. [PMID: 29167452 PMCID: PMC5700168 DOI: 10.1038/s41467-017-01535-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022] Open
Abstract
Methane (CH4) strongly contributes to observed global warming. As natural CH4 emissions mainly originate from wet ecosystems, it is important to unravel how climate change may affect these emissions. This is especially true for ebullition (bubble flux from sediments), a pathway that has long been underestimated but generally dominates emissions. Here we show a remarkably strong relationship between CH4 ebullition and temperature across a wide range of freshwater ecosystems on different continents using multi-seasonal CH4 ebullition data from the literature. As these temperature-ebullition relationships may have been affected by seasonal variation in organic matter availability, we also conducted a controlled year-round mesocosm experiment. Here 4 °C warming led to 51% higher total annual CH4 ebullition, while diffusion was not affected. Our combined findings suggest that global warming will strongly enhance freshwater CH4 emissions through a disproportional increase in ebullition (6-20% per 1 °C increase), contributing to global warming.
Collapse
Affiliation(s)
- Ralf C H Aben
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
| | - Nathan Barros
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Ellen van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
- Department of Ecology and Biodiversity, University of Utrecht, P.O. Box 80.056, 3508 TB, Utrecht, The Netherlands
| | - Thijs Frenken
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
| | - Sabine Hilt
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany
| | - Garabet Kazanjian
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- B-WARE Research Centre, P.O. Box 6558, 6503 GB, Nijmegen, The Netherlands
| | - Edwin T H M Peeters
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
| | - Jan G M Roelofs
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- B-WARE Research Centre, P.O. Box 6558, 6503 GB, Nijmegen, The Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6708 PB, Wageningen, The Netherlands
| | - Susanne Stephan
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, OT Neuglobsow, 16775, Stechlin, Germany
| | - Mandy Velthuis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands
| | - Martin Wik
- Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-10691, Sweden
| | - Brett F Thornton
- Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, Stockholm, SE-10691, Sweden
| | - Jeremy Wilkinson
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstr. 7, 76829, Landau, Germany
| | - Tonya DelSontro
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada, H3C 3P8, QC
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
33
|
Hervé V, Leroy B, Da Silva Pires A, Lopez PJ. Aquatic urban ecology at the scale of a capital: community structure and interactions in street gutters. ISME JOURNAL 2017; 12:253-266. [PMID: 29027996 PMCID: PMC5739019 DOI: 10.1038/ismej.2017.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
Abstract
In most cities, streets are designed for collecting and transporting dirt, litter, debris, storm water and other wastes as a municipal sanitation system. Microbial mats can develop on street surfaces and form microbial communities that have never been described. Here, we performed the first molecular inventory of the street gutter-associated eukaryotes across the entire French capital of Paris and the non-potable waters sources. We found that the 5782 OTUs (operational taxonomic units) present in the street gutters which are dominated by diatoms (photoautotrophs), fungi (heterotrophs), Alveolata and Rhizaria, includes parasites, consumers of phototrophs and epibionts that may regulate the dynamics of gutter mat microbial communities. Network analyses demonstrated that street microbiome present many species restricted to gutters, and an overlapping composition between the water sources used for street cleaning (for example, intra-urban aquatic networks and the associated rivers) and the gutters. We propose that street gutters, which can cover a significant surface area of cities worldwide, potentially have important ecological roles in the remediation of pollutants or downstream wastewater treatments, might also be a niche for growth and dissemination of putative parasite and pathogens.
Collapse
Affiliation(s)
- Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS-7208), Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Université de Caen Normandie, Institut de Recherche pour le Développement (IRD-207), Université des Antilles, Paris, France
| | | | - Pascal Jean Lopez
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS-7208), Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Université de Caen Normandie, Institut de Recherche pour le Développement (IRD-207), Université des Antilles, Paris, France
| |
Collapse
|
34
|
Woolway RI, Merchant CJ. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep 2017. [PMID: 28646229 PMCID: PMC5482815 DOI: 10.1038/s41598-017-04058-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summer lake surface water temperatures (LSWTs) have previously been shown to respond more rapidly to climatic warming compared to local summer surface air temperatures (SATs). In a global-scale analysis, we explore the factors underpinning the observation of an amplified response of summer LSWT to SAT variability using 20 years of satellite-derived temperatures from 144 lakes. We demonstrate that the degree of amplification in inter-annual summer LSWT is variable, and is greater for cold lakes (e.g. high latitude and high altitude), which are characterised by a short warming season, and deep lakes, that exhibit long correlation timescales of temperature anomalies due to increased thermal inertia. Such lakes are more likely to display responses in excess of local inter-annual summer SAT variability. Climatic modification of LSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response at a global scale is important.
Collapse
|