1
|
Koloski CW, Adam H, Hurry G, Foley-Eby A, Zinck CB, Wei H, Hansra S, Wachter J, Voordouw MJ. Adaptive immunity in Mus musculus influences the acquisition and abundance of Borrelia burgdorferi in Ixodes scapularis ticks. Appl Environ Microbiol 2024; 90:e0129924. [PMID: 39503497 PMCID: PMC11653739 DOI: 10.1128/aem.01299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi cycles between immature black-legged ticks (Ixodes scapularis) and vertebrate reservoir hosts, such as rodents. Larval ticks acquire spirochetes from infected hosts, and the resultant nymphs transmit the spirochetes to naïve hosts. This study investigated the impact of immunocompetence and host tissue spirochete load on host-to-tick transmission (HTT) of B. burgdorferi and the spirochete load inside immature I. scapularis ticks. Wild-type (WT) C57BL/6J mice and mice with severe combined immunodeficiency (SCID) were experimentally infected with B. burgdorferi. To measure HTT, WT and SCID mice were repeatedly infested with I. scapularis larvae, and ticks were sacrificed at three different developmental stages: engorged larvae, 1-month-old, and 12-month-old nymphs. The spirochete loads in immature ticks and mouse tissues were estimated using qPCR. In WT mice, HTT decreased from 90% to 65% over the course of the infection, whereas in the SCID mice, HTT was always 100%. Larvae that fed on SCID mice acquired a much larger dose of spirochetes compared to larvae that fed on WT mice. This difference in spirochete load persisted over tick development where nymphs that fed as larvae on SCID mice had significantly higher spirochete loads compared to their WT counterparts. HTT and the tick spirochete loads were strongly correlated with the mouse tissue spirochete loads. Our study shows that the host immune system (e.g., the presence of antibodies) influences HTT of B. burgdorferi and the spirochete load in immature I. scapularis ticks.IMPORTANCEThe tick-borne spirochete Borrelia burgdorferi causes Lyme disease in humans. This pathogen is maintained in nature by cycles involving black-legged ticks and wildlife hosts. The present study investigated the host factors that influence the transmission of B. burgdorferi from infected hosts to feeding ticks. We infected immunocompetent mice and immunocompromised mice (that cannot develop antibodies) with B. burgdorferi and repeatedly infested these mice with ticks. We determined the percentage of infected ticks and their spirochete loads. This percentage was 100% for immunocompromised mice but decreased from 90% to 65% over time (8 weeks) for immunocompetent mice. The tick spirochete load was much higher in ticks fed on immunocompromised mice compared to ticks fed on immunocompetent mice. In summary, the host immune system influences the transmission of B. burgdorferi from infected hosts to ticks and the spirochete loads in those ticks, which, in turn, determines the risk of Lyme disease for people.
Collapse
Affiliation(s)
- Cody W. Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher B. Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Haomiao Wei
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyender Hansra
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
de Wit MM, Dimas Martins A, Delecroix C, Heesterbeek H, ten Bosch QA. Mechanistic models for West Nile virus transmission: a systematic review of features, aims and parametrization. Proc Biol Sci 2024; 291:20232432. [PMID: 38471554 PMCID: PMC10932716 DOI: 10.1098/rspb.2023.2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.
Collapse
Affiliation(s)
- Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Petrucciani A, Yu G, Ventresca M. Multi-season transmission model of Eastern Equine Encephalitis. PLoS One 2022; 17:e0272130. [PMID: 35976903 PMCID: PMC9385034 DOI: 10.1371/journal.pone.0272130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Eastern Equine Encephalitis (EEE) is an arbovirus that, while it has been known to exist since the 1930's, recently had a spike in cases. This increased prevalence is particularly concerning due to the severity of the disease with 1 in 3 symptomatic patients dying. The cause of this peak is currently unknown but could be due to changes in climate, the virus itself, or host behavior. In this paper we propose a novel multi-season deterministic model of EEE spread and its stochastic counterpart. Models were parameterized using a dataset from the Florida Department of Health with sixteen years of sentinel chicken seroconversion rates. The different roles of the enzootic and bridge mosquito vectors were explored. As expected, enzootic mosquitoes like Culiseta melanura were more important for EEE persistence, while bridge vectors were implicated in the disease burden in humans. These models were used to explore hypothetical viral mutations and host behavior changes, including increased infectivity, vertical transmission, and host feeding preferences. Results showed that changes in the enzootic vector transmission increased cases among birds more drastically than equivalent changes in the bridge vector. Additionally, a 5% difference in the bridge vector's bird feeding preference can increase cumulative dead-end host infections more than 20-fold. Taken together, this suggests changes in many parts of the transmission cycle can augment cases in birds, but the bridge vectors feeding preference acts as a valve limiting the enzootic circulation from its impact on dead-end hosts, such as humans. Our what-if scenario analysis reveals and measures possible threats regarding EEE and relevant environmental changes and hypothetically suggests how to prevent potential damage to public health and the equine economy.
Collapse
Affiliation(s)
- Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Geonsik Yu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Mario Ventresca
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
4
|
Kain MP, Skinner EB, van den Hurk AF, McCallum H, Mordecai EA. Physiology and ecology combine to determine host and vector importance for Ross River virus. eLife 2021; 10:e67018. [PMID: 34414887 PMCID: PMC8457839 DOI: 10.7554/elife.67018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.
Collapse
Affiliation(s)
- Morgan P Kain
- Department of Biology, Stanford UniversityStanfordUnited States
- Natural Capital Project, Woods Institute for the Environment, Stanford UniversityStanfordUnited States
| | - Eloise B Skinner
- Department of Biology, Stanford UniversityStanfordUnited States
- Centre for Planetary Health and Food Security, Griffith UniversityGold CoastAustralia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of HealthBrisbaneAustralia
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith UniversityGold CoastAustralia
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Lourenço J, Thompson RN, Thézé J, Obolski U. Characterising West Nile virus epidemiology in Israel using a transmission suitability index. ACTA ACUST UNITED AC 2021; 25. [PMID: 33213688 PMCID: PMC7678037 DOI: 10.2807/1560-7917.es.2020.25.46.1900629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Climate is a major factor in the epidemiology of West Nile virus (WNV), a pathogen increasingly pervasive worldwide. Cases increased during 2018 in Israel, the United States and Europe. Aim We set to retrospectively understand the spatial and temporal determinants of WNV transmission in Israel, as a case study for the possible effects of climate on virus spread. Methods We employed a suitability index to WNV, parameterising it with prior knowledge pertaining to a bird reservoir and Culex species, using local time series of temperature and humidity as inputs. The predicted suitability index was compared with confirmed WNV cases in Israel (2016–2018). Results The suitability index was highly associated with WNV cases in Israel, with correlation coefficients of 0.91 (p value = 4 × 10− 5), 0.68 (p = 0.016) and 0.9 (p = 2 × 10− 4) in 2016, 2017 and 2018, respectively. The fluctuations in the number of WNV cases between the years were explained by higher area under the index curve. A new WNV seasonal mode was identified in the south-east of Israel, along the Great Rift Valley, characterised by two yearly peaks (spring and autumn), distinct from the already known single summer peak in the rest of Israel. Conclusions By producing a detailed geotemporal estimate of transmission potential and its determinants in Israel, our study promotes a better understanding of WNV epidemiology and has the potential to inform future public health responses. The proposed approach further provides opportunities for retrospective and prospective mechanistic modelling of WNV epidemiology and its associated climatic drivers.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robin N Thompson
- Christ Church, University of Oxford, Oxford, United Kingdom.,Mathematical Institute, University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Joint Research Unit Epidemiology of Animal and Zoonotic Diseases (EPIA), INRA, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Uri Obolski
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.,School of Public Health, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Kain MP, Bolker BM. Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data. Parasit Vectors 2019; 12:395. [PMID: 31395085 PMCID: PMC6686473 DOI: 10.1186/s13071-019-3656-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/03/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is a mosquito-transmitted disease of birds that has caused bird population declines and can spill over into human populations. Previous research has identified bird species that infect a large fraction of the total pool of infected mosquitoes and correlate with human infection risk; however, these analyses cover small spatial regions and cannot be used to predict transmission in bird communities in which these species are rare or absent. Here we present a mechanistic model for WNV transmission that predicts WNV spread (R0) in any bird community in North America by scaling up from the physiological responses of individual birds to transmission at the level of the community. We predict unmeasured bird species' responses to infection using phylogenetic imputation, based on these species' phylogenetic relationships with bird species with measured responses. RESULTS We focused our analysis on Texas, USA, because it is among the states with the highest total incidence of WNV in humans and is well sampled by birders in the eBird database. Spatio-temporal patterns: WNV transmission is primarily driven by temperature variation across time and space, and secondarily by bird community composition. In Texas, we predicted WNV R0 to be highest in the spring and fall when temperatures maximize the product of mosquito transmission and survival probabilities. In the most favorable months for WNV transmission (April, May, September and October), we predicted R0 to be highest in the "Piney Woods" and "Oak Woods & Prairies" ecoregions of Texas, and lowest in the "High Plains" and "South Texas Brush County" ecoregions. Dilution effect: More abundant bird species are more competent hosts for WNV, and predicted WNV R0 decreases with increasing species richness. Keystone species: We predicted that northern cardinals (Cardinalis cardinalis) are the most important hosts for amplifying WNV and that mourning doves (Zenaida macroura) are the most important sinks of infection across Texas. CONCLUSIONS Despite some data limitations, we demonstrate the power of phylogenetic imputation in predicting disease transmission in heterogeneous host communities. Our mechanistic modeling framework shows promise both for assisting future analyses on transmission and spillover in heterogeneous multispecies pathogen systems and for improving model transparency by clarifying assumptions, choices and shortcomings in complex ecological analyses.
Collapse
Affiliation(s)
- Morgan P. Kain
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Benjamin M. Bolker
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
- Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|